Skip to main content

Toll-Like Receptor-Linked Signal Transduction in Angiogenesis

  • Chapter
  • First Online:

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 6))

Abstract

Mammalian Toll-like receptors (TLRs) represent pattern recognition receptors of the immune system and are related to the Toll protein of Drosophila. Pathogen-associated molecular patterns (PAMPs) of microbial and viral origin bind to TLRs and initiate the innate and adaptive immune response. However, TLRs are not solely found on cells of the immune system but also on nonmyeloid cells in various tissues, e.g., on vascular cells. In addition to PAMPs, there is increasing evidence that TLRs also recognize endogenous ligands. Recent studies demonstrate the contribution of distinct TLRs in different inflammatory disorders such as cardiovascular diseases, rheumatoid arthritis, systemic lupus erythematosus, and cancer. Many of these disorders are characterized by enhanced angiogenesis which is mainly trigged by inflammation. However, this inflammation-induced angiogenesis is not only important for pathogen defense during acute infection or chronic inflammatory disorders but as well involved in regenerative processes during wound healing and tissue repair. There is cumulative evidence that TLR activation by exogenous as well as endogenous ligands especially contributes to angiogenic process in this scenario. The present chapter will summarize the current understanding of TLR-linked signal transduction in angiogenesis during inflammatory processes with future prospects for pro- or antiangiogenic therapy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Anderson KV, Jürgens G, Nüsslein-Volhard C (1985) Establishment of dorsal-ventral polarity in the Drosophila embryo: genetic studies on the role of the Toll gene product. Cell 42:779–789

    Article  PubMed  CAS  Google Scholar 

  2. Anderson KV, Bokla L, Nüsslein-Volhard C (1985) Establishment of dorsal-ventral polarity in the Drosophila embryo: the induction of polarity by the Toll gene product. Cell 42:791–798

    Article  PubMed  CAS  Google Scholar 

  3. Hashimoto C, Hudson KL, Anderson KV (1988) The Toll gene of Drosophila, required for dorsal-ventral embryonic polarity, appears to encode a transmembrane protein. Cell 52:269–279

    Article  PubMed  CAS  Google Scholar 

  4. Lemaitre B, Nicolas E, Michaut L et al (1996) The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86:973–983

    Article  PubMed  CAS  Google Scholar 

  5. Valanne S, Wang JH, Rämet M (2011) The Drosophila Toll signaling pathway. J Immunol 186:649–656

    Article  PubMed  CAS  Google Scholar 

  6. Taguchi T, Mitcham JL, Dower SK et al (1996) Chromosomal localization of TIL, a gene encoding a protein related to the Drosophila transmembrane receptor Toll, to human chromosome 4p14. Genomics 32:486–488

    Article  PubMed  CAS  Google Scholar 

  7. Medzhitov R, Preston-Hurlburt P, Janeway CA Jr (1997) A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388:394–397

    Article  PubMed  CAS  Google Scholar 

  8. Poltorak A, He X, Smirnova I et al (1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282:2085–2088

    Article  PubMed  CAS  Google Scholar 

  9. Takeda K, Kaisho T, Akira S (2003) Toll-like receptors. Annu Rev Immunol 21:335–376

    Article  PubMed  CAS  Google Scholar 

  10. Oda K, Kitano H (2006) A comprehensive map of the toll-like receptor signaling network. Mol Syst Biol 2:2006.0015

    Article  PubMed  Google Scholar 

  11. Brikos C, O’Neill LA (2008) Signalling of toll-like receptors. In: Bauer S, Hartmann G (eds) Toll-­like receptors (TLRs) and innate immunity, vol 183, Handbook of experimental pharmacology. Springer, Heidelberg, pp 21–50

    Chapter  Google Scholar 

  12. Brown J, Wang H, Hajishengallis GN, Martin M (2011) TLR-signaling networks: an integration of adaptor molecules, kinases, and cross-talk. J Dent Res 90:417–427

    Article  PubMed  CAS  Google Scholar 

  13. O’Neill LA, Bowie AG (2007) The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol 7:353–364

    Article  PubMed  Google Scholar 

  14. Hasan U, Chaffois C, Gaillard C, Saulnier V, Merck E, Tancredi S, Guiet C, Brière F, Vlach J, Lebecque S, Trinchieri G, Bates EE (2005) Human TLR10 is a functional receptor, expressed by B cells and plasmacytoid dendritic cells, which activates gene transcription through MyD88. J Immunol 174:2942–2950

    PubMed  CAS  Google Scholar 

  15. Lee CC, Avalos AM, Ploegh HL (2012) Accessory molecules for Toll-like receptors and their function. Nat Rev Immunol 12:168–179

    PubMed  CAS  Google Scholar 

  16. Li S, Strelow A, Fontana EJ, Wesche H (2002) IRAK-4: a novel member of the IRAK family with the properties of an IRAK-kinase. Proc Natl Acad Sci U S A 99:5567–5572

    Article  PubMed  CAS  Google Scholar 

  17. Chen ZJ (2005) Ubiquitin signalling in the NF-kappaB pathway. Nat Cell Biol 7:758–765

    Article  PubMed  CAS  Google Scholar 

  18. Sato S, Sugiyama M, Yamamoto M et al (2003) Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta (TRIF) associates with TNF receptor-associated factor 6 and TANK-binding kinase 1, and activates two distinct transcription factors, NF-kappa B and IFN-regulatory factor-3, in the Toll-like receptor signaling. J Immunol 171:4304–4310

    PubMed  CAS  Google Scholar 

  19. Oshiumi H, Matsumoto M, Funami K et al (2003) TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-beta induction. Nat Immunol 4:161–167

    Article  PubMed  CAS  Google Scholar 

  20. Honda K, Yanai H, Mizutani T et al (2004) Role of a transductional-transcriptional processor complex involving MyD88 and IRF-7 in Toll-like receptor signaling. Proc Natl Acad Sci U S A A101:15416–15421

    Article  Google Scholar 

  21. Kaisho T, Akira S (2003) Regulation of dendritic cell function through toll-like receptors. Curr Mol Med 3:759–771

    Article  PubMed  CAS  Google Scholar 

  22. Satoh M, Ishikawa Y, Minami Y et al (2008) Role of Toll like receptor signaling pathway in ischemic coronary artery disease. Front Biosci 13:6708–6715

    Article  PubMed  CAS  Google Scholar 

  23. Seki E, Brenner DA (2008) Toll-like receptors and adaptor molecules in liver disease: update. Hepatology 48:322–335

    Article  PubMed  CAS  Google Scholar 

  24. Marshak-Rothstein A (2006) Toll-like receptors in systemic autoimmune disease. Nat Rev Immunol 6:823–835

    Article  PubMed  CAS  Google Scholar 

  25. Obhrai J, Goldstein DR (2006) The role of toll-like receptors in solid organ transplantation. Transplantation 81:497–502

    Article  PubMed  CAS  Google Scholar 

  26. Schmidt M, Raghavan B, Muller V et al (2010) Crucial role for human Toll-like receptor 4 in the development of contact allergy to nickel. Nat Immunol 11:814–819

    Article  PubMed  CAS  Google Scholar 

  27. Yu L, Wang L, Chen S (2010) Endogenous toll-like receptor ligands and their biological significance. J Cell Mol Med 14:2592–2603

    Article  PubMed  CAS  Google Scholar 

  28. Deiters U, Barsig J, Tawil B, Muhlradt PF (2004) The macrophage-activating lipopeptide-2 accelerates wound healing in diabetic mice. Exp Dermatol 13:731–739

    Article  PubMed  CAS  Google Scholar 

  29. Macedo L, Pinhal-Enfield G, Alshits V et al (2007) Wound healing is impaired in MyD88-­deficient mice: a role for MyD88 in the regulation of wound healing by adenosine A2A receptors. Am J Pathol 171:1774–1788

    Article  PubMed  CAS  Google Scholar 

  30. Seki E, Tsutsui H, Iimuro Y et al (2005) Contribution of Toll-like receptor/myeloid differentiation factor 88 signaling to murine liver regeneration. Hepatology 41:443–450

    Article  PubMed  CAS  Google Scholar 

  31. Ribatti D (2010) The seminal work of Werner Risau in the study of the development of the vascular system. Int J Dev Biol 54:567–572

    Article  PubMed  Google Scholar 

  32. Carmeliet P (2000) Mechanisms of angiogenesis and arteriogenesis. Nat Med 6:389–395

    Article  PubMed  CAS  Google Scholar 

  33. Risau W (1997) Mechanisms of angiogenesis. Nature 386:671–674

    Article  PubMed  CAS  Google Scholar 

  34. Carmeliet P (2005) Angiogenesis in life, disease and medicine. Nature 438:932–936

    Article  PubMed  CAS  Google Scholar 

  35. Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L (2006) VEGF receptor signalling—in control of vascular function. Nat Rev Mol Cell Biol 7:359–371

    Article  PubMed  CAS  Google Scholar 

  36. Senger DR, Galli SJ, Dvorak AM et al (1983) Tumor cells secrete a vascular permeability ­factor that promotes accumulation of ascites fluid. Science 219:983–985

    Article  PubMed  CAS  Google Scholar 

  37. Partanen J, Armstrong E, Makela TP et al (1992) A novel endothelial cell surface receptor tyrosine kinase with extracellular epidermal growth factor homology domains. Mol Cell Biol 12:1698–1707

    PubMed  CAS  Google Scholar 

  38. Augustin HG, Koh GY, Thurston G, Alitalo K (2009) Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nat Rev Mol Cell Biol 10:165–177

    Article  PubMed  CAS  Google Scholar 

  39. Gridley T (2010) Notch signaling in the vasculature. Curr Top Dev Biol 92:277–309

    Article  PubMed  CAS  Google Scholar 

  40. Karamysheva AF (2008) Mechanisms of angiogenesis. Biochemistry (Mosc) 73:751–762

    Article  CAS  Google Scholar 

  41. Bussolino F, Ziche M, Wang JM et al (1991) In vitro and in vivo activation of endothelial cells by colony-stimulating factors. J Clin Invest 87:986–995

    Article  PubMed  CAS  Google Scholar 

  42. Distler JH, Hirth A, Kurowska-Stolarska M et al (2003) Angiogenic and angiostatic factors in the molecular control of angiogenesis. Q J Nucl Med 47:149–161

    PubMed  CAS  Google Scholar 

  43. Vandervelde S, van Luyn MJ, Tio RA, Harmsen MC (2005) Signaling factors in stem cell-­mediated repair of infarcted myocardium. J Mol Cell Cardiol 39:363–376

    Article  PubMed  CAS  Google Scholar 

  44. Cao Y (2009) Tumor angiogenesis and molecular targets for therapy. Front Biosci 14:3962–3973

    Article  PubMed  CAS  Google Scholar 

  45. Yamaguchi Y, Yoshikawa K (2001) Cutaneous wound healing: an update. J Dermatol 28:521–534

    PubMed  CAS  Google Scholar 

  46. Gharaee-Kermani M, Phan SH (2001) Role of cytokines and cytokine therapy in wound healing and fibrotic diseases. Curr Pharm Des 7:1083–1103

    Article  PubMed  CAS  Google Scholar 

  47. Frantz S, Vincent KA, Feron O, Kelly RA (2005) Innate immunity and angiogenesis. Circ Res 96:15–26

    Article  PubMed  CAS  Google Scholar 

  48. Koutroubakis IE, Tsiolakidou G, Karmiris K, Kouroumalis EA (2006) Role of angiogenesis in inflammatory bowel disease. Inflamm Bowel Dis 12:515–523

    Article  PubMed  Google Scholar 

  49. Costa C, Incio J, Soares R (2007) Angiogenesis and chronic inflammation: cause or consequence? Angiogenesis 10:149–166

    Article  PubMed  Google Scholar 

  50. Grote K, Schuett H, Schieffer B (2011) Toll-like receptors in angiogenesis. ScientificWorldJournal 11:981–991

    Article  PubMed  CAS  Google Scholar 

  51. Leibovich SJ, Chen JF, Pinhal-Enfield G et al (2002) Synergistic up-regulation of vascular endothelial growth factor expression in murine macrophages by adenosine A(2A) receptor agonists and endotoxin. Am J Pathol 160:2231–2244

    Article  PubMed  CAS  Google Scholar 

  52. Pinhal-Enfield G, Ramanathan M, Hasko G et al (2003) An angiogenic switch in macrophages involving synergy between Toll-like receptors 2, 4, 7, and 9 and adenosine A(2A) receptors. Am J Pathol 163:711–721

    Article  PubMed  CAS  Google Scholar 

  53. Hara Y, Kuroda N, Inoue K, Sato T (2009) Up-regulation of vascular endothelial growth factor expression by adenosine through adenosine A2 receptors in the rat tongue treated with endotoxin. Arch Oral Biol 54:932–942

    Article  PubMed  CAS  Google Scholar 

  54. Pollet I, Opina CJ, Zimmerman C et al (2003) Bacterial lipopolysaccharide directly induces angiogenesis through TRAF6-mediated activation of NF-kappaB and c-Jun N-terminal kinase. Blood 102:1740–1742

    Article  PubMed  CAS  Google Scholar 

  55. McCord AM, Burgess AW, Whaley MJ, Anderson BE (2005) Interaction of Bartonella henselae with endothelial cells promotes monocyte/macrophage chemoattractant protein 1 gene expression and protein production and triggers monocyte migration. Infect Immun 73:5735–5742

    Article  PubMed  CAS  Google Scholar 

  56. Rodriguez-Martinez S, Cancino-Diaz ME, Miguel PS, Cancino-Diaz JC (2006) Lipopolysaccharide from Escherichia coli induces the expression of vascular endothelial growth factor via toll-like receptor 4 in human limbal fibroblasts. Exp Eye Res 83:1373–1377

    Article  PubMed  CAS  Google Scholar 

  57. Jagavelu K, Routray C, Shergill U et al (2010) Endothelial cell toll-like receptor 4 regulates fibrosis-associated angiogenesis in the liver. Hepatology 52:590–601

    Article  PubMed  CAS  Google Scholar 

  58. McDonald DM (2001) Angiogenesis and remodeling of airway vasculature in chronic inflammation. Am J Respir Crit Care Med 164:S39–S45

    PubMed  CAS  Google Scholar 

  59. Grote K, Schuett H, Salguero G et al (2010) Toll-like receptor 2/6 stimulation promotes angiogenesis via GM-CSF as a potential strategy for immune defense and tissue regeneration. Blood 115:2543–2552

    Article  PubMed  CAS  Google Scholar 

  60. Varoga D, Paulsen F, Mentlein R et al (2006) TLR-2-mediated induction of vascular endothelial growth factor (VEGF) in cartilage in septic joint disease. J Pathol 210:315–324

    Article  PubMed  CAS  Google Scholar 

  61. Cho ML, Ju JH, Kim HR et al (2007) Toll-like receptor 2 ligand mediates the upregulation of angiogenic factor, vascular endothelial growth factor and interleukin-8/CXCL8 in human rheumatoid synovial fibroblasts. Immunol Lett 108:121–128

    Article  PubMed  CAS  Google Scholar 

  62. Chang YJ, Wu MS, Lin JT, Chen CC (2005) Helicobacter pylori-induced invasion and angiogenesis of gastric cells is mediated by cyclooxygenase-2 induction through TLR2/TLR9 and promoter regulation. J Immunol 175:8242–8252

    PubMed  CAS  Google Scholar 

  63. Damiano V, Caputo R, Bianco R et al (2006) Novel toll-like receptor 9 agonist induces epidermal growth factor receptor (EGFR) inhibition and synergistic antitumor activity with EGFR inhibitors. Clin Cancer Res 12:577–583

    Article  PubMed  CAS  Google Scholar 

  64. Guo Z, Chen L, Zhu Y et al (2012) Double-stranded RNA-induced TLR3 activation inhibits angiogenesis and triggers apoptosis of human hepatocellular carcinoma cells. Oncol Rep 27:396–402

    PubMed  CAS  Google Scholar 

  65. Bergé M, Bonnin P, Sulpice E et al (2010) Small interfering RNAs induce target-independent inhibition of tumor growth and vasculature remodeling in a mouse model of hepatocellular carcinoma. Am J Pathol 177:3192–3201

    Article  PubMed  Google Scholar 

  66. Spaner DE, Masellis A (2007) Toll-like receptor agonists in the treatment of chronic lymphocytic leukemia. Leukemia 21:53–60

    Article  PubMed  CAS  Google Scholar 

  67. Shingu K, Kruschinski C, Lührmann A et al (2003) Intratracheal macrophage-activating lipopeptide-­2 reduces metastasis in the rat lung. Am J Respir Cell Mol Biol 28:316–321

    Article  PubMed  CAS  Google Scholar 

  68. Schneider C, Schmidt T, Ziske C et al (2004) Tumour suppression induced by the macrophage activating lipopeptide MALP-2 in an ultrasound guided pancreatic carcinoma mouse model. Gut 53:355–361

    Article  PubMed  CAS  Google Scholar 

  69. Schmidt J, Welsch T, Jäger D et al (2007) Intratumoural injection of the toll-like receptor-2/6 agonist ‘macrophage-activating lipopeptide-2’ in patients with pancreatic carcinoma: a phase I/II trial. Br J Cancer 97:598–604

    Article  PubMed  CAS  Google Scholar 

  70. Cammarota R, Bertolini V, Pennesi G et al (2010) The tumor microenvironment of colorectal cancer: stromal TLR4 expression as a potential prognostic marker. J Transl Med 8:112

    Article  PubMed  Google Scholar 

  71. Kutikhin AG (2011) Association of polymorphisms in TLR genes and in genes of the Toll-like receptor signaling pathway with cancer risk. Hum Immunol 72:1095–1116

    Article  PubMed  CAS  Google Scholar 

  72. van Beijnum JR, Buurman WA, Griffioen AW (2008) Convergence and amplification of toll-­like receptor (TLR) and receptor for advanced glycation end products (RAGE) signaling pathways via high mobility group B1 (HMGB1). Angiogenesis 11:91–99

    Article  PubMed  CAS  Google Scholar 

  73. Lin Q, Yang XP, Fang D et al (2011) High-mobility group box-1 mediates toll-like receptor 4-dependent angiogenesis. Arterioscler Thromb Vasc Biol 31:1024–1032

    Article  PubMed  CAS  Google Scholar 

  74. van Beijnum JR, Nowak-Sliwinska P, van den Boezem E et al (2012) Tumor angiogenesis is enforced by autocrine regulation of high-mobility group box 1. Oncogene 32:363–374

    Google Scholar 

  75. West XZ, Malinin NL, Merkulova AA et al (2010) Oxidative stress induces angiogenesis by activating TLR2 with novel endogenous ligands. Nature 467:972–976

    Article  PubMed  CAS  Google Scholar 

  76. Wang XY, Sarkar D, Fisher PB (2011) Stress-sensing toll-like receptor as a driver of angiogenesis. Pigment Cell Melanoma Res 24:7–9

    Article  PubMed  CAS  Google Scholar 

  77. Ergul A, Alhusban A, Fagan SC (2012) Angiogenesis: a harmonized target for recovery after stroke. Stroke 43:2270–2274

    Google Scholar 

  78. Freedman SB, Vale P, Kalka C, Kearney M et al (2002) Plasma vascular endothelial growth factor (VEGF) levels after intramuscular and intramyocardial gene transfer of VEGF-1 plasmid DNA. Hum Gene Ther 13:1595–1603

    Article  PubMed  CAS  Google Scholar 

  79. Henry TD, Annex BH, McKendall GR et al (2003) The VIVA trial: vascular endothelial growth factor in ischemia for vascular angiogenesis. Circulation 107:1359–1365

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work of KG and BS is supported by grants from the German Research Foundation (DFG) KFO 136 and SFB 566/b9 and from the Federal Ministry of Education and Research (BMBF) 01GU0711.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karsten Grote .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Grote, K., Schütt, H., Schieffer, B. (2013). Toll-Like Receptor-Linked Signal Transduction in Angiogenesis. In: Mehta, J., Dhalla, N. (eds) Biochemical Basis and Therapeutic Implications of Angiogenesis. Advances in Biochemistry in Health and Disease, vol 6. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5857-9_9

Download citation

Publish with us

Policies and ethics