Skip to main content

Airborne Toxic Chemicals

  • Chapter
  • First Online:
  • 2878 Accesses

Abstract

“Air toxics” is a term that is often used colloquially, but for the purposes of this article it will be used following the specific definition set forth by the US Environmental Protection Agency (EPA). Toxic (or Hazardous) air pollutants are those pollutants that are known or suspected of causing cancer or other serious health effects [1]. Air toxics are defined by the Clean Air Act, which explains what pollutants qualify, how different sources are categorized, and how they are to be regulated [2].

This chapter was originally published as part of the Encyclopedia of Sustainability Science and Technology edited by Robert A. Meyers. DOI:10.1007/978-1-4419-0851-3

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

Air toxic:

Substances that are known or suspected to cause cancer or other serious health effects. Also known as Hazardous Air Pollutants (HAPS).

Anthropogenic source:

A source of air toxics created by human beings.

Area source:

A single source of pollutant that emits less that 10 t per year of one air toxic, or less than 25 t per year of any combination of air toxics.

MACT (Maximum Achievable Control Technology):

Standard that dictates emission limits of a source is set by the best performing 12% of similar sources, if more than 30 similar sources exist nationally. If less than 30 exist, the best five are used to set the standard.

Major source:

A single source of pollutant that emits 10 t per year or more of one air toxic, or 25 t per year or more of any combination of air toxics.

Mobile source:

A source of air toxics that moves (such as a car, truck, airplane, or boat).

Bibliography

Primary Literature

  1. US EPA (2000) Taking toxics out of the air. Brochure of the US EPA Office of Air Quality Planning and Standards, Research Triangle Park, NC. Accessed 11/223/2010, Available from: http://www.epa.gov/air/oaqps/takingtoxics/p1.html

  2. EPA (2007) The Plain English Guide to the Clean Air Act. 2008, US EPA Office of Air Quality Planning and Standards, Research Triangle Park, NC. Publication No. EPA-456/K-07-001

    Google Scholar 

  3. Keys D (2003) How Rome polluted the world. Geogr Campion Interact Publishing 75(12):45–48

    Google Scholar 

  4. Bell ML, Davis DL (2001) Reassessment of the lethal London fog of 1952: novel indicators of acute and chronic consequences of acute exposure to air pollution. Environ Health Perspect Suppl 109:389

    CAS  Google Scholar 

  5. BeruBe K et al (2005) London smogs: why did they kill? Proc R Microsc Soc 40(3):171–183

    Google Scholar 

  6. Parris TM (2006) Smog Season. Environment 48(4):3–3

    Article  Google Scholar 

  7. Aronson SM (2009) The ignoble fate of the peppered moth. In: Medicine & Health Rhode Island, pp 291–291

    Google Scholar 

  8. Corman R (1978) Air pollution primer. The American Lung Association, New York

    Google Scholar 

  9. US EPA (1994) Environmental fact sheet: air toxics from motor vehicles. In: Environmental Protection Agency (ed) Ann Arbor.

    Google Scholar 

  10. Stern RE (2003) Hong Kong Haze. Asian Surv 43(5):780–800

    Article  Google Scholar 

  11. Fang G-C, Wu Y-S, Chang T-H (2009) Comparison of atmospheric mercury (Hg) among Korea, Japan, China and Taiwan during 2000–2008. J Hazard Mater 162(2/3):607–615

    Article  PubMed  CAS  Google Scholar 

  12. Luecken DJ, Cimorelli AJ (2008) Codependencies of Reactive Air Toxic and Criteria Pollutants on Emission Reductions. J Air Waste Manage Assoc 1995 58(5):693–701

    Article  CAS  Google Scholar 

  13. McSwane D (2009) Food safety, in environmental health: from global to local. In: Frumpkin H (ed). Jossey-Bass, San Franscisco

    Google Scholar 

  14. Logue JM et al (2009) High time-resolved measurements of organic air toxics in different source regimes. Atmos Environ 43(39):6205–6217

    Article  CAS  Google Scholar 

  15. Raymer JH et al (2009) Microenvironmental characteristics important for personal exposures to aldehydes in Sacramento, CA, and Milwaukee, WI. Atmos Environ 43(25):3910–3917

    Article  CAS  Google Scholar 

  16. Oñzkaynak H et al (2008) Modeling population exposures to outdoor sources of hazardous air pollutants. J Expo Sci Environ Epidemiol 18(1):45–58

    Article  Google Scholar 

  17. Harley RA et al (2006) Effects of Reformulated Gasoline and Motor Vehicle Fleet Turnover on Emissions and Ambient Concentrations of Benzene. Environ Sci Technol 40(16):5084–5088

    Article  PubMed  CAS  Google Scholar 

  18. McCarthy MC et al (2009) Characterization of the Chronic Risk and Hazard of Hazardous Air Pollutants in the United States Using Ambient Monitoring Data. Environ Health Perspect 117(5):790–796

    Article  PubMed  CAS  Google Scholar 

  19. Raun LH, Marks EM, Ensor KB (2009) Detecting improvement in ambient air toxics: An application to ambient benzene measurements in Houston, Texas. Atmos Environ 43(20):3259–3266

    Article  CAS  Google Scholar 

  20. Whitworth KW, Symanski E, Coker AL (2008) Childhood Lymphohematopoietic Cancer Incidence and Hazardous Air Pollutants in Southeast Texas, 1995–2004. Environ Health Perspect 116(11):1576–1580

    Article  PubMed  Google Scholar 

  21. US EPA (2009) Toxics Release Inventory (TRI) Program Fact Sheet. 2009 9/20/2009 [cited 2010 1/19]; Available from: http://www.epa.gov/triinter/triprogram/tri_program_fact_sheet.htm

  22. US EPA (1996) The Aspen model. Technology Transfer Network 1996 National-Scale Air Toxics Assessment 2009 6/6/2007 [cited 2010 1/19]; Available from: http://www.epa.gov/ttn/uatw/nata/aspen.html

  23. Venkatram A et al (2009) Modeling the impacts of traffic emissions on air toxics concentrations near roadways. Atmos Environ 43(20):3191–3199

    Article  CAS  Google Scholar 

  24. Morrison B,Heath B (2009) States’ tests of air questioned. USA Today

    Google Scholar 

  25. Heath B, Morrison B (2009) EPA study: 2.2 M live in areas where air poses cancer risk. USA Today

    Google Scholar 

  26. ATSDR (1997) American Toxic Substances and Disease Registry Toxfaqs: Tetrachloroethylene. US DHHS PHS ATSDR CAS#127-18-4

    Google Scholar 

  27. Graham LA, Belisle SL, Baas C-L (2008) Emissions from light duty gasoline vehicles operating on low blend ethanol gasoline and E85. Atmos Environ 42(19):4498–4516

    Article  CAS  Google Scholar 

  28. US EPA (2006) Master list of compounds emitted by mobile sources. Environmental Protection Agency (ed) Washington, DC

    Google Scholar 

  29. Brown JL (2009) The Market Effects of Going Green: Evidence from California’s Wholesale Reformulated Gasoline Market. Energy J 30(3):115–127

    Google Scholar 

  30. Tollefson J (2008) Car industry: Charging up the future. Nature 456(7221):436–440

    Article  PubMed  CAS  Google Scholar 

  31. EPA (2009) Fact sheet-final amendments to air standards for perchloroethylene dry cleaners. EPA, Editor

    Google Scholar 

  32. US EPA (2006) Proposed amendments to air toxics standards for perchloroethylene dry cleaners. Environmental Protection Agency, Editor

    Google Scholar 

  33. US EPA (1993) Air pollutants, hazardous; national emission standards: perchlorethylene emissions from dry cleaning facilities. Edited by Environmental Protection Agency, Research Triangle Park, NC, p 49354

    Google Scholar 

  34. Department of Health and Human Services (1999) Agency for toxic substances and disease registry, Mercury, Department of Health and Human Services, Atlanta

    Google Scholar 

  35. Sun L et al (2006) A 2000-year record of mercury and ancient civilizations in seal hairs from King George Island, West Antarctica. Sci Total Environ 368(1):236–247

    Article  PubMed  CAS  Google Scholar 

  36. Li P et al (2009) Mercury pollution in Asia: a review of the contaminated sites. J Hazard Mater 168(2–3):591–601

    Article  PubMed  CAS  Google Scholar 

  37. Tillett T (2009) The Price of Progress. Environ Health Perspect 117(6):A257–A257

    PubMed  Google Scholar 

  38. Levin P (2007) From mad hatters to dental amalgams: heavy metals: toxicity and testing. MLO Med Lab Obs 39(12):20

    PubMed  Google Scholar 

  39. Selin NE (2009) Global Biogeochemical Cycling of Mercury: A Review. Annu Rev Environ Resour 34:43–63

    Article  Google Scholar 

  40. Streets DG, Zhang Q, Wu Y (2009) Projections of Global Mercury Emissions in 2050. Environ Sci Technol 43(8):2983–2988

    Article  PubMed  CAS  Google Scholar 

  41. Glodek A, Pacyna JM (2009) Mercury emission from coal-fired power plants in Poland. Atmos Environ 43(35):5668–5673

    Article  CAS  Google Scholar 

  42. EPA (2002) National Risk Management Research Laboratory Research, Triangle Park, NC. Control of mercury emissions from coal-fired elecric utililty boilers: interim report including errata dated 3-21-02

    Google Scholar 

  43. Pudasainee D, Kim JH, Seo YC (2009) Mercury emission trend influenced by stringent air pollutants regulation for coal-fired power plants in Korea. Atmos Environ 43(39):6254–6259

    Article  CAS  Google Scholar 

  44. Milford JB, Pienciak A (2009) After the Clean Air Mercury Rule: Prospects for Reducing Mercury Emissions from Coal-Fired Power Plants. Environ Sci Technol 43(8):2669–2673

    Article  PubMed  CAS  Google Scholar 

  45. Ekino S et al (2007) Minamata disease revisited: An update on the acute and chronic manifestations of methyl mercury poisoning. J Neurol Sci 262(1–2):131–144

    Article  PubMed  CAS  Google Scholar 

  46. Reynolds P et al (2002) Traffic patterns and childhood cancer incidence rates in California, United States. Cancer Causes Control 13(7):665–673

    Article  PubMed  Google Scholar 

  47. Lewandowski TA et al (2009) An Evaluation of Surrogate Chemical Exposure Measures and Autism Prevalence in Texas. J Toxicol Env Health A 72(24):1592–1603

    Article  CAS  Google Scholar 

  48. Nweke OC, Sanders WH III (2009) Modern Environmental Health Hazards: A Public Health Issue of Increasing Significance in Africa. Environ Health Perspect 117(6):863–870

    Article  PubMed  CAS  Google Scholar 

  49. Singer M, Clair S (2003) Syndemics and Public Health: Reconceptualizing Disease in Bio-Social Context. Med Anthropol Quart 17(4):423–441

    Article  Google Scholar 

  50. Goodman AH, Leatherman TL (eds) (1998) Building a new biocultural synthesis. University of Michigan Press, Ann Arbor, pp 3–42

    Google Scholar 

  51. Johansson M, Laike T (2007) Intention to respond to local wind turbines: the role of attitudes and visual perception. Wind Energy 10(5):435–451

    Article  Google Scholar 

Books and Reviews

  • Ganesan K et al (1996) Air toxics: problems and solutions. Gordon & Breach, Amsterdam, p 342

    Google Scholar 

  • Griffin RD (2007) Principles of air quality management, 2nd edn. Taylor and Francis, London, 334 pp

    Google Scholar 

  • Hanna SR et al (1982) Handbook on atmospheric diffusion. Office of Energy Research, US Department of Energy, 102 pp

    Book  Google Scholar 

  • Harrop O (2002) Air quality assessment and management: a practical guide. Taylor & Francis, London, 504 pp

    Google Scholar 

  • Heinsohn RJ, Kabel RL (1999) Sources and control of air pollution. Pearson Education, Upper Saddle River, p 696

    Google Scholar 

  • Jacobson MZ (2000) Atmospheric pollution: history, science and regulation. Cambridge University Press, New York, p 399

    Google Scholar 

  • Spicer CW et al (2002) Hazardous air pollutant handbook: measurements, properties, and fate in ambient air. Lewis, Boca Raton, p 240

    Book  Google Scholar 

  • Turner DB (1994) Workbook of atmospheric dispersion estimates: an introduction to dispersion modeling. Lewis, Boca Raton

    Google Scholar 

  • USEPA (2004) Air toxics risk assessment reference Library, edited by Office of Air Quality Planning and Standards, EPA, Research Triangle Park, NC

    Google Scholar 

  • Vallero D (2008) Fundamentals of air pollution, 4th edn. Academic Press, San Diego, 942 p

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to April Hiscox or Mark Macauda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hiscox, A., Macauda, M. (2013). Airborne Toxic Chemicals. In: Laws, E. (eds) Environmental Toxicology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5764-0_2

Download citation

Publish with us

Policies and ethics