Skip to main content

Nanocarbons for Supercapacitors

  • Chapter
  • First Online:
Book cover Batteries for Sustainability

Abstract

Supercapacitors (or electrochemical capacitors) are electrochemical energy storage devices having higher energy density than dielectric capacitors and higher power density than batteries. Actually, they are capable of delivering large amounts of energy in a very short time. These devices rely mainly on the characteristics of the electrical double layer that forms on all polarized conductors when immersed in an electrolyte. The double layer forms in less than 10−6s and responds to changes in a similar time frame. This is about 1,000 times faster than an electrochemical reaction at a battery electrode that has a time constant in the range of 10−3s. These devices find application where high-power delivery is required.

This chapter was originally published as part of the Encyclopedia of Sustainability Science and Technology edited by Robert A. Meyers. DOI:10.1007/978-1-4419-0851-3

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Carbon structure and texture:

The structure is the arrangement of the carbon atoms in the space since the texture is the arrangement of the graphene layers in the space for giving porosity or empty space accessible for molecules or ions.

Electric double layer capacitor:

Electrochemical capacitor in which the charge storage is achieved electrostatically because of the separation of charges in a double layer across the electrode/electrolyte interface.

Nanocarbon:

Carbon material consisting in more or less disordered graphene layers which can be synthesized with different structures, porous texture, and surface functionality.

Pseudo-capacitor:

Electrochemical capacitor in which the charge storage is achieved by an electron transfer that produces chemical or oxidation state changes in the electrode materials. As a difference from a battery, the electrode potential varies proportionally to the charge exchanged.

Supercapacitor or electrochemical capacitor:

Electrochemical energy storage device in which the voltage declines linearly with the extent of charge. A supercapacitor consists of two electrodes separated by a porous membrane immersed in an electrolyte.

Surface functionality:

Surface groups are ubiquitously present at the edges of graphene sheets in carbon materials, especially the high surface area ones. Oxygen-containing surface groups are the most occurring ones but carbon can contain other heteroatoms, such as nitrogen or sulfur.

Bibliography

  1. Marsh H, Rodríguez-Reinoso F (2006) Activated carbons. Elsevier, London

    Google Scholar 

  2. Lillo-Ródenas MA, Juan-Juan J, Cazorla-Amorós D, Linares-Solano A (2004) Carbon 42:1371–1375

    Article  Google Scholar 

  3. Raymundo-Piñero E, Azaïs P, Cacciaguerra T, Cazorla-Amorós D, Linares-Solano A, Béguin F (2005) Carbon 43:786–795

    Article  Google Scholar 

  4. Jagtoyen M, Derbyshire F (1998) Carbon 36:1085–1097

    Article  Google Scholar 

  5. Bandosz TJ, Biggs MJ, Gubbins KE, Hattori Y, Pikunic J, Thomson K (2003) Molecular models of porous carbons. In: Radovic LR (ed) Chemistry and physics of carbon. Marcel Dekker, New York, pp 137–199

    Google Scholar 

  6. Pikunic J, Gubbins KE, Pellenq RJM, Cohaut N, Rannou I, Guet JM, Clinard C, Rouzaud JN (2002) Appl Surf Sci 196:98–104

    Article  Google Scholar 

  7. Harris PJF, Tsang SC (1997) Philos Mag A76:667–677

    Google Scholar 

  8. Harris PJF (1997) Inter Mater Rev 42:206–218

    Article  Google Scholar 

  9. Harris PJF (2005) Critical Rev Solid State Mater Sci 30:235–253

    Article  Google Scholar 

  10. Radovic LR, Bockrath B (2005) J Am Chem Soc 127:5917–5927

    Article  Google Scholar 

  11. Azaïs P, Duclaux L, Florian P, Massiot D, Lillo-Ródenas MA, Linares-Solano A, Peres JP, Jehoulet C, Béguin F (2007) J Power Sourc 171:1046–1053

    Article  Google Scholar 

  12. Pels JR, Kapteijn F, Moulijn JA, Zhu Q, Thomas KM (1995) Carbon 33:1641–1653

    Article  Google Scholar 

  13. Kapteijn F, Moulijn JA, Matzner S, Boehm HP (1999) Carbon 37:1143–1150

    Article  Google Scholar 

  14. Conway BE (1999) Electrochemical supercapacitors – scientific fundamentals and technological applications. Kluwer/Plenum, New York

    Google Scholar 

  15. Kötz R, Carlen M (2000) Electrochima Acta 45:2483–2498

    Article  Google Scholar 

  16. Raymundo-Piñero E, Kierzek K, Machnikowski J, Béguin F (2006) Carbon 44:2498–2507

    Article  Google Scholar 

  17. Gregg SJ, Sing KSW (1982) Adsorption, surface area and porosity. Academic, London, pp 103–104

    Google Scholar 

  18. Kaneko K, Ishii C (1992) Colloid Surf 67:203–212

    Article  Google Scholar 

  19. Barbieri O, Hahn M, Herzog A, Kötz R (2005) Carbon 43:1303

    Article  Google Scholar 

  20. Chmiola J, Yushin G, Gogotsi Y, Portet C, Simon P, Taberna PL (2006) Science 313:1760–1763

    Article  Google Scholar 

  21. Chmiola J, Largeot C, Taberna PL, Simon P, Gogotsi Y (2008) Angew Chem 120:3440–3443

    Article  Google Scholar 

  22. Vix-Guterl C, Frackowiak E, Jurewicz K, Friebe M, Parmentier J, Béguin F (2005) Carbon 43:1293–1302

    Article  Google Scholar 

  23. Mysyk R, Raymundo-Piñero E, Béguin F (2009) Electrochem Commun 11:554–556

    Article  Google Scholar 

  24. Ruch PW, Hahn M, Cericola D, Menzel A, Kötz R, Wokaun A (2010) Carbon 48:1880–1888

    Article  Google Scholar 

  25. Frackowiak E, Béguin F (2001) Carbon 39:937

    Article  Google Scholar 

  26. Montes-Moran MA, Suarez D, Menendez JA, Fuente E (2004) Carbon 42:1219–1225

    Article  Google Scholar 

  27. Andreas HA, Conway BE (2006) Electrochima Acta 51:6510–6520

    Article  Google Scholar 

  28. Okajima K, Ohta K, Sudoh M (2005) Electrochima Acta 50:2227–2231

    Article  Google Scholar 

  29. Cheng PZ, Teng H (2003) Carbon 41:2057–2063

    Article  Google Scholar 

  30. Figueiredo JL, Pereira MFR, Freitas MMA, Orfao JJM (1999) Carbon 37:1379–1389

    Article  Google Scholar 

  31. Bleda-Martínez MJ, Maciá-Agulló JA, Lozano-Castelló D, Morallón E, Cazorla-Amorós D, Linares-Solano A (2005) Carbon 43:2677–2684

    Article  Google Scholar 

  32. Raymundo-Piñero E, Leroux F, Béguin F (2006) Adv Mater 18:1877–1882

    Article  Google Scholar 

  33. Raymundo-Piñero E, Cadek M, Béguin F (2009) Adv Funct Mater 19:1–8

    Article  Google Scholar 

  34. Jurewicz K, Frackowiak E, Béguin F (2004) Appl Phys A 78:981–985

    Article  Google Scholar 

  35. Ruiz V, Santamaría R, Granda M, Blanco C (2009) Electrochima Acta 54:4481–4486

    Article  Google Scholar 

  36. Raymundo-Piñero E, Cadek M, Wachtler M, Béguin F (2011) ChemSusChem. doi:10.1002/cssc.201000376

  37. Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Nano Lett 8:3498–3502

    Article  Google Scholar 

  38. Vivekchand SRC, Rout CS, Subrahmanyam KS, Govindaraj A, Rao CNR (2008) J Chem Sci 20:9–13

    Article  Google Scholar 

  39. Wang Y, Shi Z, Huang Y, Ma Y, Wang C, Chen M, Chen Y (2009) J Phys Chem C 113:13103–13107

    Article  Google Scholar 

  40. Du X, Guo P, Song H, Chen X (2010) Electrochima Acta 55:4812–4819

    Article  Google Scholar 

  41. Zhang LL, Zhou R, Zhao XS (2010) J Mater Chem 20:5983–5992

    Article  Google Scholar 

  42. Jurewicz K, Babel K, Ziolkowski A, Wachowska H (2003) Electrochima Acta 48:1491–1498

    Article  Google Scholar 

  43. Jurewicz K, Pietrzak R, Nowicki P, Wachowska H (2008) Electrochima Acta 53:5469–5475

    Article  Google Scholar 

  44. Lota G, Grzyb B, Machnikowska H, Machnikowski J, Frackowiak E (2005) Chem Phys Lett 404:53–58

    Article  Google Scholar 

  45. Frackowiak E, Lota G, Machnikowski J, Vix-Guterl C, Béguin F (2006) Electrochima Acta 51:2209–2214

    Article  Google Scholar 

  46. Ra EJ, Raymundo-Piñero E, Lee YH, Béguin F (2009) Carbon 47:2984–2992

    Article  Google Scholar 

  47. Béguin F, Szostak K, Lota G, Frackowiak E (2005) Adv Mat 17:2380–2384

    Article  Google Scholar 

  48. Lota G, Lota K, Frackowiak E (2007) Electrochem Commun 9:1828–1832

    Article  Google Scholar 

  49. Ania CO, Khomenko V, Raymundo-Piñero E, Parra JB, Béguin F (2007) Adv Funct Mater 17:1828–1836

    Article  Google Scholar 

  50. Hulicova D, Kodama M, Hatori H (2006) Chem Mater 18:2318–2326

    Article  Google Scholar 

  51. Hulicova-Jurcakova D, Seredych M, Lu GQ, Bandosz TJ (2009) Adv Funct Mater 19:438–447

    Article  Google Scholar 

  52. Hulicova-Jurcakova D, Kodama M, Shiraishi S, Hatori H, Zhu ZH, Lu GQ (2009) Adv Funct Mater 19:1800–1809

    Article  Google Scholar 

  53. Naoi K, Suematsu S, Hanada M, Takenouchi HJ (2002) J Electrochem Soc 149:472–476

    Article  Google Scholar 

  54. Gao M, Yang F, Wang X, Zhang G, Liu L (2007) J Phys Chem C 111:17268–17274

    Article  Google Scholar 

  55. Konno H, Ito T, Ushiro M, Fushimi K, Azumi K (2010) J Power Sourc 195:1739–1746

    Article  Google Scholar 

  56. Hulicova-Jurcakova D, Puziy AM, Poddubnaya OI, Suarez-García F, Tascon JMD, Lu GQ (2009) J Am Chem Soc 131:5026–5027

    Article  Google Scholar 

  57. Hu CC, Wang CC, Wu FC, Tseng RL (2007) Electrochima Acta 52:2498–2505

    Article  Google Scholar 

  58. Subramanian V, Luo C, Stephan AM, Nahm KS, Thomas S, Wei B (2007) J Phys Chem C 111:7527–7531

    Article  Google Scholar 

  59. Qu QT, Wang B, Yang LC, Shi Y, Tian S, Wu YP (2008) Electrochem Commun 10:1652–1655

    Article  Google Scholar 

  60. Bichat MP, Raymundo-Piñero E, Béguin F (2010) Carbon 48:4351–4361

    Article  Google Scholar 

  61. Demarconnay L, Raymundo-Piñero E, Béguin F (2010) Electrochem Commun 12:1275–1278

    Article  Google Scholar 

  62. Wang J, Kirgoz UA, Mo JW, Lu J, Kawde AN, Muck A (2001) Electrochem Comm 3:203–208

    Article  Google Scholar 

  63. Hong MS, Lee SH, Kim SW (2002) Electrochem Solid State Lett 5:A227–A230

    Article  Google Scholar 

  64. Khomenko V, Raymundo-Piñero E, Béguin F (2010) J Power Sourc 195:4234–4241

    Article  Google Scholar 

  65. Jurewicz K, Frackowiak E, Béguin F (2001) Electrochem Solid State Lett 4:A27–A29

    Article  Google Scholar 

  66. Jurewicz K, Frackowiak E, Béguin F (2002) Fuel Process Technol 77–78:415–421

    Article  Google Scholar 

  67. Fang B, Zhou H, Honma I (2006) J Phys Chem B 110:4875–4880

    Article  Google Scholar 

  68. Bleda-Martínez MJ, Pérez JM, Linares-Solano A, Morallón E, Cazorla-Amorós D (2008) Carbon 46:1053–1059

    Article  Google Scholar 

  69. Béguin F, Friebe M, Jurewicz K, Vix-Guterl C, Dentzer J, Frackowiak E (2006) Carbon 44:2392–2398

    Article  Google Scholar 

  70. Demarconnay L, Raymundo-Piñero E, Béguin F (2010) CD Proceedings of the International Carbon Conference, Clemson, USA, 2010

    Google Scholar 

  71. Greaves TL, Drummond CJ (2008) Chem Rev 108:206–223

    Article  Google Scholar 

  72. Mysyk R, Raymundo-Piñero E, Anouti M, Lemordant D, Béguin F (2010) Electrochem Comm 12:414–417

    Article  Google Scholar 

  73. Anouti M, Caillon-Caravanier M, Dridi Y, Galiano H, Lemordant D (2008) J Phys Chem B 112:13335–13343

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Béguin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Béguin, F., Raymundo-Piñero, E. (2013). Nanocarbons for Supercapacitors. In: Brodd, R. (eds) Batteries for Sustainability. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5791-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5791-6_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5790-9

  • Online ISBN: 978-1-4614-5791-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics