Skip to main content

Emerging Opportunities for Targeting the Tumor–Stroma Interactions for Increasing the Efficacy of Chemotherapy

  • Chapter
  • First Online:
  • 2165 Accesses

Part of the book series: Cell Death in Biology and Diseases ((CELLDEATH))

Abstract

It has become evident that tumor cells utilize survival signals that emanate from the tumor microenvironment to aid in survival and disease progression. Experimental evidence indicates that these same pathways contribute to de novo drug resistance. Identification of the mechanisms underlying the recruitment of accessory cells and survival signals provided by normal cells has provided a novel area for drug discovery for increasing the efficacy of cancer therapy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gottesman MM, Ling V (2006) The molecular basis of multidrug resistance in cancer: the early years of P-glycoprotein research. FEBS Lett 580:998–1009

    CAS  PubMed  Google Scholar 

  2. Buchdunger E, Zimmermann J, Mett H, Meyer T, Muller M, Druker BJ, Lydon NB (1996) Inhibition of the Abl protein-tyrosine kinase in vitro and in vivo by a 2-phenylaminopyrimidine derivative. Cancer Res 56:100–104

    CAS  PubMed  Google Scholar 

  3. Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM, Fanning S, Zimmermann J, Lydon NB (1996) Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med 2:561–566

    CAS  PubMed  Google Scholar 

  4. Carlesso N, Griffin JD, Druker BJ (1994) Use of a temperature-sensitive mutant to define the biological effects of the p210BCR-ABL tyrosine kinase on proliferation of a factor-dependent murine myeloid cell line. Oncogene 9:149–156

    CAS  PubMed  Google Scholar 

  5. Zhang X, Ren R (1998) Bcr-Abl efficiently induces a myeloproliferative disease and production of excess interleukin-3 and granulocyte-macrophage colony-stimulating factor in mice: a novel model for chronic myelogenous leukemia. Blood 92:3829–3840

    CAS  PubMed  Google Scholar 

  6. Druker BJ, Guilhot F, O’Brien SG, Gathmann I, Kantarjian H, Gattermann N, Deininger MW, Silver RT, Goldman JM, Stone RM et al (2006) Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med 355:2408–2417

    CAS  PubMed  Google Scholar 

  7. Shah NP, Nicoll JM, Nagar B, Gorre ME, Paquette RL, Kuriyan J, Sawyers CL (2002) Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell 2:117–125

    CAS  PubMed  Google Scholar 

  8. O’Hare T, Shakespeare WC, Zhu X, Eide CA, Rivera VM, Wang F, Adrian LT, Zhou T, Huang WS, Xu Q et al (2009) AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance. Cancer Cell 16:401–412

    PubMed Central  PubMed  Google Scholar 

  9. Nazarian R, Shi H, Wang Q, Kong X, Koya RC, Lee H, Chen Z, Lee MK, Attar N, Sazegar H et al (2010) Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature 468:973–977

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Kobayashi S, Boggon TJ, Dayaram T, Janne PA, Kocher O, Meyerson M, Johnson BE, Eck MJ, Tenen DG, Halmos B (2005) EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med 352:786–792

    CAS  PubMed  Google Scholar 

  11. Flaherty KT, Puzanov I, Kim KB, Ribas A, McArthur GA, Sosman JA, O’Dwyer PJ, Lee RJ, Grippo JF, Nolop K et al (2010) Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med 363:809–819

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Poulikakos PI, Rosen N (2011) Mutant BRAF melanomas–dependence and resistance. Cancer Cell 19:11–15

    CAS  PubMed  Google Scholar 

  13. Hanahan D, Coussens LM (2012) Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21:309–322

    CAS  PubMed  Google Scholar 

  14. Meads MB, Gatenby RA, Dalton WS (2009) Environment-mediated drug resistance: a major contributor to minimal residual disease. Nat Rev Cancer 9:665–674

    CAS  PubMed  Google Scholar 

  15. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    CAS  PubMed  Google Scholar 

  16. Bewry NN, Nair RR, Emmons MF, Boulware D, Pinilla-Ibarz J, Hazlehurst LA (2008) Stat3 contributes to resistance toward BCR-ABL inhibitors in a bone marrow microenvironment model of drug resistance. Mol Cancer Ther 7:3169–3175

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Nair RR, Tolentino J, Hazlehurst LA (2010) The bone marrow microenvironment as a sanctuary for minimal residual disease in CML. Biochem Pharmacol 80(5):602–612

    Google Scholar 

  18. Nefedova Y, Landowski TH, Dalton WS (2003) Bone marrow stromal-derived soluble factors and direct cell contact contribute to de novo drug resistance of myeloma cells by distinct mechanisms. Leukemia 17:1175–1182

    CAS  PubMed  Google Scholar 

  19. Lagneaux L, Delforge A, De Bruyn C, Bernier M, Bron D (1999) Adhesion to bone marrow stroma inhibits apoptosis of chronic lymphocytic leukemia cells. Leuk Lymphoma 35:445–453

    CAS  PubMed  Google Scholar 

  20. Nair RR, Tolentino JH, Argilagos RF, Zhang L, Pinilla-Ibarz J, Hazlehurst LA (2012) Potentiation of Nilotinib-mediated cell death in the context of the bone marrow microenvironment requires a promiscuous JAK inhibitor in CML. Leuk Res 36:756–763

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Hazlehurst LA, Valkov N, Wisner L, Storey JA, Boulware D, Sullivan DM, Dalton WS (2001) Reduction in drug-induced DNA double-strand breaks associated with beta1 integrin-mediated adhesion correlates with drug resistance in U937 cells. Blood 98:1897–1903

    CAS  PubMed  Google Scholar 

  22. Hoyt DG, Rusnak JM, Mannix RJ, Modzelewski RA, Johnson CS, Lazo JS (1996) Integrin activation suppresses etoposide-induced DNA strand breakage in cultured murine tumor-derived endothelial cells. Cancer Res 56:4146–4149

    CAS  PubMed  Google Scholar 

  23. Ihle JN (2001) The stat family in cytokine signaling. Curr Opin Cell Biol 13:211–217

    CAS  PubMed  Google Scholar 

  24. Herrington J, Smit LS, Schwartz J, Carter-Su C (2000) The role of STAT proteins in growth hormone signaling. Oncogene 19:2585–2597

    CAS  PubMed  Google Scholar 

  25. Reddy EP, Korapati A, Chaturvedi P, Rane S (2000) IL-3 signaling and the role of Src kinases, JAKs and STATs: a covert liaison unveiled. Oncogene 19:2532–2547

    CAS  PubMed  Google Scholar 

  26. Marrero MB, Schieffer B, Paxton WG, Heerdt L, Berk BC, Delafontaine P, Bernstein KE (1995) Direct stimulation of Jak/STAT pathway by the angiotensin II AT1 receptor. Nature 375:247–250

    CAS  PubMed  Google Scholar 

  27. Shain KH, Yarde DN, Meads MB, Huang M, Jove R, Hazlehurst LA, Dalton WS (2009) Beta1 integrin adhesion enhances IL-6-mediated STAT3 signaling in myeloma cells: implications for microenvironment influence on tumor survival and proliferation. Cancer Res 69:1009–1015

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Epling-Burnette PK, Liu JH, Catlett-Falcone R, Turkson J, Oshiro M, Kothapalli R, Li Y, Wang JM, Yang-Yen HF, Karras J et al (2001) Inhibition of STAT3 signaling leads to apoptosis of leukemic large granular lymphocytes and decreased Mcl-1 expression. J Clin Invest 107:351–362

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Gritsko T, Williams A, Turkson J, Kaneko S, Bowman T, Huang M, Nam S, Eweis I, Diaz N, Sullivan D et al (2006) Persistent activation of stat3 signaling induces survivin gene expression and confers resistance to apoptosis in human breast cancer cells. Clin Cancer Res 12:11–19

    CAS  PubMed  Google Scholar 

  30. Cuevas P, Diaz-Gonzalez D, Sanchez I, Lozano RM, Gimenez-Gallego G, Dujovny M (2006) Dobesilate inhibits the activation of signal transducer and activator of transcription 3, and the expression of cyclin D1 and bcl-XL in glioma cells. Neurol Res 28:127–130

    CAS  PubMed  Google Scholar 

  31. Bhattacharya S, Ray RM, Johnson LR (2005) STAT3-mediated transcription of Bcl-2, Mcl-1 and c-IAP2 prevents apoptosis in polyamine-depleted cells. Biochem J 392:335–344

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Cox D, Brennan M, Moran N (2010) Integrins as therapeutic targets: lessons and opportunities. Nat Rev Drug Discov 9:804–820

    CAS  PubMed  Google Scholar 

  33. Heinrich PC, Behrmann I, Muller-Newen G, Schaper F, Graeve L (1998) Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway. Biochem J 334(Pt 2):297–314

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Quesnelle KM, Boehm AL, Grandis JR (2007) STAT-mediated EGFR signaling in cancer. J Cell Biochem 102:311–319

    CAS  PubMed  Google Scholar 

  35. Heinrich PC, Behrmann I, Haan S, Hermanns HM, Muller-Newen G, Schaper F (2003) Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J 374:1–20

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Shuai K, Stark GR, Kerr IM, Darnell JE Jr (1993) A single phosphotyrosine residue of Stat91 required for gene activation by interferon-gamma. Science 261:1744–1746

    CAS  PubMed  Google Scholar 

  37. Shuai K, Horvath CM, Huang LH, Qureshi SA, Cowburn D, Darnell JE Jr (1994) Interferon activation of the transcription factor Stat91 involves dimerization through SH2-phosphotyrosyl peptide interactions. Cell 76:821–828

    CAS  PubMed  Google Scholar 

  38. Ara T, Song L, Shimada H, Keshelava N, Russell HV, Metelitsa LS, Groshen SG, Seeger RC, DeClerck YA (2009) Interleukin-6 in the bone marrow microenvironment promotes the growth and survival of neuroblastoma cells. Cancer Res 69:329–337

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Catlett-Falcone R, Landowski TH, Oshiro MM, Turkson J, Levitzki A, Savino R, Ciliberto G, Moscinski L, Fernandez-Luna JL, Nunez G et al (1999) Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity 10:105–115

    CAS  PubMed  Google Scholar 

  40. Monaghan KA, Khong T, Burns CJ, Spencer A (2011) The novel JAK inhibitor CYT387 suppresses multiple signalling pathways, prevents proliferation and induces apoptosis in phenotypically diverse myeloma cells. Leukemia 25:1891–1899

    CAS  PubMed  Google Scholar 

  41. Hunsucker SA, Magarotto V, Kuhn DJ, Kornblau SM, Wang M, Weber DM, Thomas SK, Shah JJ, Voorhees PM, Xie H et al (2011) Blockade of interleukin-6 signalling with siltuximab enhances melphalan cytotoxicity in preclinical models of multiple myeloma. Br J Haematol 152:579–592

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Burger R, Le Gouill S, Tai YT, Shringarpure R, Tassone P, Neri P, Podar K, Catley L, Hideshima T, Chauhan D et al (2009) Janus kinase inhibitor INCB20 has antiproliferative and apoptotic effects on human myeloma cells in vitro and in vivo. Mol Cancer Ther 8:26–35

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Li J, Favata M, Kelley JA, Caulder E, Thomas B, Wen X, Sparks RB, Arvanitis A, Rogers JD, Combs AP et al (2010) INCB16562, a JAK1/2 selective inhibitor, is efficacious against multiple myeloma cells and reverses the protective effects of cytokine and stromal cell support. Neoplasia 12:28–38

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Honemann D, Chatterjee M, Savino R, Bommert K, Burger R, Gramatzki M, Dorken B, Bargou RC (2001) The IL-6 receptor antagonist SANT-7 overcomes bone marrow stromal cell-mediated drug resistance of multiple myeloma cells. Int J Cancer 93:674–680

    CAS  PubMed  Google Scholar 

  45. Hu M, Yao J, Cai L, Bachman KE, van den Brule F, Velculescu V, Polyak K (2005) Distinct epigenetic changes in the stromal cells of breast cancers. Nat Genet 37:899–905

    CAS  PubMed  Google Scholar 

  46. Wang W, Li Q, Yamada T, Matsumoto K, Matsumoto I, Oda M, Watanabe G, Kayano Y, Nishioka Y, Sone S et al (2009) Crosstalk to stromal fibroblasts induces resistance of lung cancer to epidermal growth factor receptor tyrosine kinase inhibitors. Clin Cancer Res 15:6630–6638

    CAS  PubMed  Google Scholar 

  47. Martinez-Outschoorn UE, Goldberg A, Lin Z, Ko YH, Flomenberg N, Wang C, Pavlides S, Pestell RG, Howell A, Sotgia F et al (2011) Anti-estrogen resistance in breast cancer is induced by the tumor microenvironment and can be overcome by inhibiting mitochondrial function in epithelial cancer cells. Cancer Biol Ther 12:924–938

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Bates GJ, Fox SB, Han C, Leek RD, Garcia JF, Harris AL, Banham AH (2006) Quantification of regulatory T cells enables the identification of high-risk breast cancer patients and those at risk of late relapse. J Clin Oncol 24:5373–5380

    PubMed  Google Scholar 

  49. Sasada T, Kimura M, Yoshida Y, Kanai M, Takabayashi A (2003) CD4+CD25+ regulatory T cells in patients with gastrointestinal malignancies: possible involvement of regulatory T cells in disease progression. Cancer 98:1089–1099

    PubMed  Google Scholar 

  50. Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9:162–174

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Mazzoni A, Bronte V, Visintin A, Spitzer JH, Apolloni E, Serafini P, Zanovello P, Segal DM (2002) Myeloid suppressor lines inhibit T cell responses by an NO-dependent mechanism. J Immunol 168:689–695

    CAS  PubMed  Google Scholar 

  52. Lu T, Ramakrishnan R, Altiok S, Youn JI, Cheng P, Celis E, Pisarev V, Sherman S, Sporn MB, Gabrilovich D (2011) Tumor-infiltrating myeloid cells induce tumor cell resistance to cytotoxic T cells in mice. J Clin Invest 121:4015–4029

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Shojaei F, Wu X, Malik AK, Zhong C, Baldwin ME, Schanz S, Fuh G, Gerber HP, Ferrara N (2007) Tumor refractoriness to anti-VEGF treatment is mediated by CD11b+Gr1+ myeloid cells. Nat Biotechnol 25:911–920

    CAS  PubMed  Google Scholar 

  54. Schmid MC, Avraamides CJ, Foubert P, Shaked Y, Kang SW, Kerbel RS, Varner JA (2011) Combined Blockade of Integrin-alpha4beta1 Plus Cytokines SDF-1alpha or IL-1beta Potently Inhibits Tumor Inflammation and Growth. Cancer Res 71:6965–6975

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Du R, Lu KV, Petritsch C, Liu P, Ganss R, Passegue E, Song H, Vandenberg S, Johnson RS, Werb Z et al (2008) HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell 13:206–220

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Alam N, Goel HL, Zarif MJ, Butterfield JE, Perkins HM, Sansoucy BG, Sawyer TK, Languino LR (2007) The integrin-growth factor receptor duet. J Cell Physiol 213:649–653

    CAS  PubMed  Google Scholar 

  57. Bergers G, Hanahan D (2008) Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 8:592–603

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Takahashi M, Tsuda T, Ikeda Y, Honke K, Taniguchi N (2004) Role of N-glycans in growth factor signaling. Glycoconj J 20:207–212

    CAS  PubMed  Google Scholar 

  59. Waetzig GH, Chalaris A, Rosenstiel P, Suthaus J, Holland C, Karl N, Valles Uriarte L, Till A, Scheller J, Grotzinger J et al (2010) N-linked glycosylation is essential for the stability but not the signaling function of the interleukin-6 signal transducer glycoprotein 130. J Biol Chem 285:1781–1789

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Barondes SH, Cooper DN, Gitt MA, Leffler H (1994) Galectins. Structure and function of a large family of animal lectins. J Biol Chem 269:20807–20810

    CAS  PubMed  Google Scholar 

  61. Brewer CF, Miceli MC, Baum LG (2002) Clusters, bundles, arrays and lattices: novel mechanisms for lectin-saccharide-mediated cellular interactions. Curr Opin Struct Biol 12:616–623

    CAS  PubMed  Google Scholar 

  62. Sacchettini JC, Baum LG, Brewer CF (2001) Multivalent protein-carbohydrate interactions. A new paradigm for supermolecular assembly and signal transduction. Biochemistry 40:3009–3015

    CAS  PubMed  Google Scholar 

  63. Collins BE, Paulson JC (2004) Cell surface biology mediated by low affinity multivalent protein-glycan interactions. Curr Opin Chem Biol 8:617–625

    CAS  PubMed  Google Scholar 

  64. Jin L, Hope KJ, Zhai Q, Smadja-Joffe F, Dick JE (2006) Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med 12:1167–1174

    PubMed  Google Scholar 

  65. Varki A, Kannagi R, Toole BP (2009) Glycosylation changes in cancer. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME (eds.) Essentials of glycobiology. Cold Spring Harbor, NY

    Google Scholar 

  66. Hirabayashi J, Hashidate T, Arata Y, Nishi N, Nakamura T, Hirashima M, Urashima T, Oka T, Futai M, Muller WE et al (2002) Oligosaccharide specificity of galectins: a search by frontal affinity chromatography. Biochim Biophys Acta 1572:232–254

    CAS  PubMed  Google Scholar 

  67. Granovsky M, Fata J, Pawling J, Muller WJ, Khokha R, Dennis JW (2000) Suppression of tumor growth and metastasis in Mgat5-deficient mice. Nat Med 6:306–312

    CAS  PubMed  Google Scholar 

  68. Partridge EA, Le Roy C, Di Guglielmo GM, Pawling J, Cheung P, Granovsky M, Nabi IR, Wrana JL, Dennis JW (2004) Regulation of cytokine receptors by Golgi N-glycan processing and endocytosis. Science 306:120–124

    CAS  PubMed  Google Scholar 

  69. Lajoie P, Partridge EA, Guay G, Goetz JG, Pawling J, Lagana A, Joshi B, Dennis JW, Nabi IR (2007) Plasma membrane domain organization regulates EGFR signaling in tumor cells. J Cell Biol 179:341–356

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Daniels MA, Hogquist KA, Jameson SC (2002) Sweet ‘n’ sour: the impact of differential glycosylation on T cell responses. Nat Immunol 3:903–910

    CAS  PubMed  Google Scholar 

  71. Barondes SH, Castronovo V, Cooper DN, Cummings RD, Drickamer K, Feizi T, Gitt MA, Hirabayashi J, Hughes C, Kasai K et al (1994) Galectins: a family of animal beta-galactoside-binding lectins. Cell 76:597–598

    CAS  PubMed  Google Scholar 

  72. Liao DI, Kapadia G, Ahmed H, Vasta GR, Herzberg O (1994) Structure of S-lectin, a developmentally regulated vertebrate beta-galactoside-binding protein. Proc Nat Acad Sci USA 91:1428–1432

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Hirabayashi J, Kasai K (1993) The family of metazoan metal-independent beta-galactoside-binding lectins: structure, function and molecular evolution. Glycobiology 3:297–304

    CAS  PubMed  Google Scholar 

  74. Houzelstein D, Goncalves IR, Fadden AJ, Sidhu SS, Cooper DN, Drickamer K, Leffler H, Poirier F (2004) Phylogenetic analysis of the vertebrate galectin family. Mol Biol Evol 21:1177–1187

    CAS  PubMed  Google Scholar 

  75. Di Lella S, Sundblad V, Cerliani JP, Guardia CM, Estrin DA, Vasta GR, Rabinovich GA (2011) When galectins recognize glycans: from biochemistry to physiology and back again. Biochemistry 50:7842–7857

    PubMed Central  PubMed  Google Scholar 

  76. de Waard A, Hickman S, Kornfeld S (1976) Isolation and properties of beta-galactoside binding lectins of calf heart and lung. J Biol Chem 251:7581–7587

    PubMed  Google Scholar 

  77. Paz A, Haklai R, Elad-Sfadia G, Ballan E, Kloog Y (2001) Galectin-1 binds oncogenic H-Ras to mediate Ras membrane anchorage and cell transformation. Oncogene 20:7486–7493

    CAS  PubMed  Google Scholar 

  78. Ellerhorst J, Nguyen T, Cooper DN, Lotan D, Lotan R (1999) Differential expression of endogenous galectin-1 and galectin-3 in human prostate cancer cell lines and effects of overexpressing galectin-1 on cell phenotype. Int J Oncol 14:217–224

    CAS  PubMed  Google Scholar 

  79. van den Brule F, Califice S, Garnier F, Fernandez PL, Berchuck A, Castronovo V (2003) Galectin-1 accumulation in the ovary carcinoma peritumoral stroma is induced by ovary carcinoma cells and affects both cancer cell proliferation and adhesion to laminin-1 and fibronectin. Lab Invest J Tech Methods Pathol 83:377–386

    Google Scholar 

  80. Clausse N, van den Brule F, Waltregny D, Garnier F, Castronovo V (1999) Galectin-1 expression in prostate tumor-associated capillary endothelial cells is increased by prostate carcinoma cells and modulates heterotypic cell-cell adhesion. Angiogenesis 3:317–325

    CAS  PubMed  Google Scholar 

  81. Horiguchi N, Arimoto K, Mizutani A, Endo-Ichikawa Y, Nakada H, Taketani S (2003) Galectin-1 induces cell adhesion to the extracellular matrix and apoptosis of non-adherent human colon cancer Colo201 cells. J Biochem 134:869–874

    CAS  PubMed  Google Scholar 

  82. Lippert E, Gunckel M, Brenmoehl J, Bataille F, Falk W, Scholmerich J, Obermeier F, Rogler G (2008) Regulation of galectin-3 function in mucosal fibroblasts: potential role in mucosal inflammation. Clin Exp Immunol 152:285–297

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Park SH, Min HS, Kim B, Myung J, Paek SH (2008) Galectin-3: a useful biomarker for differential diagnosis of brain tumors. Neuropathol: Official J Jpn Soc Neuropathol 28:497–506

    Google Scholar 

  84. Jiang HR, Al Rasebi Z, Mensah-Brown E, Shahin A, Xu D, Goodyear CS, Fukada SY, Liu FT, Liew FY, Lukic ML (2009) Galectin-3 deficiency reduces the severity of experimental autoimmune encephalomyelitis. J Immunol 182:1167–1173

    CAS  PubMed  Google Scholar 

  85. Jeon SB, Yoon HJ, Chang CY, Koh HS, Jeon SH, Park EJ (2010) Galectin-3 exerts cytokine-like regulatory actions through the JAK-STAT pathway. J Immunol 185:7037–7046

    CAS  PubMed  Google Scholar 

  86. Wan SY, Zhang TF, Ding Y (2011) Galectin-3 enhances proliferation and angiogenesis of endothelial cells differentiated from bone marrow mesenchymal stem cells. Transpl Proc 43:3933–3938

    CAS  Google Scholar 

  87. Chauhan D, Li G, Podar K, Hideshima T, Neri P, He D, Mitsiades N, Richardson P, Chang Y, Schindler J et al (2005) A novel carbohydrate-based therapeutic GCS-100 overcomes bortezomib resistance and enhances dexamethasone-induced apoptosis in multiple myeloma cells. Cancer Res 65:8350–8358

    CAS  PubMed  Google Scholar 

  88. Streetly MJ, Maharaj L, Joel S, Schey SA, Gribben JG, Cotter FE (2010) GCS-100, a novel galectin-3 antagonist, modulates MCL-1, NOXA, and cell cycle to induce myeloma cell death. Blood 115:3939–3948

    CAS  PubMed  Google Scholar 

  89. Cheng YL, Huang WC, Chen CL, Tsai CC, Wang CY, Chiu WH, Chen YL, Lin YS, Chang CF, Lin CF (2011) Increased galectin-3 facilitates leukemia cell survival from apoptotic stimuli. Biochem Biophys Res Commun 412:334–340

    CAS  PubMed  Google Scholar 

  90. Yamamoto-Sugitani M, Kuroda J, Ashihara E, Nagoshi H, Kobayashi T, Matsumoto Y, Sasaki N, Shimura Y, Kiyota M, Nakayama R et al (2011) Galectin-3 (Gal-3) induced by leukemia microenvironment promotes drug resistance and bone marrow lodgment in chronic myelogenous leukemia. Proc Nat Acad Sci USA 108:17468–17473

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Kageshita T, Kashio Y, Yamauchi A, Seki M, Abedin MJ, Nishi N, Shoji H, Nakamura T, Ono T, Hirashima M (2002) Possible role of galectin-9 in cell aggregation and apoptosis of human melanoma cell lines and its clinical significance. Int J Cancer J Int du Cancer 99:809–816

    CAS  Google Scholar 

  92. Lu LH, Nakagawa R, Kashio Y, Ito A, Shoji H, Nishi N, Hirashima M, Yamauchi A, Nakamura T (2007) Characterization of galectin-9-induced death of Jurkat T cells. J Biochem 141:157–172

    CAS  PubMed  Google Scholar 

  93. Kuroda J, Yamamoto M, Nagoshi H, Kobayashi T, Sasaki N, Shimura Y, Horiike S, Kimura S, Yamauchi A, Hirashima M et al (2010) Targeting activating transcription factor 3 by Galectin-9 induces apoptosis and overcomes various types of treatment resistance in chronic myelogenous leukemia. Mol Cancer Res: MCR 8:994–1001

    CAS  PubMed  Google Scholar 

  94. Kobayashi T, Kuroda J, Ashihara E, Oomizu S, Terui Y, Taniyama A, Adachi S, Takagi T, Yamamoto M, Sasaki N et al (2010) Galectin-9 exhibits anti-myeloma activity through JNK and p38 MAP kinase pathways. Leuk: Official J Leuk Soc Am Leuk Res Fund UK 24:843–850

    Google Scholar 

  95. Cipolleschi MG, Dello Sbarba P, Olivotto M (1993) The role of hypoxia in the maintenance of hematopoietic stem cells. Blood 82:2031–2037

    CAS  PubMed  Google Scholar 

  96. Wohlkoenig C, Leithner K, Deutsch A, Hrzenjak A, Olschewski A, Olschewski H (2011) Hypoxia-induced cisplatin resistance is reversible and growth rate independent in lung cancer cells. Cancer Lett 308:134–143

    CAS  PubMed  Google Scholar 

  97. Tanturli M, Giuntoli S, Barbetti V, Rovida E, Dello Sbarba P (2011) Hypoxia selects bortezomib-resistant stem cells of chronic myeloid leukemia. PLoS ONE 6:e17008

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Giuntoli S, Rovida E, Barbetti V, Cipolleschi MG, Olivotto M, Dello Sbarba P (2006) Hypoxia suppresses BCR/Abl and selects imatinib-insensitive progenitors within clonal CML populations. Leukemia 20:1291–1293

    CAS  PubMed  Google Scholar 

  99. Graeber TG, Osmanian C, Jacks T, Housman DE, Koch CJ, Lowe SW, Giaccia AJ (1996) Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 379:88–91

    CAS  PubMed  Google Scholar 

  100. Bristow RG, Hill RP (2008) Hypoxia and metabolism. Hypoxia, DNA repair and genetic instability. Nat Rev Cancer 8:180–192

    CAS  PubMed  Google Scholar 

  101. Tang N, Wang L, Esko J, Giordano FJ, Huang Y, Gerber HP, Ferrara N, Johnson RS (2004) Loss of HIF-1alpha in endothelial cells disrupts a hypoxia-driven VEGF autocrine loop necessary for tumorigenesis. Cancer Cell 6:485–495

    CAS  PubMed  Google Scholar 

  102. Pennacchietti S, Michieli P, Galluzzo M, Mazzone M, Giordano S, Comoglio PM (2003) Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell 3:347–361

    PubMed  Google Scholar 

  103. Lukashev D, Klebanov B, Kojima H, Grinberg A, Ohta A, Berenfeld L, Wenger RH, Sitkovsky M (2006) Cutting edge: hypoxia-inducible factor 1alpha and its activation-inducible short isoform I.1 negatively regulate functions of CD4+ and CD8+ T lymphocytes. J Immunol 177:4962–4965

    CAS  PubMed  Google Scholar 

  104. Masson N, Willam C, Maxwell PH, Pugh CW, Ratcliffe PJ (2001) Independent function of two destruction domains in hypoxia-inducible factor-alpha chains activated by prolyl hydroxylation. EMBO J 20:5197–5206

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, Kriegsheim A, Hebestreit HF, Mukherji M, Schofield CJ et al (2001) Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292:468–472

    CAS  PubMed  Google Scholar 

  106. Mole DR, Blancher C, Copley RR, Pollard PJ, Gleadle JM, Ragoussis J, Ratcliffe PJ (2009) Genome-wide association of hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha DNA binding with expression profiling of hypoxia-inducible transcripts. J Biol Chem 284:16767–16775

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Weiss GJ, Infante JR, Chiorean EG, Borad MJ, Bendell JC, Molina JR, Tibes R, Ramanathan RK, Lewandowski K, Jones SF et al (2011) Phase 1 study of the safety, tolerability, and pharmacokinetics of TH-302, a hypoxia-activated prodrug, in patients with advanced solid malignancies. Clin Cancer Res 17:2997–3004

    CAS  PubMed  Google Scholar 

  108. Romero-Ramirez L, Cao H, Nelson D, Hammond E, Lee AH, Yoshida H, Mori K, Glimcher LH, Denko NC, Giaccia AJ et al (2004) XBP1 is essential for survival under hypoxic conditions and is required for tumor growth. Cancer Res 64:5943–5947

    CAS  PubMed  Google Scholar 

  109. Papandreou I, Denko NC, Olson M, Van Melckebeke H, Lust S, Tam A, Solow-Cordero DE, Bouley DM, Offner F, Niwa M et al (2011) Identification of an Ire1alpha endonuclease specific inhibitor with cytotoxic activity against human multiple myeloma. Blood 117:1311–1314

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Volkmann K, Lucas JL, Vuga D, Wang X, Brumm D, Stiles C, Kriebel D, Der-Sarkissian A, Krishnan K, Schweitzer C et al (2011) Potent and selective inhibitors of the inositol-requiring enzyme 1 endoribonuclease. J Biol Chem 286:12743–12755

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Fels DR, Ye J, Segan AT, Kridel SJ, Spiotto M, Olson M, Koong AC, Koumenis C (2008) Preferential cytotoxicity of bortezomib toward hypoxic tumor cells via overactivation of endoplasmic reticulum stress pathways. Cancer Res 68:9323–9330

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Damiano JS, Cress AE, Hazlehurst LA, Shtil AA, Dalton WS (1999) Cell adhesion mediated drug resistance (CAM-DR): role of integrins and resistance to apoptosis in human myeloma cell lines. Blood 93:1658–1667

    CAS  PubMed  Google Scholar 

  113. Emmons MF, Gebhard AW, Nair RR, Baz R, McLaughlin M, Cress AE, Hazlehurst LA (2011) Acquisition of resistance towards HYD1 correlates with a reduction in cleaved alpha 4 integrin expression and a compromised CAM-DR phenotype. Mol Cancer Ther 10(12):2257–2266

    Google Scholar 

  114. Lu X, Mu E, Wei Y, Riethdorf S, Yang Q, Yuan M, Yan J, Hua Y, Tiede BJ, Haffty BG et al (2011) VCAM-1 promotes osteolytic expansion of indolent bone micrometastasis of breast cancer by engaging alpha4beta1-positive osteoclast progenitors. Cancer Cell 20:701–714

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Abe M, Hiura K, Ozaki S, Kido S, Matsumoto T (2009) Vicious cycle between myeloma cell binding to bone marrow stromal cells via VLA-4-VCAM-1 adhesion and macrophage inflammatory protein-1alpha and MIP-1beta production. J Bone Miner Metab 27:16–23

    CAS  PubMed  Google Scholar 

  116. Chen Q, Lin TH, Der CJ, Juliano RL (1996) Integrin-mediated activation of MEK and mitogen-activated protein kinase is independent of Ras (corrected). J Biol Chem 271:18122–18127

    CAS  PubMed  Google Scholar 

  117. Lee JW, Juliano RL (2002) The alpha5beta1 integrin selectively enhances epidermal growth factor signaling to the phosphatidylinositol-3-kinase/Akt pathway in intestinal epithelial cells. Biochim Biophys Acta 1542:23

    CAS  PubMed  Google Scholar 

  118. Bill HM, Knudsen B, Moores SL, Muthuswamy SK, Rao VR, Brugge JS, Miranti CK (2004) Epidermal growth factor receptor-dependent regulation of integrin-mediated signaling and cell cycle entry in epithelial cells. Mol Cell Biol 24:8586–8599

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Xiao T, Takagi J, Coller BS, Wang JH, Springer TA (2004) Structural basis for allostery in integrins and binding to fibrinogen-mimetic therapeutics. Nature 432:59–67

    CAS  PubMed  Google Scholar 

  120. Xiong JP, Stehle T, Diefenbach B, Zhang R, Dunker R, Scott DL, Joachimiak A, Goodman SL, Arnaout MA (2001) Crystal structure of the extracellular segment of integrin alpha Vbeta3. Science 294:339–345

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Rosano C, Rocco M (2010) Solution properties of full-length integrin alpha(IIb)beta3 refined models suggest environment-dependent induction of alternative bent/extended resting states. FEBS J 277:3190–3202

    CAS  PubMed  Google Scholar 

  122. Lu C, Takagi J, Springer TA (2001) Association of the membrane proximal regions of the alpha and beta subunit cytoplasmic domains constrains an integrin in the inactive state. J Biol Chem 276:14642–14648

    CAS  PubMed  Google Scholar 

  123. Luo BH, Carman CV, Springer TA (2007) Structural basis of integrin regulation and signaling. Annu Rev Immunol 25:619–647

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Takagi J, Erickson HP, Springer TA (2001) C-terminal opening mimics ‘inside-out’ activation of integrin alpha5beta1. Nat Struct Biol 8:412–416

    CAS  PubMed  Google Scholar 

  125. Calderwood DA, Zent R, Grant R, Rees DJ, Hynes RO, Ginsberg MH (1999) The Talin head domain binds to integrin beta subunit cytoplasmic tails and regulates integrin activation. J Biol Chem 274:28071–28074

    CAS  PubMed  Google Scholar 

  126. Anthis NJ, Haling JR, Oxley CL, Memo M, Wegener KL, Lim CJ, Ginsberg MH, Campbell ID (2009) Beta integrin tyrosine phosphorylation is a conserved mechanism for regulating talin-induced integrin activation. J Biol Chem 284:36700–36710

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Critchley DR, Gingras AR (2008) Talin at a glance. J Cell Sci 121:1345–1347

    CAS  PubMed  Google Scholar 

  128. Arai A, Nosaka Y, Kanda E, Yamamoto K, Miyasaka N, Miura O (2001) Rap1 is activated by erythropoietin or interleukin-3 and is involved in regulation of beta1 integrin-mediated hematopoietic cell adhesion. J Biol Chem 276:10453–10462

    CAS  PubMed  Google Scholar 

  129. Hazlehurst LA, Enkemann SA, Beam CA, Argilagos RF, Painter J, Shain KH, Saporta S, Boulware D, Moscinski L, Alsina M et al (2003) Genotypic and phenotypic comparisons of de novo and acquired melphalan resistance in an isogenic multiple myeloma cell line model. Cancer Res 63:7900–7906

    CAS  PubMed  Google Scholar 

  130. Rice GP, Hartung HP, Calabresi PA (2005) Anti-alpha4 integrin therapy for multiple sclerosis: mechanisms and rationale. Neurology 64:1336–1342

    CAS  PubMed  Google Scholar 

  131. Targan SR, Feagan BG, Fedorak RN, Lashner BA, Panaccione R, Present DH, Spehlmann ME, Rutgeerts PJ, Tulassay Z, Volfova M et al (2007) Natalizumab for the treatment of active Crohn’s disease: results of the ENCORE Trial. Gastroenterology 132:1672–1683

    CAS  PubMed  Google Scholar 

  132. Matsunaga T, Takemoto N, Sato T, Takimoto R, Tanaka I, Fujimi A, Akiyama T, Kuroda H, Kawano Y, Kobune M et al (2003) Interaction between leukemic-cell VLA-4 and stromal fibronectin is a decisive factor for minimal residual disease of acute myelogenous leukemia. Nat Med 9:1158–1165

    CAS  PubMed  Google Scholar 

  133. Olson DL, Burkly LC, Leone DR, Dolinski BM, Lobb RR (2005) Anti-alpha4 integrin monoclonal antibody inhibits multiple myeloma growth in a murine model. Mol Cancer Ther 4:91–99

    CAS  PubMed  Google Scholar 

  134. Pierschbacher MD, Ruoslahti E (1984) Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 309:30–33

    CAS  PubMed  Google Scholar 

  135. Gould RJ, Polokoff MA, Friedman PA, Huang TF, Holt JC, Cook JJ, Niewiarowski S (1990) Disintegrins: a family of integrin inhibitory proteins from viper venoms. Proc Soc Exp Biol Med 195:168–171

    CAS  PubMed  Google Scholar 

  136. Lu X, Lu D, Scully MF, Kakkar VV (2006) Integrins in drug targeting-RGD templates in toxins. Curr Pharm Des 12:2749–2769

    CAS  PubMed  Google Scholar 

  137. DeRoock IB, Pennington ME, Sroka TC, Lam KS, Bowden GT, Bair EL, Cress AE (2001) Synthetic peptides inhibit adhesion of human tumor cells to extracellular matrix proteins. Cancer Res 61:3308–3313

    CAS  PubMed  Google Scholar 

  138. Pennington ME, Lam KS, Cress AE (1996) The use of a combinatorial library method to isolate human tumor cell adhesion peptides. Mol Divers 2:19–28

    CAS  PubMed  Google Scholar 

  139. Sroka TC, Pennington ME, Cress AE (2006) Synthetic D-amino acid peptide inhibits tumor cell motility on laminin-5. Carcinogenesis 27(9):1748–1757

    Google Scholar 

  140. Nair RR, Emmons MF, Cress AE, Argilagos RF, Lam K, Kerr WT, Wang HG, Dalton WS, Hazlehurst LA (2009) HYD1-induced increase in reactive oxygen species leads to autophagy and necrotic cell death in multiple myeloma cells. Mol Cancer Ther 8:2441–2451

    CAS  PubMed Central  PubMed  Google Scholar 

  141. Mas-Moruno C, Rechenmacher F, Kessler H (2010) Cilengitide: the first anti-angiogenic small molecule drug candidate design, synthesis and clinical evaluation. Anticancer Agents Med Chem 10:753–768

    CAS  PubMed Central  PubMed  Google Scholar 

  142. Doedens L, Opperer F, Cai M, Beck JG, Dedek M, Palmer E, Hruby VJ, Kessler H (2010) Multiple N-methylation of MT-II backbone amide bonds leads to melanocortin receptor subtype hMC1R selectivity: pharmacological and conformational studies. J Am Chem Soc 132:8115–8128

    CAS  PubMed Central  PubMed  Google Scholar 

  143. Reardon DA, Fink KL, Mikkelsen T, Cloughesy TF, O’Neill A, Plotkin S, Glantz M, Ravin P, Raizer JJ, Rich KM et al (2008) Randomized phase II study of cilengitide, an integrin-targeting arginine-glycine-aspartic acid peptide, in recurrent glioblastoma multiforme. J Clin Oncol 26:5610–5617

    CAS  PubMed  Google Scholar 

  144. Yamada S, Bu XY, Khankaldyyan V, Gonzales-Gomez I, McComb JG, Laug WE (2006) Effect of the angiogenesis inhibitor Cilengitide (EMD 121974) on glioblastoma growth in nude mice. Neurosurgery 59:1304–1312 (discussion 1312)

    Google Scholar 

  145. Basoni C, Reuzeau E, Croft D, Genot E, Kramer IM (2006) CD44 and TGFbeta1 synergise to induce expression of a functional NADPH oxidase in promyelocytic cells. Biochem Biophys Res Commun 343:609–616

    CAS  PubMed  Google Scholar 

  146. Khaldoyanidi S, Karakhanova S, Sleeman J, Herrlich P, Ponta H (2002) CD44 variant-specific antibodies trigger hemopoiesis by selective release of cytokines from bone marrow macrophages. Blood 99:3955–3961

    CAS  PubMed  Google Scholar 

  147. Mielgo A, Brondani V, Landmann L, Glaser-Ruhm A, Erb P, Stupack D, Gunthert U (2007) The CD44 standard/ezrin complex regulates Fas-mediated apoptosis in Jurkat cells. Apoptosis 12:2051–2061

    CAS  PubMed  Google Scholar 

  148. Okada T, Hawley RG, Kodaka M, Okuno H (1999) Significance of VLA-4-VCAM-1 interaction and CD44 for transendothelial invasion in a bone marrow metastatic myeloma model. Clin Exp Metastasis 17:623–629

    CAS  PubMed  Google Scholar 

  149. van der Windt GJ, Schouten M, Zeerleder S, Florquin S, van der Poll T CD44 is Protective during hyperoxia-induced lung injury. Am J Respir Cell Mol Biol 44(3):377–383

    Google Scholar 

  150. Pure E, Assoian RK (2009) Rheostatic signaling by CD44 and hyaluronan. Cell Signal 21:651–655

    CAS  PubMed Central  PubMed  Google Scholar 

  151. Gunthert U, Hofmann M, Rudy W, Reber S, Zoller M, Haussmann I, Matzku S, Wenzel A, Ponta H, Herrlich P (1991) A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells. Cell 65:13–24

    CAS  PubMed  Google Scholar 

  152. Weber GF, Bronson RT, Ilagan J, Cantor H, Schmits R, Mak TW (2002) Absence of the CD44 gene prevents sarcoma metastasis. Cancer Res 62:2281–2286

    CAS  PubMed  Google Scholar 

  153. Asosingh K, Gunthert U, Bakkus MH, De Raeve H, Goes E, Van Riet I, Van Camp B, Vanderkerken K (2000) In vivo induction of insulin-like growth factor-I receptor and CD44v6 confers homing and adhesion to murine multiple myeloma cells. Cancer Res 60:3096–3104

    CAS  PubMed  Google Scholar 

  154. Caers J, Gunthert U, De Raeve H, Van Valckenborgh E, Menu E, Van Riet I, Van Camp B, Vanderkerken K (2006) The involvement of osteopontin and its receptors in multiple myeloma cell survival, migration and invasion in the murine 5T33MM model. Br J Haematol 132:469–477

    CAS  PubMed  Google Scholar 

  155. Masellis-Smith A, Belch AR, Mant MJ, Pilarski LM (1997) Adhesion of multiple myeloma peripheral blood B cells to bone marrow fibroblasts: a requirement for CD44 and alpha4beta7. Cancer Res 57:930–936

    CAS  PubMed  Google Scholar 

  156. Cichy J, Bals R, Potempa J, Mani A, Pure E (2002) Proteinase-mediated release of epithelial cell-associated CD44. Extracellular CD44 complexes with components of cellular matrices. J Biol Chem 277:44440–44447

    CAS  PubMed  Google Scholar 

  157. Cichy J, Kulig P, Pure E (2005) Regulation of the release and function of tumor cell-derived soluble CD44. Biochim Biophys Acta 1745:59–64

    CAS  PubMed  Google Scholar 

  158. Astier A, Manie SN, Avraham H, Hirai H, Law SF, Zhang Y, Golemis EA, Fu Y, Druker BJ, Haghayeghi N et al (1997) The related adhesion focal tyrosine kinase differentially phosphorylates p130Cas and the Cas-like protein, p105HEF1. J Biol Chem 272:19719–19724

    CAS  PubMed  Google Scholar 

  159. Eisterer W, Bechter O, Soderberg O, Nilsson K, Terol M, Greil R, Thaler J, Herold M, Finke L, Gunthert U et al (2004) Elevated levels of soluble CD44 are associated with advanced disease and in vitro proliferation of neoplastic lymphocytes in B-cell chronic lymphocytic leukaemia. Leuk Res 28:1043–1051

    CAS  PubMed  Google Scholar 

  160. Molica S, Vitelli G, Levato D, Giannarelli D, Gandolfo GM (2001) Elevated serum levels of soluble CD44 can identify a subgroup of patients with early B-cell chronic lymphocytic leukemia who are at high risk of disease progression. Cancer 92:713–719

    CAS  PubMed  Google Scholar 

  161. Aruffo A, Stamenkovic I, Melnick M, Underhill CB, Seed B (1990) CD44 is the principal cell surface receptor for hyaluronate. Cell 61:1303–1313

    CAS  PubMed  Google Scholar 

  162. Goodison S, Urquidi V, Tarin D (1999) CD44 cell adhesion molecules. Mol Pathol 52:189–196

    CAS  PubMed Central  PubMed  Google Scholar 

  163. Meyer MJ, Fleming JM, Lin AF, Hussnain SA, Ginsburg E, Vonderhaar BK (2010) CD44posCD49fhiCD133/2hi defines xenograft-initiating cells in estrogen receptor-negative breast cancer. Cancer Res 70:4624–4633

    Google Scholar 

  164. Stauder R, Van Driel M, Schwarzler C, Thaler J, Lokhorst HM, Kreuser ED, Bloem AC, Gunthert U, Eisterer W (1996) Different CD44 splicing patterns define prognostic subgroups in multiple myeloma. Blood 88:3101–3108

    CAS  PubMed  Google Scholar 

  165. Van Driel M, Gunthert U, van Kessel AC, Joling P, Stauder R, Lokhorst HM, Bloem AC (2002) CD44 variant isoforms are involved in plasma cell adhesion to bone marrow stromal cells. Leukemia 16:135–143

    PubMed  Google Scholar 

  166. Bourguignon LY, Gilad E, Brightman A, Diedrich F, Singleton P (2006) Hyaluronan-CD44 interaction with leukemia-associated RhoGEF and epidermal growth factor receptor promotes Rho/Ras co-activation, phospholipase C epsilon-Ca2+ signaling, and cytoskeleton modification in head and neck squamous cell carcinoma cells. J Biol Chem 281:14026–14040

    CAS  PubMed  Google Scholar 

  167. Bourguignon LY, Singleton PA, Zhu H, Zhou B (2002) Hyaluronan promotes signaling interaction between CD44 and the transforming growth factor beta receptor I in metastatic breast tumor cells. J Biol Chem 277:39703–39712

    CAS  PubMed  Google Scholar 

  168. Lee JL, Wang MJ, Sudhir PR, Chen JY (2008) CD44 engagement promotes matrix-derived survival through the CD44-SRC-integrin axis in lipid rafts. Mol Cell Biol 28:5710–5723

    CAS  PubMed Central  PubMed  Google Scholar 

  169. Redondo-Munoz J, Ugarte-Berzal E, Garcia-Marco JA, del Cerro MH, Van den Steen PE, Opdenakker G, Terol MJ, Garcia-Pardo A (2008) Alpha4beta1 integrin and 190-kDa CD44v constitute a cell surface docking complex for gelatinase B/MMP-9 in chronic leukemic but not in normal B cells. Blood 112:169–178

    CAS  PubMed  Google Scholar 

  170. Nandi A, Estess P, Siegelman M (2004) Bimolecular complex between rolling and firm adhesion receptors required for cell arrest; CD44 association with VLA-4 in T cell extravasation. Immunity 20:455–465

    CAS  PubMed  Google Scholar 

  171. Krause DS, Lazarides K, von Andrian UH, Van Etten RA (2006) Requirement for CD44 in homing and engraftment of BCR-ABL-expressing leukemic stem cells. Nat Med 12:1175–1180

    CAS  PubMed  Google Scholar 

  172. Thorne RF, Legg JW, Isacke CM (2004) The role of the CD44 transmembrane and cytoplasmic domains in co-ordinating adhesive and signalling events. J Cell Sci 117:373–380

    CAS  PubMed  Google Scholar 

  173. Lesley J, Hascall VC, Tammi M, Hyman R (2000) Hyaluronan binding by cell surface CD44. J Biol Chem 275:26967–26975

    CAS  PubMed  Google Scholar 

  174. Banerji S, Wright AJ, Noble M, Mahoney DJ, Campbell ID, Day AJ, Jackson DG (2007) Structures of the Cd44-hyaluronan complex provide insight into a fundamental carbohydrate-protein interaction. Nat Struct Mol Biol 14:234–239

    CAS  PubMed  Google Scholar 

  175. Ogino S, Nishida N, Umemoto R, Suzuki M, Takeda M, Terasawa H, Kitayama J, Matsumoto M, Hayasaka H, Miyasaka M et al (2010) Two-state conformations in the hyaluronan-binding domain regulate CD44 adhesiveness under flow condition. Structure 18:649–656

    CAS  PubMed  Google Scholar 

  176. Wolny PM, Banerji S, Gounou C, Brisson AR, Day AJ, Jackson DG, Richter RP (2010) Analysis of CD44-hyaluronan interactions in an artificial membrane system: insights into the distinct binding properties of high and low molecular weight hyaluronan. J Biol Chem 285:30170–30180

    CAS  PubMed Central  PubMed  Google Scholar 

  177. Ilangumaran S, Borisch B, Hoessli DC (1999) Signal transduction via CD44: role of plasma membrane microdomains. Leuk Lymphoma 35:455–469

    CAS  PubMed  Google Scholar 

  178. Marhaba R, Freyschmidt-Paul P, Zoller M (2006) In vivo CD44-CD49d complex formation in autoimmune disease has consequences on T cell activation and apoptosis resistance. Eur J Immunol 36:3017–3032

    CAS  PubMed  Google Scholar 

  179. Verfaillie CM, Benis A, Iida J, McGlave PB, McCarthy JB (1994) Adhesion of committed human hematopoietic progenitors to synthetic peptides from the C-terminal heparin-binding domain of fibronectin: cooperation between the integrin alpha 4 beta 1 and the CD44 adhesion receptor. Blood 84:1802–1811

    CAS  PubMed  Google Scholar 

  180. van der Voort R, Taher TE, Wielenga VJ, Spaargaren M, Prevo R, Smit L, David G, Hartmann G, Gherardi E, Pals ST (1999) Heparan sulfate-modified CD44 promotes hepatocyte growth factor/scatter factor-induced signal transduction through the receptor tyrosine kinase c-Met. J Biol Chem 274:6499–6506

    PubMed  Google Scholar 

  181. Ruffell B, Johnson P (2008) Hyaluronan induces cell death in activated T cells through CD44. J Immunol 181:7044–7054

    CAS  PubMed  Google Scholar 

  182. Tremmel M, Matzke A, Albrecht I, Laib AM, Olaku V, Ballmer-Hofer K, Christofori G, Heroult M, Augustin HG, Ponta H et al (2009) A CD44v6 peptide reveals a role of CD44 in VEGFR-2 signaling and angiogenesis. Blood 114:5236–5244

    CAS  PubMed  Google Scholar 

  183. Piotrowicz RS, Damaj BB, Hachicha M, Incardona F, Howell SB, Finlayson M (2011) A6 peptide activates CD44 adhesive activity, induces FAK and MEK phosphorylation, and inhibits the migration and metastasis of CD44-expressing cells. Mol Cancer Ther 10:2072–2082

    CAS  PubMed  Google Scholar 

  184. Riechelmann H, Sauter A, Golze W, Hanft G, Schroen C, Hoermann K, Erhardt T, Gronau S (2008) Phase I trial with the CD44v6-targeting immunoconjugate bivatuzumab mertansine in head and neck squamous cell carcinoma. Oral Oncol 44:823–829

    CAS  PubMed  Google Scholar 

  185. Tilghman RW, Parsons JT (2008) Focal adhesion kinase as a regulator of cell tension in the progression of cancer. Semin Cancer Biol 18:45–52

    CAS  PubMed Central  PubMed  Google Scholar 

  186. Grigera PR, Jeffery ED, Martin KH, Shabanowitz J, Hunt DF, Parsons JT (2005) FAK phosphorylation sites mapped by mass spectrometry. J Cell Sci 118:4931–4935

    CAS  PubMed  Google Scholar 

  187. Harte MT, Hildebrand JD, Burnham MR, Bouton AH, Parsons JT (1996) p130Cas, a substrate associated with v-Src and v-Crk, localizes to focal adhesions and binds to focal adhesion kinase. J Biol Chem 271:13649–13655

    CAS  PubMed  Google Scholar 

  188. Hildebrand JD, Schaller MD, Parsons JT (1995) Paxillin, a tyrosine phosphorylated focal adhesion-associated protein binds to the carboxyl terminal domain of focal adhesion kinase. Mol Biol Cell 6:637–647

    CAS  PubMed Central  PubMed  Google Scholar 

  189. Schaller MD, Parsons JT (1995) pp125FAK-dependent tyrosine phosphorylation of paxillin creates a high-affinity binding site for Crk. Mol Cell Biol 15:2635–2645

    CAS  PubMed Central  PubMed  Google Scholar 

  190. Avraham H, Park SY, Schinkmann K, Avraham S (2000) RAFTK/Pyk2-mediated cellular signalling. Cell Signal 12:123–133

    CAS  PubMed  Google Scholar 

  191. Ilic D, Furuta Y, Kanazawa S, Takeda N, Sobue K, Nakatsuji N, Nomura S, Fujimoto J, Okada M, Yamamoto T (1995) Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature 377:539–544

    CAS  PubMed  Google Scholar 

  192. Guinamard R, Okigaki M, Schlessinger J, Ravetch JV (2000) Absence of marginal zone B cells in Pyk-2-deficient mice defines their role in the humoral response. Nat Immunol 1:31–36

    CAS  PubMed  Google Scholar 

  193. Buckbinder L, Crawford DT, Qi H, Ke HZ, Olson LM, Long KR, Bonnette PC, Baumann AP, Hambor JE, Grasser WA 3rd et al (2007) Proline-rich tyrosine kinase 2 regulates osteoprogenitor cells and bone formation, and offers an anabolic treatment approach for osteoporosis. Proc Natl Acad Sci USA 104:10619–10624

    CAS  PubMed Central  PubMed  Google Scholar 

  194. Roberts WG, Ung E, Whalen P, Cooper B, Hulford C, Autry C, Richter D, Emerson E, Lin J, Kath J et al (2008) Antitumor activity and pharmacology of a selective focal adhesion kinase inhibitor, PF-562,271. Cancer Res 68:1935–1944

    CAS  PubMed  Google Scholar 

  195. Bagi CM, Roberts GW, Andresen CJ (2008) Dual focal adhesion kinase/Pyk2 inhibitor has positive effects on bone tumors: implications for bone metastases. Cancer 112:2313–2321

    CAS  PubMed  Google Scholar 

  196. Infante JR, Camidge DR, Mileshkin LR, Chen EX, Hicks RJ, Rischin D, Fingert H, Pierce KJ, Xu H, Roberts WG et al (2012) Safety, pharmacokinetic, and pharmacodynamic phase I dose-escalation trial of PF-00562271, an inhibitor of focal adhesion kinase, in advanced solid tumors. J Clin Oncol 30(13):1527–1533

    Google Scholar 

  197. Wei LH, Kuo ML, Chen CA, Chou CH, Lai KB, Lee CN, Hsieh CY (2003) Interleukin-6 promotes cervical tumor growth by VEGF-dependent angiogenesis via a STAT3 pathway. Oncogene 22:1517–1527

    CAS  PubMed  Google Scholar 

  198. Hung SC, Pochampally RR, Chen SC, Hsu SC, Prockop DJ (2007) Angiogenic effects of human multipotent stromal cell conditioned medium activate the PI3 K-Akt pathway in hypoxic endothelial cells to inhibit apoptosis, increase survival, and stimulate angiogenesis. Stem Cells 25:2363–2370

    CAS  PubMed  Google Scholar 

  199. Bid HK, Oswald D, Li C, London CA, Lin J, Houghton PJ (2012) Anti-angiogenic activity of a small molecule STAT3 inhibitor LLL12. PLoS ONE 7:e35513

    CAS  PubMed Central  PubMed  Google Scholar 

  200. Haynesworth SE, Baber MA, Caplan AI (1996) Cytokine expression by human marrow-derived mesenchymal progenitor cells in vitro: effects of dexamethasone and IL-1 alpha. J Cell Physiol 166:585–592

    CAS  PubMed  Google Scholar 

  201. Casanova EA, Shakhova O, Patel SS, Asner IN, Pelczar P, Weber FA, Graf U, Sommer L, Burki K, Cinelli P (2011) Pramel7 mediates LIF/STAT3-dependent self-renewal in embryonic stem cells. Stem Cells 29:474–485

    CAS  PubMed  Google Scholar 

  202. Nasef A, Mazurier C, Bouchet S, Francois S, Chapel A, Thierry D, Gorin NC, Fouillard L (2008) Leukemia inhibitory factor: Role in human mesenchymal stem cells mediated immunosuppression. Cell Immunol 253:16–22

    CAS  PubMed  Google Scholar 

  203. Majumdar MK, Thiede MA, Mosca JD, Moorman M, Gerson SL (1998) Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells. J Cell Physiol 176:57–66

    CAS  PubMed  Google Scholar 

  204. Ahr B, Denizot M, Robert-Hebmann V, Brelot A, Biard-Piechaczyk M (2005) Identification of the cytoplasmic domains of CXCR4 involved in Jak2 and STAT3 phosphorylation. J Biol Chem 280:6692–6700

    CAS  PubMed  Google Scholar 

  205. Hattermann K, Mentlein R, Held-Feindt J (2012) CXCL12 mediates apoptosis resistance in rat C6 glioma cells. Oncol Rep 27:1348–1352

    CAS  PubMed  Google Scholar 

  206. Hartmann TN, Burger JA, Glodek A, Fujii N, Burger M (2005) CXCR4 chemokine receptor and integrin signaling co-operate in mediating adhesion and chemoresistance in small cell lung cancer (SCLC) cells. Oncogene 24:4462–4471

    CAS  PubMed  Google Scholar 

  207. Lis R, Touboul C, Mirshahi P, Ali F, Mathew S, Nolan DJ, Maleki M, Abdalla SA, Raynaud CM, Querleu D et al (2011) Tumor associated mesenchymal stem cells protects ovarian cancer cells from hyperthermia through CXCL12. Int J Cancer J Int du Cancer 128:715–725

    CAS  Google Scholar 

  208. Welte G, Alt E, Devarajan E, Krishnappa S, Jotzu C, Song YH (2011) Interleukin-8 derived from local tissue-resident stromal cells promotes tumor cell invasion. Mol Carcinog doi:10.1002/mc.20854

  209. Neiva KG, Zhang Z, Miyazawa M, Warner KA, Karl E, Nor JE (2009) Cross talk initiated by endothelial cells enhances migration and inhibits anoikis of squamous cell carcinoma cells through STAT3/Akt/ERK signaling. Neoplasia 11:583–593

    CAS  PubMed Central  PubMed  Google Scholar 

  210. Mellado M, Rodriguez-Frade JM, Aragay A, del Real G, Martin AM, Vila-Coro AJ, Serrano A, Mayor F Jr, Martinez AC (1998) The chemokine monocyte chemotactic protein 1 triggers Janus kinase 2 activation and tyrosine phosphorylation of the CCR2B receptor. J Immunol 161:805–813

    CAS  PubMed  Google Scholar 

  211. Fujimoto H, Sangai T, Ishii G, Ikehara A, Nagashima T, Miyazaki M, Ochiai A (2009) Stromal MCP-1 in mammary tumors induces tumor-associated macrophage infiltration and contributes to tumor progression. Int J Cancer J Int du Cancer 125:1276–1284

    CAS  Google Scholar 

  212. Tsuyada A, Chow A, Wu J, Somlo G, Chu P, Loera S, Luu T, Li X, Wu X, Ye W et al (2012) CCL2 mediates crosstalk between cancer cells and stromal fibroblasts that regulates breast cancer stem cells. Cancer Res 72(11):2768–79

    Google Scholar 

  213. Faderl S, Pal A, Bornmann W, Albitar M, Maxwell D, Van Q, Peng Z, Harris D, Liu Z, Hazan-Halevy I et al (2009) Kit inhibitor APcK110 induces apoptosis and inhibits proliferation of acute myeloid leukemia cells. Cancer Res 69:3910–3917

    CAS  PubMed  Google Scholar 

  214. Chaix A, Lopez S, Voisset E, Gros L, Dubreuil P, De Sepulveda P (2011) Mechanisms of STAT protein activation by oncogenic KIT mutants in neoplastic mast cells. J Biol Chem 286:5956–5966

    CAS  PubMed Central  PubMed  Google Scholar 

  215. Hasegawa T, Suzuki K, Sakamoto C, Ohta K, Nishiki S, Hino M, Tatsumi N, Kitagawa S (2003) Expression of the inhibitor of apoptosis (IAP) family members in human neutrophils: up-regulation of cIAP2 by granulocyte colony-stimulating factor and overexpression of cIAP2 in chronic neutrophilic leukemia. Blood 101:1164–1171

    CAS  PubMed  Google Scholar 

  216. Sakamoto C, Suzuki K, Hato F, Akahori M, Hasegawa T, Hino M, Kitagawa S (2003) Antiapoptotic effect of granulocyte colony-stimulating factor, granulocyte-macrophage colony-stimulating factor, and cyclic AMP on human neutrophils: protein synthesis-dependent and protein synthesis-independent mechanisms and the role of the Janus kinase-STAT pathway. Int J Hematol 77:60–70

    CAS  PubMed  Google Scholar 

  217. Kucerova L, Matuskova M, Hlubinova K, Altanerova V, Altaner C (2010) Tumor cell behaviour modulation by mesenchymal stromal cells. Mol Cancer 9:129

    PubMed Central  PubMed  Google Scholar 

  218. Gu L, Chiang KY, Zhu N, Findley HW, Zhou M (2007) Contribution of STAT3 to the activation of survivin by GM-CSF in CD34+ cell lines. Exp Hematol 35:957–966

    CAS  PubMed  Google Scholar 

  219. Hofer EL, Labovsky V, La Russa V, Vallone VF, Honegger AE, Belloc CG, Wen HC, Bordenave RH, Bullorsky EO, Feldman L et al (2010) Mesenchymal stromal cells, colony-forming unit fibroblasts, from bone marrow of untreated advanced breast and lung cancer patients suppress fibroblast colony formation from healthy marrow. Stem Cells Dev 19:359–370

    CAS  PubMed  Google Scholar 

  220. Syed ZA, Yin W, Hughes K, Gill JN, Shi R, Clifford JL (2011) HGF/c-met/Stat3 signaling during skin tumor cell invasion: indications for a positive feedback loop. BMC Cancer 11:180

    CAS  PubMed Central  PubMed  Google Scholar 

  221. Patel ZS, Grugan KD, Rustgi AK, Cucinotta FA, Huff JL (2012) Ionizing radiation enhances esophageal epithelial cell migration and invasion through a paracrine mechanism involving stromal-derived hepatocyte growth factor. Radiat Res 177:200–208

    CAS  PubMed  Google Scholar 

  222. Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, Grisanti S, Gianni AM (2002) Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99:3838–3843

    PubMed  Google Scholar 

  223. Carmo CR, Lyons-Lewis J, Seckl MJ, Costa-Pereira AP (2011) A novel requirement for Janus kinases as mediators of drug resistance induced by fibroblast growth factor-2 in human cancer cells. PLoS ONE 6:e19861

    CAS  PubMed Central  PubMed  Google Scholar 

  224. Udayakumar TS, Nagle RB, Bowden GT (2004) Fibroblast growth factor-1 transcriptionally induces membrane type-1 matrix metalloproteinase expression in prostate carcinoma cell line. Prostate 58:66–75

    CAS  PubMed  Google Scholar 

  225. Nishimori H, Ehata S, Suzuki HI, Katsuno Y, Miyazono K (2012) Prostate cancer cells and bone stromal cells mutually interact with each other through bone morphogenetic protein-mediated signals. J Biol Chem 287(24):20037–20046

    Google Scholar 

  226. Di Maggio N, Mehrkens A, Papadimitropoulos A, Schaeren S, Heberer M, Banfi A, Martin I (2012) FGF-2 Maintains a niche-dependent population of self-renewing highly potent non-adherent mesenchymal progenitors through FGFR2c. Stem Cells 30(7):1455–1464

    Google Scholar 

  227. Dorff TB, Goldman B, Pinski JK, Mack PC, Lara PN, Jr Van Veldhuizen PJ, Jr Quinn DI, Vogelzang NJ, Thompson IM, Jr Hussain MH (2010) Clinical and correlative results of SWOG S0354: a phase II trial of CNTO328 (siltuximab), a monoclonal antibody against interleukin-6, in chemotherapy-pretreated patients with castration-resistant prostate cancer. Clin Cancer Res: Official J Am Assoc Cancer Res 16:3028–3034

    Google Scholar 

  228. Puchalski T, Prabhakar U, Jiao Q, Berns B, Davis HM (2010) Pharmacokinetic and pharmacodynamic modeling of an anti-interleukin-6 chimeric monoclonal antibody (siltuximab) in patients with metastatic renal cell carcinoma. Clinical Cancer Res: Official J Am Assoc Cancer Res 16:1652–1661

    CAS  Google Scholar 

  229. Hedvat M, Huszar D, Herrmann A, Gozgit JM, Schroeder A, Sheehy A, Buettner R, Proia D, Kowolik CM, Xin H et al (2009) The JAK2 inhibitor AZD1480 potently blocks Stat3 signaling and oncogenesis in solid tumors. Cancer Cell 16:487–497

    CAS  PubMed Central  PubMed  Google Scholar 

  230. Ioannidis S, Lamb ML, Wang T, Almeida L, Block MH, Davies AM, Peng B, Su M, Zhang HJ, Hoffmann E et al (2011) Discovery of 5-chloro-N2-[(1S)-1-(5-fluoropyrimidin-2-yl)ethyl]-N4-(5-methyl-1H-pyrazol-3-yl)pyrimidine-2,4-diamine (AZD1480) as a novel inhibitor of the Jak/Stat pathway. J Med Chem 54:262–276

    CAS  PubMed  Google Scholar 

  231. Ramakrishnan V, Kimlinger T, Haug J, Timm M, Wellik L, Halling T, Pardanani A, Tefferi A, Rajkumar SV, Kumar S (2010) TG101209, a novel JAK2 inhibitor, has significant in vitro activity in multiple myeloma and displays preferential cytotoxicity for CD45+ myeloma cells. Am J Hematol 85:675–686

    CAS  PubMed Central  PubMed  Google Scholar 

  232. Hart S, Goh KC, Novotny-Diermayr V, Hu CY, Hentze H, Tan YC, Madan B, Amalini C, Loh YK, Ong LC et al (2011) SB1518, a novel macrocyclic pyrimidine-based JAK2 inhibitor for the treatment of myeloid and lymphoid malignancies. Leuk: Official J Leuk Soc Am Leuk Res Fund UK 25:1751–1759

    Google Scholar 

  233. Diaz T, Navarro A, Ferrer G, Gel B, Gaya A, Artells R, Bellosillo B, Garcia-Garcia M, Serrano S, Martinez A et al (2011) Lestaurtinib inhibition of the Jak/STAT signaling pathway in hodgkin lymphoma inhibits proliferation and induces apoptosis. PLoS ONE 6:e18856

    CAS  PubMed Central  PubMed  Google Scholar 

  234. Santos FP, Kantarjian HM, Jain N, Manshouri T, Thomas DA, Garcia-Manero G, Kennedy D, Estrov Z, Cortes J, Verstovsek S (2010) Phase 2 study of CEP-701, an orally available JAK2 inhibitor, in patients with primary or post-polycythemia vera/essential thrombocythemia myelofibrosis. Blood 115:1131–1136

    CAS  PubMed  Google Scholar 

  235. Kim BH, Oh SR, Yin CH, Lee S, Kim EA, Kim MS, Sandoval C, Jayabose S, Bach EA, Lee HK et al (2010) MS-1020 is a novel small molecule that selectively inhibits JAK3 activity. Br J Haematol 148:132–143

    CAS  PubMed Central  PubMed  Google Scholar 

  236. Quintas-Cardama A, Vaddi K, Liu P, Manshouri T, Li J, Scherle PA, Caulder E, Wen X, Li Y, Waeltz P et al (2010) Preclinical characterization of the selective JAK1/2 inhibitor INCB018424: therapeutic implications for the treatment of myeloproliferative neoplasms. Blood 115:3109–3117

    CAS  PubMed Central  PubMed  Google Scholar 

  237. Liu PC, Caulder E, Li J, Waeltz P, Margulis A, Wynn R, Becker-Pasha M, Li Y, Crowgey E, Hollis G et al (2009) Combined inhibition of Janus kinase 1/2 for the treatment of JAK2V617F-driven neoplasms: selective effects on mutant cells and improvements in measures of disease severity. Clin Cancer Res: Official J Am Assoc Cancer Res 15:6891–6900

    CAS  Google Scholar 

  238. Monaghan KA, Khong T, Burns CJ, Spencer A (2011) The novel JAK inhibitor CYT387 suppresses multiple signalling pathways, prevents proliferation and induces apoptosis in phenotypically diverse myeloma cells. Leuk: Official J Leuk Soc Am Leuk Res Fund UK 25:1891–1899

    Google Scholar 

  239. Zhang H, Zhang D, Luan X, Xie G, Pan X (2010) Inhibition of the signal transducers and activators of transcription (STAT) 3 signalling pathway by AG490 in laryngeal carcinoma cells. J Int Med Res 38:1673–1681

    CAS  PubMed  Google Scholar 

  240. Meydan N, Grunberger T, Dadi H, Shahar M, Arpaia E, Lapidot Z, Leeder JS, Freedman M, Cohen A, Gazit A et al (1996) Inhibition of acute lymphoblastic leukaemia by a Jak-2 inhibitor. Nature 379:645–648

    CAS  PubMed  Google Scholar 

  241. Huang C, Yang G, Jiang T, Huang K, Cao J, Qiu Z (2010) Effects of IL-6 and AG490 on regulation of Stat3 signaling pathway and invasion of human pancreatic cancer cells in vitro. J Exp Clin Cancer Res CR 29:51

    CAS  Google Scholar 

  242. Grandage VL, Everington T, Linch DC, Khwaja A (2006) Go6976 is a potent inhibitor of the JAK 2 and FLT3 tyrosine kinases with significant activity in primary acute myeloid leukaemia cells. Br J Haematol 135:303–316

    CAS  PubMed  Google Scholar 

  243. Goh KC, Novotny-Diermayr V, Hart S, Ong LC, Loh YK, Cheong A, Tan YC, Hu C, Jayaraman R, William AD et al (2012) TG02, a novel oral multi-kinase inhibitor of CDKs, JAK2 and FLT3 with potent anti-leukemic properties. Leuk: Official J Leuk Soc Am Leuk Res Fund UK 26:236–243

    Google Scholar 

  244. Blechacz BR, Smoot RL, Bronk SF, Werneburg NW, Sirica AE, Gores GJ (2009) Sorafenib inhibits signal transducer and activator of transcription-3 signaling in cholangiocarcinoma cells by activating the phosphatase shatterproof 2. Hepatology 50:1861–1870

    CAS  PubMed Central  PubMed  Google Scholar 

  245. Xiong H, Du W, Zhang YJ, Hong J, Su WY, Tang JT, Wang YC, Lu R, Fang JY (2012) Trichostatin A, a histone deacetylase inhibitor, suppresses JAK2/STAT3 signaling via inducing the promoter-associated histone acetylation of SOCS1 and SOCS3 in human colorectal cancer cells. Mol Carcinog 51:174–184

    CAS  PubMed  Google Scholar 

  246. Kim BH, Yin CH, Guo Q, Bach EA, Lee H, Sandoval C, Jayabose S, Ulaczyk-Lesanko A, Hall DG, Baeg GH (2008) A small-molecule compound identified through a cell-based screening inhibits JAK/STAT pathway signaling in human cancer cells. Mol Cancer Ther 7:2672–2680

    CAS  PubMed Central  PubMed  Google Scholar 

  247. Sai K, Wang S, Balasubramaniyan V, Conrad C, Lang FF, Aldape K, Szymanski S, Fokt I, Dasgupta A, Madden T et al (2012) Induction of cell-cycle arrest and apoptosis in glioblastoma stem-like cells by WP1193, a novel small molecule inhibitor of the JAK2/STAT3 pathway. J Neurooncol 107:487–501

    CAS  PubMed  Google Scholar 

  248. Seavey MM, Lu LD, Stump KL, Wallace NH, Hockeimer W, O’Kane TM, Ruggeri BA, Dobrzanski P (2012) Therapeutic efficacy of CEP-33779, a novel selective JAK2 inhibitor, in a mouse model of colitis-induced colorectal cancer. Mol Cancer Ther 11:984–993

    CAS  PubMed  Google Scholar 

  249. Michaud-Levesque J, Bousquet-Gagnon N, Beliveau R (2012) Quercetin abrogates IL-6/STAT3 signaling and inhibits glioblastoma cell line growth and migration. Exp Cell Res 318:925–935

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Deepa G Rathod for her assistance in preparation of the tables & figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lori A. Hazlehurst .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nair, R.R., Gebhard, A.W., Hazlehurst, L.A. (2013). Emerging Opportunities for Targeting the Tumor–Stroma Interactions for Increasing the Efficacy of Chemotherapy. In: Johnson, D. (eds) Cell Death Signaling in Cancer Biology and Treatment. Cell Death in Biology and Diseases. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-5847-0_3

Download citation

Publish with us

Policies and ethics