Skip to main content

Airfoil-Based Linear and Nonlinear Electroaeroelastic Energy Harvesting

  • Chapter
  • First Online:

Abstract

The transformation of aeroelastic vibrations into low-power electricity has received growing attention in the last few years. The goal in electroaeroelastic energy harvesting is to convert airflow energy into electricity for applications ranging from aircraft sensor systems to wireless electronic components located in high wind areas. The use of an airfoil section is a convenient approach to create instabilities and persistent aeroelastic vibrations. This chapter investigates airfoil-based electroaeroelastic energy harvesters employing piezoelectric transduction and electromagnetic induction. An airfoil with two degrees of freedom (DOF) is investigated by adding piezoelectric and electromagnetic coupling to the plunge DOF in two separate cases. The governing dimensionless electroaeroelastic equations are derived in each case for a resistive load in the electrical domain. Both linear and nonlinear electroaeroelastic methods of energy harvesting are discussed. The linear problem focuses on the response at the flutter boundary while the nonlinear configurations with free play and cubic stiffness in the pitch DOF exploit nonlinear limit-cycle oscillations. The effects of several dimensionless system parameters on the electrical power output and flutter speed are investigated. Experimental validations are presented for linear and nonlinear electroaeroelastic energy harvesting systems employing piezoelectric transduction. It is demonstrated that the free play nonlinearity (a detrimental form of nonlinearity) can be exploited to reduce the cut-in speed for persistent oscillations while the hardening stiffness (a benign form of nonlinearity) can be combined with free play to keep the response amplitude at acceptable levels.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The cut-in speed is the minimum wind speed at which energy can be extracted from the device.

References

  1. Paradiso JA, Starner T (2005) Energy scavenging for mobile and wireless electronics. IEEE Pervasive Comput 4:18–27

    Article  Google Scholar 

  2. Beeby SP, Tudor MJ, White NM (2006) Energy harvesting vibration sources for microsystems applications. Meas Sci Technol 17:R175–R195

    Article  Google Scholar 

  3. Anton SR, Sodano HA (2007) A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater Struct 16:R1–R21

    Article  Google Scholar 

  4. Cook-Chennault KA, Thambi N, Sastry AM (2008) Powering MEMS portable devices – a review of non-regenerative and regenerative power supply systems with emphasis on piezoelectric energy harvesting systems. Smart Mater Struct 17:043001

    Article  Google Scholar 

  5. Priya S (2007) Advances in energy harvesting using low profile piezoelectric transducers. J Electroceram 19:167–184

    Article  Google Scholar 

  6. Hudak NS, Amatucci GG (2008) Small-scale energy harvesting through thermoelectric, vibration, and radiofrequency power conversion. J Appl Phys 103:101301

    Article  Google Scholar 

  7. Amirtharajah R, Chandrakasan AP (1998) Self-powered signal processing using vibration-based power generation. IEEE J Solid State Circuits 33:687–695

    Article  Google Scholar 

  8. Glynne-Jones P, Tudor MJ, Beeby SP, White NM (2004) An electromagnetic, vibration-powered generator for intelligent sensor systems. Sens Actuators A 110:344–349

    Article  Google Scholar 

  9. Elvin N, Elvin A (2011) An experimentally validated electromagnetic energy harvesters. J Sound Vib 330:2314–2324

    Article  Google Scholar 

  10. Mitcheson P, Miao P, Start B, Yeatman E, Holmes A, Green T (2004) MEMS electrostatic micro-power generator for low frequency operation. Sens Actuators A 115:523–529

    Article  Google Scholar 

  11. Roundy S, Wright PK, Rabaey JM (2003) A study of low level vibrations as a power source for wireless sensor nodes. Comput Commun 26:1131–1144

    Article  Google Scholar 

  12. Tvedt LGW, Nguyen DS, Halvorsen E (2010) Nonlinear behavior of an electrostatic energy harvester under wide- and narrowband excitation. IEEE J Microelectromech Syst 19:305–316

    Article  Google Scholar 

  13. Roundy S, Wright PK (2004) A piezoelectric vibration based generator for wireless electronics. Smart Mater Struct 13:1131–1144

    Article  Google Scholar 

  14. Jeon YB, Sood R, Jeong JH, Kim S (2005) MEMS power generator with transverse mode thin film PZT. Sens Actuators A 122:16–22

    Article  Google Scholar 

  15. Erturk A, Inman DJ (2009) An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations. Smart Mater Struct 18:025009

    Article  Google Scholar 

  16. Priya S, Chen CT, Fye D, Zahnd J (2005) Piezoelectric windmill: a novel solution to remote sensing. Jpn J Appl Phys 44:L104–L107

    Article  Google Scholar 

  17. Myers R, Vickers M, Kim H, Priya S (2007) Small scale windmill. J Appl Phys 90:054106

    Google Scholar 

  18. Rancourt D, Tabesh A, Frechette LG (2007) Evaluation of centimeter-scale micro wind mills: aerodynamics and electromagnetic power generation. Proc PowerMEMS 2007:93–96

    Google Scholar 

  19. Xu FJ, Yuan FG, Hu JZ, Qiu YP (2010) Design of a miniature wind turbine for powering wireless sensors. Proc SPIE 7646:764741

    Article  Google Scholar 

  20. Erturk A, Bilgen O, Fontenille M, Inman DJ (2008) Piezoelectric energy harvesting from macro-fiber composites with an application to morphing wing aircraft. In: Proceedings on the 19th international conference of adaptive structures and technologies, Monte Verità, Ascona, Switzerland, 6–9 Oct 2008

    Google Scholar 

  21. De Marqui C Jr, Erturk A, Inman DJ (2010) Piezoaeroelastic modeling and analysis of a generator wing with continuous and segmented electrodes. J Intell Mater Syst Struct 21:983–993

    Article  Google Scholar 

  22. De Marqui C Jr, Erturk WGR, Inman DJ (2010) Modeling and analysis of piezoelectric energy harvesting from aeroelastic vibrations using the doublet-lattice method. ASME J Vib Acoust 133:011003

    Article  Google Scholar 

  23. Bisplinghoff RL, Ashley H (1962) Principles of aeroelasticity. Wiley, New York

    MATH  Google Scholar 

  24. Fung YC (1969) Introduction to the theory of aeroelasticity. Dover, New York

    Google Scholar 

  25. Dowell EH, Curtiss HC Jr, Scalan RH, Sisto F (1978) A modern course in aeroelasticity. Sijthoff and Norrdhoff, Amsterdam

    Google Scholar 

  26. Hodges DH, Pierce GA (2002) Introduction to structural dynamics and aeroelasticity. Cambridge University Press, New York

    Book  Google Scholar 

  27. Bryant M, Garcia E (2009) Development of an aeroelastic vibration power harvester. Proc SPIE 7288:728812

    Article  Google Scholar 

  28. Bryant M, Garcia E (2009) Energy harvesting: a key to wireless sensor nodes. Proc SPIE 7493:74931W

    Article  Google Scholar 

  29. Peters DA, Karunamoorthy S, Cao WM (1995) Finite state induced flow models. Part I: Two dimensional thin airfoil. J Aircraft 32:313–322

    Article  Google Scholar 

  30. Erturk A, Vieira WGR, De Marqui C Jr, Inman DJ (2010) On the energy harvesting potential of piezoaeroelastic systems. Appl Phys Lett 96:184103

    Article  Google Scholar 

  31. Theodorsen T (1935) General theory of aerodynamic instability and mechanism of flutter. Langley Memorial Aeronautical Laboratory, NACA-TR-496

    Google Scholar 

  32. McKinney W, DeLaurier JD (1981) The wingmill: an oscillating-wing windmill. J Energy 5:109–115

    Article  Google Scholar 

  33. Ly KH, Chasteau VAL (1981) Experiments on an oscillating-wing aerofoil and application to wing-energy converters. J Energy 5:116–121

    Article  Google Scholar 

  34. Jones KD, Platzer MF (1999) Oscillating-wing power generator. In: Proceedings of ASME/JSME-Joint Fluids Engineering Conference, No. 7050

    Google Scholar 

  35. Guckenheimer J, Holmes P (1983) Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Springer, New York

    MATH  Google Scholar 

  36. Nayfeh AH, Mook DT (1979) Nonlinear oscillations. Wiley, New York

    MATH  Google Scholar 

  37. Moon FC (1987) Chaotic vibrations. Wiley, New York

    MATH  Google Scholar 

  38. Strogatz SH (1994) Nonlinear dynamics and chaos. Perseus Book, Cambridge, MA

    Google Scholar 

  39. Lee BHL, Price SJ, Wong YS (1999) Nonlinear aeroelastic analysis of airfoils: bifurcation and chaos. Prog Aerospace Sci 35:205–334

    Article  Google Scholar 

  40. Price SJ, Lee BHK, Alighanbari H (1994) Postinstability behavior of a two-dimensional airfoil with a structural nonlinearity. J Aircraft 31:1395–1401

    Article  Google Scholar 

  41. Tang D, Dowell EH (2006) Flutter and limit-cycle oscillations for a wing-store model with freeplay. J Aircraft 43(2):487–503

    Article  Google Scholar 

  42. Zhao LC, Yang ZC (1990) Chaotic motions of an airfoil with nonlinear stiffness in incompressible flow. J Sound Vib 138:245–254

    Article  MathSciNet  MATH  Google Scholar 

  43. Dowell EH, Tang D (2002) Nonlinear aeroelasticity and unsteady aerodynamics. AIAA J 40:1697–1707

    Article  Google Scholar 

  44. Dowell EH, Edwards J, Strganac T (2003) Nonlinear aeroelasticity. AIAA J Aircraft 40: 857–874

    Article  Google Scholar 

  45. Sousa VC, Anicézio MM, De Marqui C Jr, Erturk A (2011) Enhanced aeroelastic energy harvesting by exploiting combined nonlinearities: theory and experiment. Smart Mater Struct 20:094007

    Article  Google Scholar 

  46. Abdelkefi A, Nayfeh AH, Hajj MR (2011) Modeling and analysis of piezoaeroelastic energy harvesters. Nonlinear Dyn 67:925–939

    Article  MathSciNet  Google Scholar 

  47. St. Clair D, Bibo D, Sennakesavababu VR, Daqaq MF, Li G (2010) A scalable concept for micropower generation using flow-induced self-excited oscillations. Appl Phys Lett 96:144103

    Article  Google Scholar 

  48. Allen JJ, Smits AJ (2001) Energy harvesting eel. J Fluids Struct 15:629–640

    Article  Google Scholar 

  49. Robbins WP, Morris D, Marusic I, Novak TO (2006) Wind-generated electrical energy using flexible piezoelectric materials. In: Proceedings of ASME IMECE 2006, Chicago, IL

    Google Scholar 

  50. Pobering S, Ebermeyer S, Schwesinger N (2009) Generation of electrical energy using short piezoelectric cantilevers in flowing media. Proc SPIE 7288:728807

    Article  Google Scholar 

  51. Akaydin HD, Elvin N, Andreopoulos Y (2010) Wake of a cylinder: a paradigm for energy harvesting with piezoelectric materials. Exp Fluids 49:291–304

    Article  Google Scholar 

  52. Tang L, Paidoussis M, Jiang J (2009) Cantilevered flexible plates in axial flow: energy transfer and the concept of flutter-mill. J Sound Vib 326:263–276

    Article  Google Scholar 

  53. Dunnmon JA, Stanton SC, Mann BP, Dowell EH (2011) Power extraction from aeroelastic limit cycle oscillations. J Fluids Struct 27:1181–1198

    Article  Google Scholar 

  54. Kwon SD (2010) A T-shaped piezoelectric cantilever for fluid energy harvesting. Appl Phys Lett 77:164102

    Article  Google Scholar 

  55. Zhu D, Beeby S, Tudor J, White N, Harris N (2010) A novel miniature wind generator for wireless sensing applications. Proc IEEE Sensors 2010:1415–1418

    Google Scholar 

  56. Jung HJ, Lee SW (2011) The experimental validation of a new energy harvesting system based on the wake galloping phenomenon. Smart Mater Struct 20:055022

    Article  Google Scholar 

  57. Jones RT (1938) Operational treatment of the non-uniform lift theory in airplane dynamics. Technical note 667. NASA, Washington, DC

    Google Scholar 

  58. Wagner H (1925) Über die Entstehung des dynamischen Auftriebes von Tragflügeln. Zeitschrift für Angewandte Mathematic und Mechanik 5:17–35

    Article  MATH  Google Scholar 

  59. Erturk AA, Inman DJ (2011) Piezoelectric energy harvesting. Wiley, New York

    Book  Google Scholar 

  60. Edwards JW, Ashley H, Breakwell JV (1979) Unsteady aerodynamic modeling for arbitrary motions. AIAA J 17(4):365–374

    Article  MATH  Google Scholar 

  61. Conner MD, Virgin LN, Dowell EH (1996) Accurate numerical integration of state space models for aeroelastic systems with free play. AIAA J 34(10):2202–2205

    Article  Google Scholar 

  62. Henon M (1982) On the numerical computation of Poincaré maps. Physica 5D:512–514

    MathSciNet  Google Scholar 

  63. Agarwal A, Lang J (2005) Foundations of analog and digital electronic circuits. Morgan Kaufmann, San Francisco

    MATH  Google Scholar 

  64. Stanton SC, Erturk A, Mann BP, Inman DJ (2010) Resonant manifestation of intrinsic nonlinearity within electroelastic micropower generators. Appl Phys Lett 97:254101–254104

    Article  Google Scholar 

  65. Stanton SC, Erturk A, Mann BP, Inman DJ (2010) Nonlinear piezoelectricity in electroelastic energy harvesters: modeling and experimental identification. J Appl Phys 108:074903

    Article  Google Scholar 

  66. Stanton SC, Erturk A, Mann BP, Dowell EH, Inman DJ (2012) Nonlinear nonconservative behavior and modeling of piezoelectric energy harvesters including proof mass effects. J Intell Mater Syst Struct 23:183–199

    Article  Google Scholar 

  67. Lesieutre GA, Ottman GK, Hofmann HF (2004) Damping as a result of piezoelectric energy harvesting. J Sound Vib 269:991–1001

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos De Marqui Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

De Marqui, C., Erturk, A. (2013). Airfoil-Based Linear and Nonlinear Electroaeroelastic Energy Harvesting. In: Elvin, N., Erturk, A. (eds) Advances in Energy Harvesting Methods. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5705-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5705-3_11

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5704-6

  • Online ISBN: 978-1-4614-5705-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics