Skip to main content

Marine Biogeochemistry

  • Chapter
  • First Online:
Book cover Ecological Systems

Abstract

The biogeochemistry of the world oceans has been studied for many decades, and major advances in understanding have been linked with development of new techniques and tools that allow the accurate representation of various organic and inorganic pools within the water. The classic study of Redfield 1 showed that some critical bioactive compounds (carbon, nitrogen, phosphorus, oxygen) occur in particular ratios to one another that are relatively invariant over space and time and provided a description of the relationship between the ratio of nitrogen to phosphorus (N:P) for inorganic and plankton pools. The processes that control these compounds were assessed, and it was concluded that phosphorus concentrations are largely controlled by terrestrial inputs, whereas nitrogen is under biological control.

This chapter was originally published as part of the Encyclopedia of Sustainability Science and Technology edited by Robert A. Meyers. DOI:10.1007/978-1-4419-0851-3

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Autotrophic:

Organisms whose mode of nutrition is photosynthesis.

Biogeochemistry :

The biological and chemical processes that transform and cycle elements over various time and space scales and that determine the composition of the environment.

Biological pump:

The biological processes and transformations that move carbon from the surface to depth.

Cyanobacteria:

Prokaryotic phytoplankton.

Diatom:

Phytoplankton which are encased in frustule consisting of silica.

Euphotic zone:

The surface layer of the ocean where most primary production occurs, generally considered to be the depth to which 1% of surface radiation penetrates.

Heterotrophic:

Organisms who require reduced organic carbon as an energy and carbon source.

Nutrient:

Element that is required for biological activity and growth.

Oxidation:

Chemical reaction in which reactant loses electrons; half-reaction paired with reduction.

Photosynthesis:

The process by which radiant energy from the sun is transformed into chemical energy that can later be used to reduce carbon dioxide to organic sugars, which in turn are coupled to biochemical pathways to produce all compounds necessary for cell growth.

Phytoplankton:

Microscopic, often unicellular, floating autotrophs that live in the ocean’s surface layer and form the base of nearly all marine food webs.

Reduction:

Chemical reaction in which reactant gains electrons; half-reaction paired with oxidation.

Bibliography

Primary Literature

  1. Redfield AC (1958) The biological control of chemical factors in the environment. Am Sci 64:205–221

    Google Scholar 

  2. Libes SM (2009) Introduction to marine biogeochemistry. Academic, Amsterdam

    Google Scholar 

  3. Hutchins DA, Bruland KW (1998) Iron-limited diatom growth and Si:N uptake ratios in a coastal upwelling regime. Nature 393:561–564

    Article  CAS  Google Scholar 

  4. Sunda WG, Huntsman S (1997) Interrelated influence of iron, light, and cell size on growth of marine phytoplankton. Nature 390:389–392

    Article  CAS  Google Scholar 

  5. Le Quéré C et al (2007) Saturation of the Southern Ocean CO2 sink due to recent climate change. Science 316:1735–1738

    Article  PubMed  Google Scholar 

  6. Doney SC, Fabry VF, Feely RA, Kleypas JA (2009) Ocean acidification: the other CO2 problem. Ann Rev Mar Sci 1:169–192

    Article  PubMed  Google Scholar 

  7. Ries BR, Cohen AL, McCorkle DC (2009) Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 37:131–134

    Article  Google Scholar 

  8. Hutchins DA, Mulholland MR, Fu F (2009) Nutrient cycles and marine microbes in a CO2-enriched ocean. Oceanogr 22:128–145

    Article  Google Scholar 

  9. Fu F-X, Zhang Y, Warner ME, Feng Y, Hutchins DA (2008) A comparison of future increased CO2 and temperature effects on sympatric Heterosigma akashiwo and Prorocentrum minimum. Harm Algae 7:76–90

    Article  CAS  Google Scholar 

  10. Devol AH (2003) Solution to a marine mystery. Nature 422:575–576

    Article  PubMed  CAS  Google Scholar 

  11. Lam P et al (2009) Revising the nitrogen cycle in the Peruvian oxygen minimum zone. Proc Nat Aca Sci 106:4752–4757

    Article  CAS  Google Scholar 

  12. Ward B et al (2009) Denitrification as the dominant nitrogen loss process in the Arabian Sea. Nature 451:78–81

    Article  Google Scholar 

  13. Martin JH, Fitzwater S (1988) Iron deficiency limits phytoplankton growth in the northeast Pacific subarctic. Nature 331:341–343

    Article  CAS  Google Scholar 

  14. Ducklow HW, Oliver JL, Smith WO (2007) The role of iron as a limiting nutrient for marine plankton processes. In: Melillo JM, Field CB, Moldan B (eds) Interactions of the major biogeochemical cycles. Island Press, Washington, DC, pp 295–310

    Google Scholar 

  15. Vraspir JM, Butler A (2009) Chemistry of marine ligands and siderophores. Ann Rev Mar Sci 1:43–63

    Article  PubMed  Google Scholar 

  16. Johnson KS, Gordon RM, Coale KH (1997) What controls dissolved iron concentrations in the world ocean? Mar Chem 57:137–161

    Article  CAS  Google Scholar 

  17. Baker AR, Croot PR (2010) Atmospheric and marine controls on aerosol iron solubility in seawater. Mar Chem 120:4–13

    Article  CAS  Google Scholar 

  18. Martin JH et al (1994) Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. Nature 371:123–129

    Article  CAS  Google Scholar 

  19. Watson AJ et al (1994) Minimal effect of iron fertilization on sea-surface carbon dioxide concentrations. Nature 371:143–145

    Article  CAS  Google Scholar 

  20. Coale KH et al (1996) A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific. Nature 383:495–501

    Article  PubMed  CAS  Google Scholar 

  21. Sarmiento JL, Gruber N, Brzezinski MA, Dunne JP (2004) High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature 427:56–60

    Article  PubMed  CAS  Google Scholar 

  22. Boyd PW et al (2007) Mesoscale iron enrichment experiments 1993–2005: synthesis and future directions. Science 315:612–617

    Article  PubMed  CAS  Google Scholar 

  23. Treguer P, Nelson DM, van Bennekom AJT, DeMaster DJ, Lynaert A, Queguiner B (1995) The silica balance in the world ocean: a reestimate. Science 268:375–379

    Article  PubMed  CAS  Google Scholar 

  24. Nelson DM et al (1995) Production and dissolution of biogenic silica in the ocean: revised global estimates, comparison with regional data and relationship to biogenic sedimentations. Global Biogeochem Cycles 9:359–372

    Article  CAS  Google Scholar 

  25. DeMaster DJ (2002) The accumulation and cycling of biogenic silica in the Southern Ocean: revisiting the marine silica budget. Deep Sea Res II 49:3155–3167

    Article  CAS  Google Scholar 

  26. Biddle KD, Azam F (1999) Accelerated dissolution of diatom silica by natural bacterial assemblages. Nature 397:508–512

    Article  Google Scholar 

  27. Sievert SM, Kiene RP, Schulz-Vogt HN (2007) The sulfur cycle. Oceanography 20:117–123

    Article  Google Scholar 

  28. Andreae MO (1990) Ocean-atmosphere interactions in the global biogeochemical sulfur cycle. Mar Chem 30:1–29

    Article  CAS  Google Scholar 

  29. Sunda W, Kieber DJ, Kiene RP, Huntsman S (2002) An antioxidant function for DMSP and DMS in marine algae. Nature 418:317–320

    Article  PubMed  CAS  Google Scholar 

  30. Jorgensen BB (1977) The sulfur cycle of a coastal marine sediment (Limfjorden, Denmark). Limnol Oceanogr 22:814–832

    Article  Google Scholar 

  31. Canfield DE, Farquhar J (2009) Animal evolution, bioturbation, and the sulfate concentration of the oceans. Proc Nat Acad Sci 106:8123–8127

    Article  PubMed  CAS  Google Scholar 

  32. Canfield DE, Stewart FJ, Thamdrup B, Brabandere LD, Dalsgaard T, Delong EF, Revsbech NP, Ulloa O (2010) A cryptic sulfur cycle in oxygen-minimum-zone waters off the Chilean coast. Science 330:1375–1378

    Article  PubMed  CAS  Google Scholar 

  33. van Dover CL (2000) The ecology of deep-sea hydrothermal vents. Princeton University Press, Princeton

    Google Scholar 

  34. Diaz RJ, Rosenberg R (2008) Spreading dead zones and consequences for marine ecosystems. Science 321:926–929

    Article  PubMed  CAS  Google Scholar 

  35. Scavia D, Justic D, Bierman VJ (2004) Reducing hypoxia in the Gulf of Mexico: advice from three models. Estuaries 27:419–425

    Article  CAS  Google Scholar 

  36. Lam P, Kuypers MMM (2011) Microbial nitrogen cycling processes in oxygen minimum zones. Ann Rev Mar Sci 3:317–345

    Article  PubMed  Google Scholar 

  37. Riley GA (1946) Factors controlling phytoplankton populations on Georges Bank. J Mar Res 6:54–73

    Google Scholar 

  38. Riley GA (1947) A theoretical analysis of the zooplankton populations of Georges Bank. J Mar Res 6:104–113

    Google Scholar 

  39. Fasham MJR, Ducklow HW, McKelvie SM (1990) A nitrogen-based model of plankton dynamics in the oceanic mixed layer. J Mar Res 48:591–639

    CAS  Google Scholar 

  40. Orr JC et al (2001) Estimates of anthropogenic carbon uptake from four three-dimensional global ocean models. Global Biogeochem Cycles 15:43–60

    Article  CAS  Google Scholar 

  41. Doney SC et al (2004) Evaluating global ocean carbon models: the importance of realistic physics. Global Biogeochem Cycles 18:GB3017. doi:10.1029/2003GB002150

    Article  Google Scholar 

  42. Boyd PW, Doney SC (2001) Modeling regional response by marine pelagic ecosystems to global climate change. Geophys Res Lett 29. doi:10.10292001GL014130

    Google Scholar 

  43. Follows MJ, Dutkiewicz S, Grant S, Chisholm SW (2007) Emergent biogeography of microbial communities in a model ocean. Science 315:1843–1846

    Article  PubMed  CAS  Google Scholar 

  44. Le Quéré C et al (2005) Ecosystem dynamics based on plankton function types for global ocean biogeochemistry models. Global Change Biol 11:2016–2040. doi:10.111/j.1365-2486.2005.1004.

    Google Scholar 

  45. Sinha B, Buitenhuis ET, Le Quéré C, Anderson TR (2010) Comparison of the emergent behavior of a complex ecosystem model in two ocean general circulation models. Prog Oceanogr 84:204–224

    Article  Google Scholar 

  46. Orr JC et al (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686

    Article  PubMed  CAS  Google Scholar 

  47. Friedrichs MAM et al (2007) Assessment of skill and portability in regional marine biogeochemical models: role of multiple planktonic groups. J Geophys Res 112:C08001. doi:10.1029/2006JC003852

    Article  Google Scholar 

  48. Anderson TR (2009) Progress in marine ecosystem modeling and the “unreasonable effectiveness of mathematics.” J Mar Sys 81:4–11

    Article  Google Scholar 

  49. Ducklow HW, Doney SC, Steinberg DK (2009) Contributions of long-term research and time-series observation to marine ecology and biogeochemistry. Ann Rev Mar Sci 1:279–302

    Article  PubMed  Google Scholar 

Books and Reviews

  • Baliño BM, Fasham MJR, Bowles MC (2001) Ocean biogeochemistry and global change. IGBP Science no 2, Stockholm (A popular summary of JGOFS main achievements)

    Google Scholar 

  • Benitez-Nelson CR (2000) The biogeochemical cycling of phosphorus in marine systems. Earth-Sci Rev 51:109–135

    Article  CAS  Google Scholar 

  • Brandes JA, Devol AH, Deutsch C (2007) New developments in the marine nitrogen cycle. Chem Rev 107:577–589

    Article  PubMed  CAS  Google Scholar 

  • Broecker WS (2009) Wally’s quest to understand the ocean’s CaCO3 cycle. Ann Rev Mar Sci 1:1–18

    Article  PubMed  CAS  Google Scholar 

  • Deutsch C, Brix H, Ito T, Frenzel H, Thompson L (2011) Climate-forced variability of ocean hypoxia. Science 333:336–339

    Article  PubMed  CAS  Google Scholar 

  • Diaz RJ (2000) Overview of hypoxia around the world. J Environ Quality 30:275–281

    Article  Google Scholar 

  • Doney SC et al (2001) Marine biogeochemical modeling: recent advances and future challenges. Oceanography 14:93–108

    Article  Google Scholar 

  • Fasham MJR (ed) (2003) The role of the ocean carbon cycle in global change. Springer, Heidelberg, p 297

    Google Scholar 

  • Gruber N, Galloway JN (2008) An earth-system perspective of the global nitrogen cycle. Nature 451:293–296

    Article  PubMed  CAS  Google Scholar 

  • Hanson RB, Ducklow HW, Field JG (eds) (2000) The changing ocean carbon cycle: a midterm synthesis of the joint global ocean flux study, IGBP book series no 5. Cambridge University Press, Cambridge, 520 pp

    Google Scholar 

  • IMBER Science Plan and Implementation Strategy (2005) IGBP Report N°52. IGBP Secretariat, Stockholm, 76 pp

    Google Scholar 

  • Jickells TD et al (2005) Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 308:67–71

    Article  PubMed  CAS  Google Scholar 

  • Keeling RF, Kortzinger A, Gruber N (2010) Oxygen deoxygenation in a warming world. Ann Rev Mar Sci 2:199–229

    Article  PubMed  Google Scholar 

  • Paulmier A, Ruiz-Pino D (2009) Oxygen minimum zones (OMZs) in the modern ocean. Prog Oceanogr 80:113–128

    Article  Google Scholar 

  • Ragueneau O et al (2000) A review of the Si cycle in the modern ocean: recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy. Global Planetary Change 26:317–365

    Article  Google Scholar 

  • Sabine CL, Tanhua T (2010) Estimation of anthropogenic CO2 inventories in the ocean. Ann Rev Mar Sci 2:175–198

    Article  PubMed  Google Scholar 

  • Sunda WG (2010) Iron and the carbon pump. Science 327:654–655

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walker O. Smith Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Smith, W.O., Hofmann, E.E., Mosby, A. (2013). Marine Biogeochemistry. In: Leemans, R. (eds) Ecological Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5755-8_12

Download citation

Publish with us

Policies and ethics