Skip to main content

Ocean Fertilization for Sequestration of Carbon Dioxide from the Atmosphere

  • Chapter
  • First Online:

Abstract

The ocean is a major sink for both preindustrial and anthropogenic carbon dioxide. Both physically and biogeochemically driven pumps, termed the solubility and biological pump, respectively Fig.5.1) are responsible for the majority of carbon sequestration in the ocean’s interior [1]. The solubility pump relies on ocean circulation – specifically the impact of cooling of the upper ocean at high latitudes both enhances the solubility of carbon dioxide and the density of the waters which sink to great depth (the so-called deepwater formation) and thereby sequester carbon in the form of dissolved inorganic carbon (Fig.5.1). The biological pump is driven by the availability of preformed plant macronutrients such as nitrate or phosphate which are taken up by phytoplankton during photosynthetic carbon fixation. A small but significant proportion of this fixed carbon sinks into the ocean’s interior in the form of settling particles, and in order to maintain equilibrium carbon dioxide from the atmosphere is transferred across the air–sea interface into the ocean (the so-called carbon drawdown) thereby decreasing atmospheric carbon dioxide (Fig.5.1).Fig.5.1

This chapter, which has been modified slightly for the purposes of this volume, was originally published as part of the Encyclopedia of Sustainability Science and Technology edited by Robert A. Meyers. DOI:10.1007/978-1-4419-0851-3

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

Carbon sequestration:

Is the removal of carbon by physical, chemical, and/or biological processes, and its long-term storage (i.e., decades to millennia) such that the carbon cannot return to the atmosphere as carbon dioxide.

Ocean fertilization:

Is the purposeful modification of the chemical characteristics of the surface ocean, by the addition of plant macronutrients including phosphate and/or iron, or the deployment of equipment such as ocean pipes to enhance the supply of nutrient rich deep water to surface waters. This fertilization has the potential to enhance upper ocean productivity, some of which may eventually settle into the ocean’s interior, thereby increasing carbon sequestration.

Global warming potential (GWP):

Provides a relative index between greenhouse gases, such as carbon dioxide or nitrous oxide, using their specific radiative properties to estimate the effect of anthropogenic emissions of each gas, over a specified time period relating to their atmospheric lifetime, on global climate.

Surface mixed layer:

Refers to the less dense layer of seawater in the upper ocean (10–200 m thick) that overlies more dense (i.e., colder and/or saltier) waters. This mixed layer is persistently stirred by upper ocean processes such as turbulence and wind mixing.

Free-drifting sediment traps:

Are devices deployed, usually in the upper 1 km of the ocean, designed to intercept settling particles that are the conduit of carbon sinking into the deep ocean as part of the biological pump.

Bibliography

Primary Literature

  1. Volk T, Hoffert MI (1985) The Carbon Cycle and Atmospheric CO2, Archean to Present. AGU Geophysical Monograph 32. Sundquist ET, Broecker WS (eds). Am Geophys Union, Washington, DC, pp 99–110

    Google Scholar 

  2. Denman KL, Hofmann EE, Marchant H (1996) Marine biotic responses to environmental change and feedbacks to climate. In: Houghton JT, Meira Filho LG, Callander BA, Kattenberg A, Maskell K (eds) Climate change 1995. IPCC/Cambridge University Press, Cambridge, pp 483–516

    Google Scholar 

  3. Lovelock JF, Rapley CG (2007) Ocean pipes could help the Earth to cure itself. Nature 449:403

    Article  ADS  Google Scholar 

  4. White A, Björkman K, Grabowski E, Letelier R, Poulos S, Watkins B, Karl D (2010) An open ocean trial of controlled upwelling using wave pump technology. J Atmos Oceanic Technol 27:385–396

    Article  ADS  Google Scholar 

  5. Oschlies A, Pahlow M, Yool A, Matear RJ (2010) Climate engineering by artificial ocean upwelling: channelling the sorcerer’s apprentice. Geophys Res Lett 37:L04701. doi:10.1029/2009GL041961

    Article  Google Scholar 

  6. Rees AP, Law CS, Woodward EMS (2006) High rates of nitrogen fixation during an in situ phosphate release experiment in the Eastern Mediterranean Sea. Geophys Res Lett 33:L10607

    Article  ADS  Google Scholar 

  7. Karl DM, Letelier RM (2008) Nitrogen fixation enhanced carbon sequestration in low nitrate, low chlorophyll seascapes. Mar Ecol Prog Ser 364:257–268

    Article  Google Scholar 

  8. Mills MM, Ridame C, Davey M, La Roche J, Geider RJ (2004) Iron and phosphorus co-limit nitrogen fixation in the eastern tropical North Atlantic. Nature 429:292–294

    Article  ADS  Google Scholar 

  9. Petit JR, Jouzel J, Raynaud D, Barkov NI et al (1999) Climate and atmospheric history of the past 4,20,000 years from the Vostok ice core, Antarctica. Nature 399:429–436

    Article  ADS  Google Scholar 

  10. Toggweiler JR, Russell JL, Carson S (2006) Midlatitude westerlies, atmospheric CO2, and climate change during the ice ages. Paleoceanography 21:PA2005. doi:10.1029/2005PA001154

    Article  ADS  Google Scholar 

  11. Stephens BB, Keeling RF (2000) The influence of Antarctic sea ice on glacial-interglacial CO2 variations. Nature 404:171–174

    Article  ADS  Google Scholar 

  12. Martin JH (1990) Glacial–interglacial CO2 change: the iron hypothesis. Paleoceanography 5:1–13

    Article  ADS  Google Scholar 

  13. Strong AL, Cullen JJ, Chisholm SW (2009) Ocean fertilization: reviewing the science, policy, and commercial activity and charting a new course forward. Oceanography 22(3):236–261

    Article  Google Scholar 

  14. Martin JH, Fitzwater SE, Gordon RM (1990) Iron deficiency limits phytoplankton growth in Antarctic waters. Glob Biogeochem Cycles 4:5–12

    Article  ADS  Google Scholar 

  15. Markels M, Barber R (2001) Sequestration of CO2 by ocean fertilization. Paper presented at the first national energy and technology laboratory conference on carbon sequestration, Washington, DC

    Google Scholar 

  16. Schiermeier Q (2003) Climate change: the oresmen. Nature 421:109–110. doi:10.1038/421109a

    Article  ADS  Google Scholar 

  17. Boyd PW (2008) Ranking geo-engineering schemes. Nat Geosci 1:722–724

    Article  ADS  Google Scholar 

  18. de Baar HJW, Boyd PW, Coale KH, Landry MR et al (2005) Synthesis of iron fertilization experiments: from the Iron Age in the Age of Enlightenment. J Geophys Res 110:C09S16

    Article  Google Scholar 

  19. Boyd PW, Jickells T, Law CS, Blain S et al (2007) Mesoscale iron enrichment experiments 1993–2005: synthesis and future directions. Science 315:612–617

    Article  ADS  Google Scholar 

  20. Gordon RM, Johnson KS, Coale KH (2009) The behavior of iron and other trace elements during the IronEx-I and PlumEx experiments in the Equatorial Pacific. Deep Sea Res I 56:1230–1241. doi:10.1016/j.2009.01.010

    Article  Google Scholar 

  21. Blain S, Quéguiner B, Armand L, Belviso S et al (2007) Effects of natural iron fertilisation on carbon sequestration in the Southern Ocean. Nature 446:1070–1074

    Article  ADS  Google Scholar 

  22. Pollard R, Sanders R, Lucas M, Statham P (2007) The Crozet natural iron bloom and export experiment (CROZEX). Deep Sea Res II 54:1905–1914

    Article  Google Scholar 

  23. Charlson RJ, Lovelock JE, Andreae MO, Warren SG (1987) Oceanic phytoplankton, atmospheric sulfur, cloud albedo and climate. Nature 326:655–661

    Article  ADS  Google Scholar 

  24. Turner SM, Harvey MJ, Law CS, Nightingale PD, Liss PS (2004) Iron-induced changes in oceanic sulfur biogeochemistry. Geophys Res Lett 31:L14307

    Article  ADS  Google Scholar 

  25. Levasseur M, Scarratt MG, Michaud S, Merzouk A et al (2006) DMSP and DMS dynamics during a mesoscale iron fertilization experiment in the Northeast Pacific. I: temporal and vertical distributions. Deep Sea Res II 53:2353–2369

    Article  Google Scholar 

  26. Wingenter OW, Haase KB, Strutton P, Friederich G, Meinardi S, Blake DR, Rowland FS (2004) Changing concentrations of CO, CH4, C5H8, CH3Br, CH3I, and dimethyl sulfide during the Southern Ocean Iron Enrichment Experiments. Proc Natl Acad Sci U S A 101:8537. doi:10.1073

    Article  ADS  Google Scholar 

  27. LeClainche Y, Levasseur M, Vézina A, Bouillon RC et al (2006) Modeling analysis of the effect of iron enrichment on dimethyl sulfide dynamics in the NE Pacific (SERIES experiment). J Geophys Res 111:C0101

    Article  Google Scholar 

  28. Law CS (2008) Predicting and monitoring the effects of largescale ocean iron fertilization on marine trace gas emissions. Mar Ecol Prog Ser 364:283–288

    Article  Google Scholar 

  29. Law CS, Ling RD (2001) Nitrous oxide fluxes in the Antarctic Circumpolar Current, and the potential response to increased iron availability. Deep Sea Res II 48:2509–2528

    Article  Google Scholar 

  30. Jin X, Gruber N (2003) Offsetting the radiative benefit of ocean iron fertilization by enhancing N2O emissions. Geophys Res Lett 30(24):2249

    Article  Google Scholar 

  31. Boyd PW, Law CS (2001) The Southern Ocean Iron RElease Experiment (SOIREE) – introduction and summary. Deep-Sea Research II 48:2425–2438

    Article  Google Scholar 

  32. Manizza M, LeQuere C, Watson AJ, Buitenhuis ET (2008) Ocean biogeochemical response to phytoplankton-light feedback in a global model. J Geophys Res 113:C10010. doi:10.1029/2007JC004478

    Article  ADS  Google Scholar 

  33. Trick CG, Cochlan WP, Wells ML, Trainer VL, Pickell LD (2010) Iron enrichment stimulates toxic diatom production in high-nitrate, low-chlorophyll areas. PNAS. doi:/pnas.0910579107

    Google Scholar 

  34. Takeda S, Tsuda A (2005) An in situ iron-enrichment experiment in the western subarctic Pacific (SEEDS): introduction and summary. Prog Oceanogr 64:95–109

    Article  ADS  Google Scholar 

  35. Geoengineering the climate: science, governance and uncertainty (2009) UK Royal Society report. RS Policy document 10/09, September 2009 RS 1636. ISBN 978-0-85403-773-5

    Google Scholar 

  36. Hall JA, Safi K (2001) The impact of in situ Fe fertilisation on the microbial food web in the Southern Ocean. Deep Sea Res 48:11–12

    Google Scholar 

  37. Boyd PW, Watson A, Law CS, Abraham E, Trull T, Murdoch R, Bakker DCE, Bowie AR, Charette M, Croot P, Downing K, Frew R, Gall M, Hadfield M, Hall J, Harvey M, Jameson G, La Roche J, Liddicoat M, Ling R, Maldonado M, McKay RM, Nodder S, Pickmere S, Pridmore R, Rintoul S, Safi K, Sutton P, Strzepek R, Tanneberger K, Turner S, Waite A, Zeldis J (2000) A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization. Nature 407:695–702

    Article  ADS  Google Scholar 

  38. Abraham ER, Law CS, Boyd PW, Lavender SJ, Maldonado MT, Bowie AR (2000) Importance of stirring in the development of an iron-fertilised phytoplankton bloom. Nature 407:727–730

    Article  ADS  Google Scholar 

  39. Boyd PW (2004) Ironing out algal issues in the Southern Ocean. Science 304:396–397

    Article  Google Scholar 

  40. Boyd PW, Jackson GA, Waite AM (2002) Are mesoscale perturbation experiments in polar waters prone to physical artefacts? Evidence from algal aggregation modelling studies. Geophys Res Lett 29(11):1541. doi:10.1029/2001GL014210

    Article  ADS  Google Scholar 

  41. Martin JH, Coale KH, Johnson KS, Fitzwater SE et al (1994) Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. Nature 371:123–129

    Article  ADS  Google Scholar 

  42. Bidigare RR, Hanson KL, Buesseler KO, Wakeham SG, Freeman KH, Pancost RD, Millero FJ, Steinberg P, Popp BN, Latasa M, Landry MR, Laws EA (1999) Iron-stimulated changes in 13C fractionation and export by equatorial Pacific phytoplankton. Paleoceanography 14(5):589–595

    Article  ADS  Google Scholar 

  43. Boyd PW, Law CS, Wong CS, Nojiri Y et al (2004) The decline and fate of an iron-induced sub-arctic phytoplankton bloom. Nature 428:549–552

    Article  ADS  Google Scholar 

  44. Boyd PW, Strzepek R, Takeda S et al (2005) The evolution and termination of an iron-induced mesoscale bloom in the northeast subarctic Pacific. Limnol Oceanogr 50:1872–1886

    Article  Google Scholar 

  45. Buesseler KO (1991) Do upper-ocean sediment traps provide an accurate record of particle flux? Nature 353:420–423

    Article  ADS  Google Scholar 

  46. Buesseler KO, Michaels AF, Siegel DA, Knap AH (1994) A three dimensional time-dependent approach to calibrating sediment trap fluxes. Glob Biogeochem Cycles 8(2):179–193

    Article  ADS  Google Scholar 

  47. de Baar HJW, Gerringa L, Laan P, Timmermans K (2008) Efficiency of carbon removal per added iron in ocean iron fertilization. Mar Ecol Prog Ser 364:269–282

    Article  Google Scholar 

  48. Chever F, Sarthou G, Bucciarelli E, Blain S, Bowie AR (2010) An iron budget during the natural iron fertilisation experiment KEOPS (Kerguelen Islands, Southern Ocean). Biogeosciences 7:455–468

    Article  ADS  Google Scholar 

  49. Wolff EW, Fischer H, Fundel F, Ruth U et al (2006) Southern Ocean sea-ice extent, productivity and iron flux over the past eight glacial cycles. Nature 440:491–496

    Article  ADS  Google Scholar 

  50. Boyd PW (2009) Geopolitics of geoengineering in focus: carbon sequestration. Nat Geosci 2:812. doi:10.1038/ngeo710

    Article  ADS  Google Scholar 

  51. Lenton TM, Vaughan NE (2009) The radiative forcing potential of different climate …. Discuss 9:2559–2608. doi:10.5194/acpd-9-2559-2009

    Google Scholar 

  52. Denman K (2008) Climate change, ocean processes, and iron fertilization. Mar Ecol Prog Ser 364:219–225

    Article  Google Scholar 

  53. Gnanadesikan A, Sarmiento JL, Slater RD (2003) Effects of patchy ocean fertilization on atmospheric carbon dioxide and biological production. Glob Biogeochem Cycles 17:1050

    Article  ADS  Google Scholar 

  54. Gnanadesikan A, Marinov I (2008) Export is not enough: nutrient cycling and carbon sequestration. Mar Ecol Prog Ser 364:289–294

    Article  Google Scholar 

  55. Boyd PW (2008) Implications of large-scale iron fertilization of the oceans – introduction and synthesis. Mar Ecol Prog Ser 364:213–218

    Article  Google Scholar 

  56. Markels M Jr, Barber RT (2001) Sequestration of carbon dioxide by ocean fertilization. Paper presented at the 1st Nat Conf on carbon sequestration, Natl Energy Technol Lab, Washington, DC, 14–17 May 2001

    Google Scholar 

  57. Lam PJ, Chisholm SW (2002) Iron fertilization of the oceans: reconciling commercial claims with published models. White Paper available at: http://web.mit.edu/chisholm/www/publications/fefert.pdf

  58. Cullen JJ, Boyd PW (2008) Predicting and verifying the intended and unintended consequences of large-scale ocean iron fertilization. Mar Ecol Prog Ser 364:295–301

    Article  Google Scholar 

  59. Sarmiento JL, Simeon J, Gnanadesikan A, Gruber N, Key RM, Schlitzer R (2007) Deep ocean biogeochemistry of silicic acid and nitrate. Glob Biogeochem Cycles 21:GB1S90. doi:10.1029/2006GB002720

    Article  Google Scholar 

  60. Lao L, Caldeira K (2010) Can ocean iron fertilization mitigate ocean acidification. Clim Change 99:303–311

    Article  Google Scholar 

  61. Stern N (2007) The economics of climate change. Cambridge University Press, Cambridge

    Google Scholar 

  62. Mignone BK, Socolow RH, Sarmiento JL, Oppenheimer M (2008) Atmospheric stabilization and the timing of carbon mitigation. Clim Change 88(3–4):251–265

    Article  Google Scholar 

  63. Pacala S, Socolow R (2004) Stabilization wedges: solving the climate problem for the next 50 years with current technologies. Science 305:968–972

    Article  ADS  Google Scholar 

  64. Fujii M, Yoshie N, Yamanaka Y, Chai F (2005) Simulated biogeochemical responses to iron enrichments in three high nutrient, low chlorophyll (HNLC) regions. Prog Oceanogr 64:307–324

    Article  ADS  Google Scholar 

  65. Chisholm SW (2000) Stirring times in the Southern Ocean. Nature 407:685–687

    Article  ADS  Google Scholar 

Books and Reviews

  • Boyd PW (2008) MEPS thematic section. Implications of large-scale iron fertilization of the oceans. Mar Ecol Prog Ser 364:203–309

    Article  Google Scholar 

  • Buesseler KO, Doney SC, Karl DM, Boyd PW et al (2008) Ocean iron fertilization—moving forward in a sea of uncertainty. Science 319:162

    Article  Google Scholar 

  • Chisholm SW, Morel FMM (1991) What controls phytoplankton production in nutrient-rich areas of the open sea?. Limnol Oceanogr Preface Vol 36

    Google Scholar 

  • Chisholm SW, Falkowski PG, Cullen JJ (2001) Dis-crediting ocean fertilization. Science 294:309–310

    Article  Google Scholar 

  • Glibert PM, Azanza R, Burford M, Furuya K et al (2008) Ocean urea fertilization for carbon credits poses high ecological risks. Mar Pollut Bull 56(6):1049–1056

    Article  Google Scholar 

  • IPCC (2001) Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York

    Google Scholar 

  • Johnson KS, Karl DM (2002) Is ocean fertilization credible and creditable? Science 296:467–468

    Article  Google Scholar 

  • Keith DW, Dowlatabadi H (1992) A serious look at geoengineering. Eos Trans AGU 73:289–293

    Article  ADS  Google Scholar 

  • Keith DW, Ha-Duong M, Stolaroff JK (2005) Climate strategy with CO2 capture from the air. Clim Change 74:17–45

    Article  Google Scholar 

  • Kintisch E (2007) Should we study geoengineering? A science magazine panel discussion. Science 318:1054–1055

    Article  Google Scholar 

  • London Convention (2007) Statement of concern regarding iron fertilization of the oceans to sequester CO2. LC-L P1(C):irc14, available at: http://www.imo.org/includes/blastData.asp/doc_id=8272/14.pdf.13 July, 2007

  • Tortell PD (2005) Small-scale heterogeneity of dissolved gas concentrations in marine continental shelf waters. Geochem Geophys Geosyst 6:Q11M04

    Article  Google Scholar 

  • Walter S, Peeken I, Lochte K, Webb A, Bange HW (2005) Nitrous oxide measurements during EIFEX, the European Iron Fertilization Experiment in the subpolar South Atlantic Ocean. Geophys Res Lett 32:L23613

    Article  ADS  Google Scholar 

  • Zeebe RE, Archer D (2005) Feasibility of ocean fertilization and its impact on future atmospheric CO2 levels. Geophys Res Lett 32:L09703

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip W. Boyd .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Boyd, P.W. (2013). Ocean Fertilization for Sequestration of Carbon Dioxide from the Atmosphere. In: Lenton, T., Vaughan, N. (eds) Geoengineering Responses to Climate Change. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5770-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5770-1_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5769-5

  • Online ISBN: 978-1-4614-5770-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics