Skip to main content

Cryosphere, Modeling of

  • Chapter
  • First Online:
  • 1578 Accesses

Abstract

The global cryosphere encompasses snow and ice in all its forms in the natural environment, including glaciers and ice sheets, sea ice, lake and river ice, permafrost, seasonal snow, and ice crystals in the atmosphere.

This chapter was originally published as part of the Encyclopedia of Sustainability Science and Technology edited by Robert A. Meyers. DOI:10.1007/978-1-4614-5767-1_3.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

Ablation:

Snow and ice removed from an ice mass via meltwater runoff, sublimation, wind scour, or glacial calving (mechanical fracturing and separation).

Accretion:

Increase in ice mass by basal growth in the case of floating ice, the compression of snow into ice, or freezing of water that has pooled on the ice or percolated into snow from rain, meltwater, or flooding of sea/lake/river water.

Accumulation:

Snow and ice added to an ice mass via snowfall, frost deposition, rainfall that freezes on/in the ice mass, refrozen meltwater, wind-blown snow deposition, and avalanching.

Glacier:

A perennial terrestrial ice mass that shows evidence of motion/deformation under gravity.

Grounding line:

The transition zone between grounded and floating ice.

Ice sheet:

A large (i.e., continental-scale) dome of glacier ice that overwhelms the local bedrock topography, with the ice flow direction governed by the shape of the ice cap itself.

Ice shelf:

Glacier ice that has flowed into an ocean or lake and is floating, no longer supported by the bed.

Icefield:

A sheet of glacier ice in an alpine environment in which the ice is not thick enough to overwhelm the local bedrock topography, but is draped over and around it; glacier flow directions in an icefield are dictated by the bed topography.

Lake/river ice:

Floating ice on rivers or lakes, usually freshwater ice.

Mass balance:

The overall gain or loss of mass for a component of the cryosphere over a specified time interval, typically 1 year. This can be expressed as a rate of change of mass (kg year−1), ice volume (m3 year−1), or water-equivalent volume (m3 w.eq. year−1). It is also common to express this as the area-averaged rate of change or the specific mass balance rate, with units of kg m−2 year−1 or m w.eq. year−1.

Permafrost:

Perennially frozen ground, technically defined as ground that is at or below 0°C for at least 2 years.

Sea ice:

Floating ice from frozen seawater.

Snow:

Ice-crystal precipitation that accumulates on the surface.

Soil ice:

Ice in permafrost.

Bibliography

  1. Lemke P, Ren J, Alley RB, Allison I, Carrasco J, Flato G, Fujii Y, Kaser G, Mote P, Thomas RH, Zhang T (2007) Observations: changes in snow, ice and frozen ground. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Avery K, Tignor M, Miller H (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovenmental panel on climate change. Cambridge University Press, Cambridge, UK, pp 337–384

    Google Scholar 

  2. Fetterer F, Knowles K, Meier W, Savoie M (2002) Sea ice index. National Snow and Ice Data Center, Boulder, CO, USA. Digital Media, updated 2009

    Google Scholar 

  3. Budyko MI (1969) The effect of solar radiation variations on the climate of the earth. Tellus 21:611–619

    ADS  Google Scholar 

  4. Sellers WD (1969) A global climate model based on the energy balance of the earth-atmosphere system. J Appl Meteorol 8:392–400

    Google Scholar 

  5. Manabe S (1969) Climate and the ocean circulation I. The atmospheric circulation and the hydrology of the Earth’s surface. Mon Weather Rev 97:739–774

    ADS  Google Scholar 

  6. Bryan K (1969) Climate and the ocean circulation III. The ocean model. Mon Weather Rev 97:806–827

    ADS  Google Scholar 

  7. Nye JF (1953) The flow law of ice from measurements in glacier tunnels, laboratory experiments, and the Jungfraufirn borehole experiment. Proc R Soc Lond Ser A 219:477–489

    ADS  Google Scholar 

  8. Nye JF (1957) The distribution of stress and velocity in glaciers and ice sheets. Proc R Soc Lond Ser A 275:87–112

    ADS  Google Scholar 

  9. Glen JW (1955) The creep of polycrystalline ice. Proc R Soc Lond Ser A 228:519–538

    ADS  Google Scholar 

  10. Glen JW (1958) The flow law of ice. A discussion of the assumptions made in glacier theory, their experimental foundations and consequences. Int Assoc Hydrol Sci Publ 47:171–183

    Google Scholar 

  11. Budd WF (1970) The longitudinal stress and strain-rate gradients in ice masses. J Glaciol 9:29–48

    Google Scholar 

  12. Mahaffy MW (1976) A three-dimensional numerical model of ice sheets: tests on the Barnes Ice Cap, Northwest Territories. J Geophys Res 81:1059–1066

    ADS  Google Scholar 

  13. Jenssen D (1977) A three-dimensional polar ice sheet model. J Glaciol 18:373–389

    Google Scholar 

  14. Raymond CF (1983) Deformation in the vicinity of ice divides. J Glaciol 29:357–373

    Google Scholar 

  15. Thomas RA, MacAyeal DR (1982) Derived characteristics of the Ross ice shelf, Antarctica. J Glaciol 28(100):397–412

    Google Scholar 

  16. MacAyeal DR (1989) Large-scale flow over a viscous basal sediment: theory and application to Ice stream B, Antarctica. J Geophys Res 94(B4):4071–4088

    ADS  Google Scholar 

  17. Huybrechts P, Oerlemans J (1988) Evolution of the east Antarctic ice sheet: a numerical study of thermo-mechanical response patterns with changing climate. Ann Glaciol 11:52–59

    ADS  Google Scholar 

  18. Huybrechts P (1990) A 3-D model for the Antarctic ice sheet: a sensitivity study on the glacial-interglacial contrast. Clim Dyn 5:79–82

    Google Scholar 

  19. Huybrechts P, Letréguilly A, Reeh N (1991) The Greenland ice sheet and greenhouse warming. Palaeogeogr Palaeoclimatol Palaeoecol 89(4):399–412

    Google Scholar 

  20. Huybrechts P, de Wolde J (1999) The dynamic response of the Greenland and Antarctic ice sheets to multiple-century climatic warming. J Clim 12:2169–2188

    ADS  Google Scholar 

  21. Huybrechts P, Janssens I, Poncin C, Fichefet T (2002) The response of the Greenland ice sheet to climate changes in the 21st century by interactive coupling of an AOGCM with a thermomechanical ice-sheet model. Ann Glaciol 35:409–415

    ADS  Google Scholar 

  22. Huybrechts P, Gregory J, Janssens I, Wild M (2004) Modelling Antarctic and Greenland volume changes during the 20th and 21st centuries forced by GCM time slice integrations. Glob Planet Chang 42:83–105

    ADS  Google Scholar 

  23. MacAyeal DR, Rommelaere V, Huybrechts P, Hulbe CL, Determann J, Ritz C (1996) An ice-shelf model test based on the Ross ice shelf. Ann Glaciol 23:46–51

    ADS  Google Scholar 

  24. Payne AJ, Huybrechts P, Abe-Ouchi A, Calov R, Fastook JL, Greve R, Marshall SJ, Marsiat I, Ritz C, Tarasov L, Thomassen MPA (2000) Results from the EISMINT model intercomparison: the effects of thermomechanical coupling. J Glaciol 46(153):227–238

    Google Scholar 

  25. Ridley JK, Huybrechts P, Gregory J, Lowe J (2005) Elimination of the Greenland ice sheet in a high co2 climate. J Clim 18:3409–3427

    ADS  Google Scholar 

  26. Driesschaert E, Fichefet T, Goosse H, Huybrechts P, Janssens I, Mouchet A, Munhoven G, Brovkin V, Weber SL (2007) Modeling the influence of Greenland ice sheet melting on the Atlantic meridional overturning circulation during the next millennia. Geophys Res Lett 34:L10707

    ADS  Google Scholar 

  27. Mikolajewicz U, Vizcaíno M, Jungclaus J, Schurgers G (2007) Effect of ice sheet interactions in anthropogenic climate change simulations. Geophys Res Lett 34(L18706). doi:10.1029/2007GL031173

  28. Pattyn F (2003) A new three-dimensional higher-order thermomechanical ice sheet model: basic sensitivity, ice stream development and ice flow across subglacial lakes. J Geophys Res 108(B8):2382. doi:10.1029/2002JB002329

    Google Scholar 

  29. Pattyn F, Huyghe A, Brabander SD, Smedt BD (2006) The role of transition zones in marine ice sheet dynamics. J Geophys Res 111(F02004). doi:10.1029/2005JF000394

  30. Pattyn F et al (2008) Benchmark experiments for higher-order and full stokes ice sheet models (ISMIP-HOM). The Cryosphere 2:95–108

    Google Scholar 

  31. Payne AJ, Vieli A, Shepherd A, Wingham DJ, Rignot E (2004) Recent dramatic thinning of largest west-Antarctic ice stream triggered by oceans. Geophys Res Lett 31:L23401

    ADS  Google Scholar 

  32. Price SF, Conway H, Waddington ED, Bindschadler RA (2008) Model investigations of inland migration of fast-flowing outlet glaciers and ice streams. J Glaciol 54:49–60

    Google Scholar 

  33. Oerlemans J, Anderson B, Hubbard A, Huybrechts P, Jóhannesson T, Knap WH, Schmeits M, Stroeven AP, van de Wal RSW, Wallinga J, Zuo Z (1998) Modelling the response of glaciers to climate warming. Clim Dyn 14:267–274

    Google Scholar 

  34. Blatter H (1995) Velocity and stress fields in grounded glaciers: a simple algorithm for including deviatoric stress gradients. J Glaciol 41:333–344

    Google Scholar 

  35. Albrecht O, Jansson P, Blatter H (2000) Modelling glacier response to measured mass balance forcing. Ann Glaciol 31:91–96

    ADS  Google Scholar 

  36. Schneeberger C, Albrecht O, Blatter H, Wild M, Hock R (2001) Modelling the response of glaciers to a doubling in atmospheric co2: a case study of storglaciaren, northern Sweden. Clim Dyn 17(11):825–834

    Google Scholar 

  37. Pattyn F (2002) Transient glacier response with a higher-order numerical ice-flow model. J Glaciol 48(162):467–477

    Google Scholar 

  38. Jarosch AH (2008) Icetools: a full stokes finite element model for glaciers. Comput Geosci 34(8):1005–1014

    ADS  Google Scholar 

  39. Rutt IC, Hagdorn M, Hulton NRJ, Payne AJ (2009) The glimmer community ice sheet model. J Geophys Res 114(F02004). doi:10.1029/2008JF001015

  40. Coon MD, Maykut GA, Pritchard RS, Rothrock DA, Thorndike AS (1974) Modeling the pack ice as an elastic–plastic material. AIDJEX Bull 24:1–105

    Google Scholar 

  41. Coon MD (1980) A review of AIDJEX modeling. In: Pritchard RS (ed) Sea ice processes and models. University of Washington Press, Seattle, pp 12–27

    Google Scholar 

  42. Hibler WD (1980) Modeling pack ice as a viscous-plastic continuum: some preliminary results. In: Pritchard RS (ed) Sea ice processes and models. University of Washington Press, Seattle, pp 163–176

    Google Scholar 

  43. Hibler WD (1980) Modeling a variable thickness ice cover. Mon Weather Rev 108:1943–1973

    ADS  Google Scholar 

  44. Thorndike AS, Rothrock DS, Maykut GA, Colony R (1975) The thickness distribution of sea ice. J Geophys Res 80:4501–4513

    ADS  Google Scholar 

  45. Untersteiner N (1961) On the mass and heat budget of arctic sea ice. Arch Meteorol Geophys Bioklimatol Ser A 12:151–182

    Google Scholar 

  46. Maykut GA, Untersteiner N (1971) Some results from a time-dependent thermo-dynamic model of sea ice. J Geophys Res 76:1550–1575

    ADS  Google Scholar 

  47. Semtner AJ (1976) A model for the thermodynamic growth of sea ice in numerical investigaions of climate. J Phys Oceanogr 6:379–389

    ADS  Google Scholar 

  48. Washington WM, Meehl GA (1989) Climate sensitivity due to increased CO2: experiments with a coupled atmosphere and ocean general circulation model. Clim Dyn 8:211–223

    Google Scholar 

  49. Manabe S, Stouffer RJ, Spellman MJ, Bryan K (1991) Transient responses of a coupled ocean–atmosphere model to gradual changes of atmospheric CO2. Part I. Annual mean response. J Clim 4:785–818

    ADS  Google Scholar 

  50. McFarlane NA, Boer GJ, Blanchet J-P, Lazare M (1992) The Canadian climate centre second-generation general circulation model and its equilibrium climate. J Clim 5:1013–1044

    ADS  Google Scholar 

  51. Flato GM, Hibler WD III (1992) Modeling pack ice as a cavitating fluid. J Phys Oceanogr 22:626–651

    ADS  Google Scholar 

  52. Hunke EC, Dukowicz JK (1997) An elastic-viscous-plastic model for sea ice dynamics. J Phys Oceanogr 27:1849–1867

    ADS  Google Scholar 

  53. Zhang J, Hibler WD III (1997) On an efficient numerical method for modeling sea ice dynamics. J Geophys Res 102:8691–8702

    ADS  Google Scholar 

  54. Bitz CM, Holland MM, Weaver AJ, Eby M (2001) Simulating the ice-thickness distribution in a coupled climate model. J Geophys Res 106:2441–2464

    ADS  Google Scholar 

  55. Holland MM, Bitz CM, Hunke EC, Lipscomb WH, Schramm JL (2006) Influence of the sea ice thickness distribution on polar climate in CCSM3. J Clim 19:2398–2414

    ADS  Google Scholar 

  56. Goodrich LE (1978) Some results of a numerical study of ground thermal regimes, vol 1. National Research Council Canada, Ottawa, pp 29–34

    Google Scholar 

  57. Goodrich LE (1978) Efficient numerical technique for one-dimensional thermal problems with phase change. Int J Heat Mass Transf 21:615–621

    Google Scholar 

  58. Jordan R (1991) A one-dimensional temperature model for a snow cover. Special Report 91–16, Technical report. Cold Regions Research and Engineering Laboratory, Hanover, 49pp

    Google Scholar 

  59. Loth B, Graf H-F, Oberhuber JM (1993) Snow cover model for global climate simulations. J Geophys Res 98:10451–10464

    ADS  Google Scholar 

  60. Douville H, Royer JF, Mahfouf JF (1995) A new snow parameterization for the Météo-France climate model. 1. Validation in stand-alone experiments. Clim Dyn 12:21–35

    Google Scholar 

  61. Robock A, Vinnikov KY, Schlosser CA, Speranskaya NA, Xue Y (1995) Use of midlatitude soil moisture and meteorological observations to validate soil moisture simulations with biosphere and bucket models. J Clim 8:15–35

    ADS  Google Scholar 

  62. Yang ZL, Pitman AJ, McAvaney B, Sellers AH (1995) The impact of implementing the bare essentials of surface transfer land surface scheme into the BMRC GCM. Clim Dyn 11:279–297

    Google Scholar 

  63. Slater AG, Pitman AJ, Desborough CE (1998) The validation of a snow parameterization designed for use in general circulation models. Int J Clim 18:595–617

    Google Scholar 

  64. Slater AG, Pitman AJ, Desborough CE (1998) Simulation of freeze-thaw cycles in a general circulation model land surface scheme. J Clim 103:11,303–11,312

    Google Scholar 

  65. Dery S, Tremblay L-B (2004) Modelling the effects of wind redistribution on the snow mass budget of polar sea ice. J Phys Oceanogr 34:258–271

    ADS  Google Scholar 

  66. Oleson KW et al (2010) Technical description of version 4.0 of the community land model version (CLM). NCAR/TN-478+STR. National Center for Atmospheric Research, Boulder, CO, USA. http://www.cesm.ucar.edu/models/cesm1.0/clm/CLM4_Tech_Note.pdf

  67. Clarke GKC (2005) Subglacial processes. Ann Rev Earth Planet Sci 33:247–276

    ADS  Google Scholar 

  68. Paterson WSB (1994) The physics of glaciers, vol 3. Elsevier, Amsterdam

    Google Scholar 

  69. Duval P (1981) Creep and fabrics of polycrystalline ice under shear and compression. J Glaciol 27:129–140

    Google Scholar 

  70. Mellor M, Cole DM (1982) Deformation and failure of ice under constant stress or constant strain-rate. Cold Reg Sci Technol 5:201–219

    Google Scholar 

  71. Hooke RL (1981) Flow law for polycrystalline ice in glaciers: comparison of theoretical predictions, laboratory data, and field measurements. Rev Geophys Space Phys 19:664–672

    ADS  Google Scholar 

  72. Adalgeirsdóttir G, Gudmundsson G, Bjornsson H (2000) The response of a glacier to a surface disturbance: a case study on Vatnajkull ice cap, Iceland. Ann Glaciol 31:104–110

    ADS  Google Scholar 

  73. Alley RB (1992) Flow-law hypotheses for ice-sheet modelling. J Glaciol 38:245–256

    Google Scholar 

  74. Shoji H, Langway CC (1988) Flow-law parameters of the dye 3, Greenland, deep ice core. Ann Glaciol 10:146–150

    ADS  Google Scholar 

  75. Thorsteinsson T, Waddington ED, Taylor KC, Alley RB, Blankenship DD (1999) Strain-rate enhancement at dye 3, Greenland. J Glaciol 45:338–345

    Google Scholar 

  76. Thorsteinsson T, Waddington ED, Fletcher RC (2003) Spatial and temporal scales of anisotropic effects in ice-sheet flow. Ann Glaciol 37:40–48

    ADS  Google Scholar 

  77. Cuffey KM, Thorsteinsson T, Waddington ED (2000) A renewed argument for crystal size control of ice sheet strain rates. J Geophys Res 105(B12):27,889–27,894

    ADS  Google Scholar 

  78. Durham W, Stern L, Kirby S (2001) Rheology of ice i at low stress and elevated confining pressure. J Geophys Res 106(B6):11,031–11,042

    ADS  Google Scholar 

  79. Paterson WSB (1991) Why ice-age ice is sometimes ‘soft’. Cold Reg Sci Technol 20(1):75–98

    Google Scholar 

  80. Bindschadler RA (1983) The importance of pressurised subglacial water in separation and sliding at the glacier bed. J Glaciol 29:3–19

    Google Scholar 

  81. Clarke GKC (1987) Fast glacier flow: ice streams, surging, and tidewater glaciers. J Geophys Res 92:8835–8841

    ADS  Google Scholar 

  82. Iken A, Bindschadler RA (1986) Combined measurements of subglacial water pressure and surface velocity of Findelengletscher, Switzerland: conclusions about drainage system and sliding mechanism. J Glaciol 32(110):101–119

    Google Scholar 

  83. Kamb B (1987) Glacier surge mechanism based on linked cavity configuration of the basal water conduit system. J Geophys Res 92(B9):9083–9100

    ADS  Google Scholar 

  84. Copland L, Sharp MJ, Nienow P (2003) Links between short-term velocity variations and the subglacial hydrology of a predominantly cold polythermal glacier. J Glaciol 49:337–348

    Google Scholar 

  85. Zwally HJ, Herring T, Abdalati W, Larson K, Saba J, Steffen K (2002) Surface melt-induced acceleration of Greenland ice-sheet flow. Science 297:218–222

    ADS  Google Scholar 

  86. Joughin I, Das SB, King MA, Smith BE, Howat IM, Moon T (2008) Seasonal speedup along the western flank of the Greenland ice sheet. Science 320(5877):781–783

    ADS  Google Scholar 

  87. Alley RB (2000) Water pressure coupling of sliding and bed deformation. Space Sci Rev 92:295–310

    Google Scholar 

  88. Kamb B (1991) Rheological nonlinearity and flow instability in the deforming bed mechanism of ice stream flow. J Geophys Res 96(B10):16,585–16,595

    ADS  Google Scholar 

  89. Tulaczyk SM, Kamb B, Engelhardt H (2001) Basal mechanics of ice stream b, west Antarctica 1. Till mechanics. J Geophys Res 105(B1):463–481

    ADS  Google Scholar 

  90. Clark PU, Alley RB, Pollard D (1999) Northern hemisphere ice-sheet influences on global climate change. Science 286:1104–1111

    Google Scholar 

  91. Marshall SJ, Björnsson H, Flowers GE, Clarke GKC (2005) Modeling Vatnajökull ice cap dynamics. J Geophys Res 110(F03009). doi:10.1029/2004JF000262

  92. Flowers GE, Marshall SJ, Björnsson H, Clarke GKC (2005) Sensitivity of Vatnajökull ice cap hydrology and dynamics to climate warming over the next two centuries. J Geophys Res 110(F02011). doi:10.1029/2004JF000200

  93. Ritz C, Fabre A, Letréguilly A (1997) Sensitivity of a Greenland ice sheet model to ice flow and ablation parameters: consequences for the evolution through the last glacial cycle. Clim Dyn 13:11–24

    Google Scholar 

  94. Kamb B, Echelmeyer KA (1986) Stress-gradient coupling in glacier flow: I. Longitudinal averaging of the influence of ice thickness and surface slope. J Glaciol 32:267–279

    Google Scholar 

  95. Marshall SJ, Clarke GKC (1997) A continuum mixture model of ice stream thermomechanics in the Laurentide ice sheet, 2. Application to the Hudson strait ice stream. J Geophys Res 102(B9):20,615–20,638

    ADS  Google Scholar 

  96. MacAyeal DR, Bindschadler RA, Scambos TA (1995) Basal friction of Ice stream E, west Antarctica. J Glaciol 41:247–262

    Google Scholar 

  97. Vieli A, Payne AJ (2003) Application of control methods for modelling the flow of pine island glacier, west Antarctica. Ann Glaciol 36:197–203

    ADS  Google Scholar 

  98. Flowers GE, Clarke GKC (2002) A multicomponent coupled model of glacier hydrology. 1. Theory and synthetic example. J Geophys Res 107(B11). doi:10.1029/2001JB001122

  99. Johnson J, Fastook JL (2002) Northern hemisphere glaciation and its sensitivity to basal melt water. Quat Int 95–96:65–74

    Google Scholar 

  100. Arnold NS, Sharp MJ (2002) Flow variability in the Scandinavian ice sheet: modelling the coupling between ice sheet flow and hydrology. Quat Sci Rev 21:485–502

    ADS  Google Scholar 

  101. Conway H, Hall BL, Denton GH, Gades AM, Waddington ED (1999) Past and future grounding-line retreat of the west Antarctic ice sheet. Science 286:280–283

    Google Scholar 

  102. Paul F, Kotlarski S (2010) Forcing a distributed glacier mass balance model with the regional climate model REMO. Part II: downscaling strategy and results for two Swiss glaciers. J Clim 23(6):1607–1620

    ADS  Google Scholar 

  103. Toniazzo T, Gregory JM, Huybrechts P (2004) Climate impact of a Greenland deglaciation and its possible irreversibility. J Clim 17:21–33

    ADS  Google Scholar 

  104. Ridley JK, Gregory J, Huybrechts P, Lowe J (2010) Thresholds for irreversible decline of the Greenland ice sheet. Clim Dyn 35(6):1049–1057

    Google Scholar 

  105. Vizcaíno M, Mikolajewicz U, Gröger M, Maier-Reimer E, Schurgers G, Winguth AME (2008) Long-term ice sheet-climate interactions under anthropogenic greenhouse forcing simulated with a complex earth system model. Clim Dyn 31:665–690

    Google Scholar 

  106. Holland DM, Thomas RH, Young BD, Ribergaard MH, Lyberth B (2008) Acceleration of Jakobshavn Isbræ triggered by warm subsurface ocean waters. Nat Geosci 1:659–664

    ADS  Google Scholar 

  107. Walsh JE, Hibler WD III, Ross B (1985) Numerical simultion of northern hemisphere sea ice variability 1951–1980. J Geophys Res 90:4847–4865

    ADS  Google Scholar 

  108. Hibler WD (1979) A dynamic thermodynamic sea ice model. J Phys Oceanogr 9:815–846

    ADS  Google Scholar 

  109. Lipscomb WH, Hunke EC, Maslowski W, Jakacki J (2007) Improving ridging schemes for high-resolution sea ice models. J Geophys Res 112:C03S91. doi:10.1029/2005JC003355

    Google Scholar 

  110. Rothrock DA (1975) The energetics of the plastic deformation of pack ice by ridging. J Geophys Res 80:4514–4519

    ADS  Google Scholar 

  111. Hopkins MA, Hibler WD III (1991) On the ridging of a thin sheet of lead ice. Ann Glaciol 15:81–86

    ADS  Google Scholar 

  112. Flato GM, Hibler WD III (1995) Ridging and strength in modelling the thickness distribution of Arctic sea ice. J Geophys Res C9:18,611–18,626

    Google Scholar 

  113. Dennis JM, Tufo HM (2008) Scaling climate simulation applications on the IBM blue gene/L system. IBM J Res Dev Appl Massively Parallel Syst 52(1/2):117–126

    Google Scholar 

  114. Box JE, Bromwich D, Veenhuis BA, Bai L-S, Stroeve JC, Rogers JC, Steffen K, Haran T, Wang S-H (2006) Greenland ice sheet surface mass balance variability (1988–2004) from calibrated polar MM5 output. J Clim 19(12):2783–2800

    ADS  Google Scholar 

  115. Fettweis X, Hanna E, Gallee H, Huybrechts P, Erpicum M (2008) Estimation of the Greenland ice sheet surface mass balance for the 20th and 21st centuries. The Cryosphere 2:117–129

    Google Scholar 

  116. Wake LM, Huybrechts P, Box JE, Hanna E, Janssens I, Milne GA (2009) Surface mass-balance changes of the Greenland ice sheet since 1866. Ann Glaciol 50:178–184

    ADS  Google Scholar 

  117. Hopkins MA (1996) On the mesoscale interaction of lead ice and floes. J Geophys Res 101:18315–18326

    ADS  Google Scholar 

  118. Kwok R (2001) Deformation of the Arctic ocean sea ice cover between November 1996 and April 1997: a qualitative survey. In: Dempsey J, Shen H, Shapiro L (eds) IUTAM scaling laws in Ice mechanics and ice dynamics. Kluwer Academic, Dordrecht, pp 315–322

    Google Scholar 

  119. Hutchings J, Heil P, Hibler W (2005) Modeling linear kinematic features in sea ice. Mon Weather Rev 133:3481–3497

    ADS  Google Scholar 

  120. Hibler WD, Schulson M (2000) On modeling the anisotropic failure and flow of flawed sea ice. J Geophys Res 105:17,105–17,120

    ADS  Google Scholar 

  121. Schreyer H, Sulsky D, Munday L, Coon M, Kwok R (2006) Elastic-decohesive constitutive model for sea ice. J Geophys Res 111:C11S26. doi:10.1029/2005JC003344

    Google Scholar 

  122. Coon M, Kwok R, Levy G, Prius M, Schreyer H, Sulsky D (2007) Arctic ice dynamics joint experiment (AIDJEX) assumptions revisited and found inadequate. J Geophys Res 112:C11S90. doi:10.1029/2005JC003393

    Google Scholar 

  123. Arrigo KR, Kremer JN, Sullivan CW (1993) A simulated Antarctic fast ice ecosystem. J Geophys Res 98:6929–6946

    ADS  Google Scholar 

  124. Arrigo KR, Worthen DL, Lizotte MP, Dixon P, Dieckmann G (1997) Primary production in Antarctic sea ice. Science 276:394–397

    Google Scholar 

  125. Lavoie D, Denman K, Michel C (2005) Modeling ice algal growth and decline in a seasonally ice-covered region of the arctic (resolute passage, Canadian archipelago). J Geophys Res 110:C11009. doi:10.1029/2005JC002922

    ADS  Google Scholar 

  126. Jin M, Deal CJ, Wang J, Tanaka N, Ikeda M (2007) Vertical mixing effect on the phytoplankton bloom in the southeastern Bering Sea midshelf. J Geophys Res 111:C03002. doi:10.1029/2005JC002994

    Google Scholar 

  127. Vancoppenolle M, Goosse H, de Montety A, Fichefet T, Tremblay B, Tison J-L (2010) Modelling brine and nutrient dynamics in Antarctic sea ice: the case of dissolved silica. J Geophys Res 115:C02005. doi:10.1029.2009JC005369

    Google Scholar 

  128. Bitz CM, Ridley JK, Holland MM, Cattle H (in press) Global climate models and 20th and 21st century arctic climate change. In: Lemke P (ed) Arctic climate change – the ACSYS decade and beyond. Springer

    Google Scholar 

  129. Greve, Blatter (2009) Dynamics of ice sheets and glaciers, Springer-Verlag, Berlin, pp 287

    Google Scholar 

  130. MacAyeal DR, Bindschadler RA, Scambos TA (1995) Basal friction of Ice Stream E, West Antarctica. J Glacio 41:247–262

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecilia M. Bitz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bitz, C.M., Marshall, S.J. (2012). Cryosphere, Modeling of. In: Rasch, P. (eds) Climate Change Modeling Methodology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5767-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5767-1_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5766-4

  • Online ISBN: 978-1-4614-5767-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics