Skip to main content

Volcanoes, Observations and Impact

  • Chapter
  • First Online:
  • 2123 Accesses

Abstract

Volcanoes are critical geologic hazards that challenge our ability to make long-term forecasts of their eruptive behaviors. They also have direct and indirect impacts on human lives and society. As is the case with many geologic phenomena, the time scales over which volcanoes evolve greatly exceed that of a human lifetime. On the other hand, the time scale over which a volcano can move from inactivity to eruption can be rather short: months, weeks, days, and even hours. Thus, scientific study and monitoring of volcanoes is essential to mitigate risk. There are thousands of volcanoes on Earth, and it is impractical to study and implement ground-based monitoring at them all. Fortunately, there are other effective means for volcano monitoring, including increasing capabilities for satellite-based technologies.

This chapter was originally published as part of the Encyclopedia of Sustainability Science and Technology edited by Robert A. Meyers. DOI:10.1007/978-1-4419-0851-3

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

Caldera:

Large crater formed by collapse of an overlying structure when an eruption empties a magma reservoir.

Effusive:

Eruption of fluid molten material that later solidifies.

Fumarole:

A volcanic vent that emits hot gas.

Infrasound:

Sound waves at frequencies below the range of human hearing (<20 Hz).

Interferogram:

A pattern of satellite radar wave “fringes” formed by interference, analogous to the colorful pattern from light reflected by a thin film of oil or gas, that can indicate ground deformation.

Lahar:

Heavy flow of mud, water, and debris triggered by interactions of hot material with ice of water or when heavy rain falls on recently erupted unconsolidated material.

Phreatic:

Explosion caused by heating and expansion of ground water.

Pyroclastic:

Composed of rock fragments ejected explosively from an erupting volcano.

Tremor:

Continuous vibration of the ground related to magma movement.

Volatiles:

Dissolved gases contained in magma.

Bibliography

  1. Oppenheimer C (2003) Climatic, environmental and human consequences of the largest known historic eruption: Tambora volcano (Indonesia) 1815. Prog Phys Geogr 27:230–259

    Article  Google Scholar 

  2. Stothers RB (1984) The great Tambora eruption in 1815 and its aftermath. Science 224:1191–1198

    Article  ADS  Google Scholar 

  3. Rose WI, Chesner CA (1987) Dispersal of ash in the great Toba eruption, 75 ka. Geology 15:13–917

    Article  Google Scholar 

  4. Hough S (2009) Predicting the unpredictable: the tumultuous science of earthquake prediction. Princeton University Press, Princeton

    Google Scholar 

  5. White RA, McCausland WA, Lockhart AB (2011) Volcano monitoring: keep it simple – less can be more during volcano crises; 25 years of VDAP experience. Seism Res Lett 82:330

    Google Scholar 

  6. Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on the total alkali-silica diagram. J Petrol 27:745–750

    Article  Google Scholar 

  7. Lockwood JP, Hazlett W (2010) Volcanoes – global perspectives. Wiley-Blackwell, Hoboken

    Google Scholar 

  8. Newhall CG, Self S (1982) The volcanic explosivity index (VEI): an estimate of explosive magnitude for historical volcanism. J Geophys Res 87:1231–1238

    Article  ADS  Google Scholar 

  9. Pyle DM (2000) Sizes of volcanic eruptions. In: Sigurdsson H, Houghton BF, McNutt SR, Rymer H (eds) Encyclopedia of volcanoes. Academic Press, San Diego

    Google Scholar 

  10. Decker RW (1986) Forecasting volcanic eruptions. Ann Rev Earth Planet Sci 14:267–291

    Article  ADS  Google Scholar 

  11. Simkin T, Siebert L (1994) Volcanoes of the world. Geoscience, Tucson

    Google Scholar 

  12. McNutt SR (1996) Seismic monitoring of volcanoes: a review of the state-of-the-art and recent trends. In: Scarpa R, Tilling R (eds) Monitoring and mitigation of volcano hazards. Springer, Berlin

    Google Scholar 

  13. McNutt SR (2000) Seismic monitoring. In: Sigurdsson H, Houghton BF, McNutt SR, Rymer H (eds) Encyclopedia of volcanoes. Academic Press, San Diego

    Google Scholar 

  14. Lahr JC, Chouet BA, Stephens CD, Power JA, Page RA (1994) Earthquake classification, location, and error analysis in a volcanic environment: implications for the magmatic system of the 1989–1990 eruptions at Redoubt volcano, Alaska. J Volcanol Geotherm Res 62:137–151

    Article  ADS  Google Scholar 

  15. Hill DP, Dawson P, Johnston MJS, Pitt AM, Biasi G, Smith K (2002) Very-long-period volcanic earthquakes beneath Mammoth Mountain, California. Geophys Res Lett 29:1370. doi:10.1029/2002GL014833

    Article  ADS  Google Scholar 

  16. Hotovec AJ, Prejean SG, Vidale JE, Gomberg J (in press) Strongly gliding harmonic tremor during the 2009 eruption of Redoubt volcano. J Volcanol Geotherm Res

    Google Scholar 

  17. Chouet B (1985) Excitation of a buried magmatic pipe: a seismic source model for volcanic tremor. J Geophys Res 90:1881–1893

    Article  ADS  Google Scholar 

  18. Julian B (1994) Volcanic tremor: nonlinear excitation by fluid flow. J Geophys Res 99:11859–11877

    Article  ADS  Google Scholar 

  19. White RA (1996) Precursory deep long-period earthquakes at Mount Pinatubo: spatial-temporal link to a basaltic trigger. In: Newhall CG, Punongbayan RS (eds) Fire and mud: eruptions and lahars of Mount Pinatubo, Philippines. University of Washington Press, Seattle

    Google Scholar 

  20. Power JA, Stihler SD, White RA, Moran SC (2004) Observations of deep long-period (DLP) seismic events beneath Aleutian arc volcanoes; 1989–2002. J Volcanol Geotherm Res 138:243–26

    Article  ADS  Google Scholar 

  21. Mavonga T, Zana N, Durrheim RJ (2010) Studies of crustal structure, seismic precursors to volcanic eruptions and earthquake hazard in the eastern provinces of the Democratic Republic of Congo. J Afr Earth Sci 58:623–633. doi:10.1016/j.jafrearsci.2010.08.008, ISSN 1464-343X

    Article  Google Scholar 

  22. Harrington RM, Brodsky EE (2007) Volcanic hybrid earthquakes that are brittle-failure events. Geophys Res Lett 34:L06308. doi:10.1029/2006GL028714

    Article  Google Scholar 

  23. Kawakatsu H, Ohminato T, Ito H, Kuwahara Y (1992) Broadband seismic observation at the Sakurajima volcano, Japan. Geophys Res Lett 19:1959–1962

    Article  ADS  Google Scholar 

  24. Kawakatsu H, Ohminato T, Ito H (1994) 10s-period volcanic tremors observed over a wide area in southwestern Japan. Geophys Res Lett 21:1963–1966. doi:10.1029/94GL01683

    Article  ADS  Google Scholar 

  25. Neuberg J, Luckett R, Ripepe M, Braun T (1994) Highlights from a seismic broadband array on Stromboli volcano. Geophys Res Lett 21:749–752. doi:10.1029/94GL00377

    Article  ADS  Google Scholar 

  26. Kaneshima S, Kawakatsu H, Matsubayashi H, Sudo Y, Tsutsui T, Ohminato T, Ito H, Uhira K, Yamasato H, Oikawa J, Takeo M, Iidaka T (1996) Mechanism of phreatic eruptions at Aso volcano inferred from near-field broadband seismic observations. Science 273:642–645

    Article  ADS  Google Scholar 

  27. Ohminato T, Chouet BA, Dawson P, Kedar S (1998) Waveform inversion of very long period impulsive signals associated with magmatic injection beneath Kilauea volcano. J Geophys Res 103:23839–23862. doi:10.1029/98JB01122

    Article  ADS  Google Scholar 

  28. Arciniega-Ceballos A, Chouet BA, Dawson P (1999) Very long period signals associated with vulcanian explosions at Popocate´petl volcano, Mexico. Geophys Res Lett 26:3013–3016. doi:10.1029/1999GL005390

    Article  ADS  Google Scholar 

  29. Legrand D, Kaneshima S, Kawakatsu H (2000) Moment tensor analysis of near-field broadband waveforms observed at Aso volcano, Japan. J Volcanol Geotherm Res 101:155–169. doi:10.1016/S0377-0273(00)00167-0

    Article  ADS  Google Scholar 

  30. Nishimura T, Kobayashi T, Ohtake M, Sato H, Nakamichi H, Tanaka S, Sato M, Ueki S, Hamaguchi H (2000) Source process of very long period seismic events associated with the 1998 activity of Iwate volcano, northeastern Japan. J Geophys Res 105:19135–19147. doi:10.1029/2000JB900155

    Article  ADS  Google Scholar 

  31. Rowe CA, Aster RC, Kyle PR, Dibble RR, Schlue JW (2000) Seismic and acoustic observations at Mount Erebus volcano, Ross Island, Antarctica, 1994–1998. J Volcanol Geotherm Res 101:105–128. doi:10.1016/S0377-0273(00)00170-0

    Article  ADS  Google Scholar 

  32. Kumagai H, Ohminato T, Nakano M, Ooi M, Kubo A, Inoue H, Oikawa J (2001) Very-long-period seismic signals and caldera formation at Miyake Island, Japan. Science 293:687–690. doi:10.1126/science.1062136

    Article  ADS  Google Scholar 

  33. Almendros J, Chouet B, Dawson PB, Bond T (2002) Identifying elements of the plumbing system beneath Kilauea volcano, Hawaii, from the source locations of very-long-period signals. Geophys J Int 148:303–312

    ADS  Google Scholar 

  34. Hidayat D, Voight B, Chouet B, Dawson P, Ratdomopurbo A (2002) Source mechanism of very-long-period signals accompanying dome growth activity at Merapi volcano, Indonesia. Geophys Res Lett 29. doi:10.1029/2002GL015013

  35. Aster R, Mah S, Kyle P, McIntosh W, Dunbar N, Johnson J, Ruiz M, McNamara S (2003) Very long period oscillations of Mount Erebus volcano. J Geophys Res 108:2522. doi:10.1029/2002JB002101

    Article  Google Scholar 

  36. Chouet B, Dawson P, Ohminato T, Martini M, Saccorotti G, Giudicepietro F, Luca GD, Milana G, Scarpa R (2003) Source mechanisms of explosions at Stromboli volcano, Italy, determined from moment-tensor inversions of very-long-period data. J Geophys Res 108:2019. doi:10.1029/2002JB001919

    Article  Google Scholar 

  37. Chouet B, Dawson P, Arciniega-Ceballos A (2005) Source mechanism of Vulcanian degassing at Popocate´petl volcano, Mexico, determined from waveform inversions of very long period signals. J Geophys Res 110:B07301. doi:10.1029/2004JB003524

    Article  Google Scholar 

  38. Waite GP, Chouet BA, Dawson PB (2008) Eruption dynamics at Mount St. Helens imaged from broadband seismic waveforms: interaction of the shallow magmatic and hydrothermal systems. J Geophys Res 113:B02305. doi:10.1029/2007JB005259

    Article  Google Scholar 

  39. Hill DP (1977) A model for earthquake swarms. J Geophys Res 82:1347–1352. doi:10.1029/JB082i008p01347

    Article  ADS  Google Scholar 

  40. Foulger GR, Julian BR, Pitt AM, Hill DP, Malin P, Shalev E (2003) Three-dimensional crustal structure of Long Valley Caldera, California, and evidence for the migration of CO2 under Mammoth Mountain. J Geophys Res 108:B3. doi:10.1029/2000JB000041

    Article  Google Scholar 

  41. Patanè D, Barberi G, Cocina O, De Gori P, Chiarabba C (2006) Time resolved seismic tomography detects magma intrusions at Mount Etna. Science 313:821–823

    Article  ADS  Google Scholar 

  42. Titzschkau T, Savage M, Hurst T (2010) Changes in attenuation related to eruptions of Mt. Ruapehu volcano, New Zealand. J Volcanol Geotherm Res 190:168–178

    Article  ADS  Google Scholar 

  43. De Gori P, Chiarabba C, Giampiccolo E, Martinez-Arevalo C, Patane D (2011) Body wave attenuation heralds incoming eruptions at Mount Etna. Geology 39:503–506

    Article  Google Scholar 

  44. Miller V, Savage M (2001) Changes in seismic anisotropy after volcanic eruptions: evidence from Mount Ruapehu. Science 293:2231–2233

    Article  ADS  Google Scholar 

  45. Patanè D, De Gori P, Chiarabba C, Bonaccorso A (2003) Magma ascent and the pressurization of Mount Etna’s volcanic system. Science 299:2061–2063

    Article  ADS  Google Scholar 

  46. Volti T, Crampin S (2003) A four-year study of shear-wave splitting in Iceland: 2. Temporal changes before earthquakes and volcanic eruptions. In: Nieuwland DA (ed) New insights into structural interpretation and modeling, Geological Society of London, Special Publication 212. Geological Society, London, pp 135–149

    Google Scholar 

  47. Musumeci C, Cocina O, De Gori P, Patanè D (2004) Seismological evidence of stress induced by dike injection during the 2001 Mt Etna eruption. Geophys Res Lett 31:L07617. doi:10.1029/2003GL019367

    Article  Google Scholar 

  48. Bianco F, Scarfı L, Del Pezzo E, Patanè D (2006) Shear wave splitting changes associated with the 2001 volcanic eruption on Mt. Etna. Geophys J Int 167:959–967

    Article  ADS  Google Scholar 

  49. Roman DC, Savage MK, Arnold R, Latchman JL, De Angelis S (2011) Analysis and forward modeling of seismic anisotropy during the ongoing eruption of the Soufrière Hills volcano, Montserrat, 1996–2007. J Geophys Res 116:B03201. doi:10.1029/2010JB007667

    Article  Google Scholar 

  50. Brenguier F, Shapiro N, Campillo M, Ferrazzini V, Duputel Z, Coutant O, Nercessian A (2008) Towards forecasting volcanic eruptions using seismic noise. Nat Geosci 1:126–130

    Article  ADS  Google Scholar 

  51. Poland M, Hamburger M, Newman A (2006) The changing shapes of active volcanoes: history, evolution, and future challenges for Volcano Geodesy. J Volcanol Geotherm Res 150:1–13

    Article  ADS  Google Scholar 

  52. Dzurisin D (2007) Volcano deformation: geodetic monitoring techniques. Springer, Berlin

    Google Scholar 

  53. Cervelli PF, Fournier TJ, Freymueller JT, Power JA, Lisowski M, Pauk BA (2010) Geodetic constraints on magma movement and withdrawal during the 2006 eruption of Augustine volcano. In: Power JA, Coombs ML, Freymueller JT (eds) The 2006 eruption of Augustine volcano, Alaska, U.S. Geological Survey Professional Paper 1769. U.S. Geological Survey, Reston, pp 427–452

    Google Scholar 

  54. Dow JM, Neilan RE, Rizos C (2009) The International GNSS service in a changing landscape of Global Navigation Satellite Systems. J Geodesy 83:191–198. doi:10.1007/s00190-008-0300-3

    Article  ADS  Google Scholar 

  55. Massonnet D, Rossi M, Carmona C, Adragna F, Peltzer G, Feigl K, Rabaute T (1993) The displacement field of the Landers earthquake mapped by radar interferometry. Nature 364:138–142

    Article  ADS  Google Scholar 

  56. Massonnet D, Briole P, Arnaud A (1995) Deflation of Mount Etna monitored by spaceborne radar interferometry. Nature 375:567–570

    Article  ADS  Google Scholar 

  57. Thatcher W, Massonnet D (1997) Crustal deformation at Long Valley Caldera, eastern California, 1992–1996 inferred from satellite radarinterferometry. Geophys Res Lett 24:2519–2522

    Article  ADS  Google Scholar 

  58. Wicks C Jr, Thatcher W, Dzurisin D (1998) Migration of fluids Beneath Yellowstone Caldera inferred from satellite radar interferometry. Science 282:458–462

    Article  ADS  Google Scholar 

  59. Sigmundsson F, Durand P, Massonnet D (1999) Opening of an eruptive fissure and seaward displacement at Piton de la Fournaise volcano measured by RADARSAT satellite radar interferometry. Geophys Res Lett 26:533–536

    Article  ADS  Google Scholar 

  60. Lu Z, Fatland R, Wyss M, Li S, Eichelberer J, Dean K, Freymueller J (1997) Deformation of New Trident volcano measured by ERS-1 SAR interferometry, Katmai National Park, Alaska. Geophys Res Lett 24:695–698

    Article  ADS  Google Scholar 

  61. Lu Z, Mann D, Freymueller JT, Meyer DJ (2000) Synthetic aperture radar interferometry of Okmok volcano, Alaska: radar observations. J Geophys Res Solid Earth 105:10791–10806

    Article  Google Scholar 

  62. Lu Z, Wicks C, Dzurisin D, Thatcher W, Freymueller JT, McNutt SR, Mann D (2000) Aseismic inflation of Westdahl volcano Alaska, revealed by satellite radar interferometry. Geophys Res Lett 27:1567–1570

    Article  ADS  Google Scholar 

  63. Lu Z, Wicks C, Power JA, Dzurisin D (2000) Ground deformation associated with the March 1996 earthquake swarm at Akutan volcano Alaska, revealed by satellite radar interferometry. J Geophys Res 105:21483–21495

    Article  ADS  Google Scholar 

  64. Lu Z, Power JA, McConnell VS, Wicks C, Dzurisin D (2002) Preeruptive inflation and surface interferometric coherence characteristics revealed by satellite radar interferometry at Makushin volcano, Alaska: 1993–2000. J Geophys Res 107:B11

    Google Scholar 

  65. Lu Z, Masterlark T, Power J, Dzurisin D, Wicks C (2002) Subsidence at Kiska volcano, Western Aleutians, detected by satellite radar interferometry. Geophys Res Lett 29:18

    Google Scholar 

  66. Jonsson S, Zebker K, Cervelli P, Segall P, Garbeil H, Mouginis-Mark P, Rowland S (1999) A shallow-dipping dike fed the 1995 flank eruption at Fernandina volcano, Galapagos, observed by satellite radar interferometry. Geophys Res Lett 26:1077–1080

    Article  ADS  Google Scholar 

  67. Amelung F, Oppenheimer C, Segall P, Zebker H (2000) Ground deformation near Gada ’Ale volcano, Afar, observed by radar interferometry. Geophys Res Lett 27:3093–3096

    Article  ADS  Google Scholar 

  68. Pritchard ME, Simons M (2002) A satellite geodetic survey of large-scale deformation of volcanic centres in the central Andes. Nature 418:167–171

    Article  ADS  Google Scholar 

  69. Goldstein RM, Zebker HA, Werner CL (1988) Satellite radar interferometry – two-dimensional phase unwrapping. Radio Sci 23:713–720

    Article  ADS  Google Scholar 

  70. Gens R (2003) Two-dimensional phase unwrapping for radar interferometry: developments and new challenges. Int J Remote Sens 24:703–710

    Article  Google Scholar 

  71. Sturkell E, Einarsson P, Sigmundsson F, Geirsson H, Olafsson H, Pedersen R, de Zeeuw-van Dalfsen E, Linde AT, Sacks SI, Stefansson R (2006) Volcano geodesy and magma dynamics in Iceland. J Volcanol Geotherm Res 150:14–34

    Article  ADS  Google Scholar 

  72. Rymer H (1996) Microgravity monitoring. In: Scarpa R, Tilling R (eds) Monitoring and mitigation of volcano hazards. Springer, Berlin

    Google Scholar 

  73. Battaglia M, Hill D (2009) Analytical modeling of gravity changes and crustal deformation at volcanoes: the Long Valley Caldera (CA) case study. Tectonophysics 471:45–57

    Article  ADS  Google Scholar 

  74. Williams-Jones G, Rymer H, Mauri G, Gottsmann J, Poland M, Carbone D (2008) Toward continuous 4D microgravity monitoring of volcanoes. Geophysics 73:WA19–WA28

    Article  Google Scholar 

  75. Carbone D, Budettaa G, Greco F, Rymer H (2003) Combined discrete and continuous gravity observations at Mount Etna. J Volcanol Geotherm Res 123:123–135

    Article  ADS  Google Scholar 

  76. Symonds RB, Gerlach TM, Reed MH (2001) Magmatic gas scrubbing: implications for volcano monitoring. J Volcanol Geotherm Res 108:303–341

    Article  ADS  Google Scholar 

  77. Doukas MP, Gerlach TM (1995) Sulfur dioxide scrubbing during the 1992 eruption of Crater Peak, Mount Spurr, Alaska. In: Keith T (ed) The 1992 eruptions of Crater Peak Vent, Mount Spurr Volcano, Alaska, U.S. Geological Survey Bulletin B-2139. U.S. G.P.O.: U.S. Dept. of the Interior, US Geological Survey, Washington, DC, pp 47–57

    Google Scholar 

  78. Aiuppa A, Moretti R, Federico C, Giudice G, Gurrieri S, Liuzzo M, Papale P, Shinohara H, Valenza M (2007) Forecasting Etna eruptions by real-time observation of volcanic gas composition. Geology 35:1115–1118

    Article  Google Scholar 

  79. Werner C, Kelly PJ, Doukas M, Lopez T, Pfeffer M, McGimsey RG, Neal CA (in press) Degassing associated with the 2009 eruption of Redoubt volcano, Alaska. J Volcanol Geotherm Res (Special Issue on the 2009 Redoubt Eruption)

    Google Scholar 

  80. Francis P, Horrocks L, Oppenheimer C (2000) Monitoring gases from andesite volcanoes. Philos Trans Math Phys Eng Sci 358:1567–1584

    Article  ADS  Google Scholar 

  81. Edmonds M (2008) New geochemical insights into volcanic degassing. Philos Trans Math Phys Eng Sci 366:4559–4579

    Article  ADS  Google Scholar 

  82. Moran SC, Freymueller JT, LaHusen RG, McGee KA, Poland MP, Power JA, Schmidt DA, Schneider DJ, Stephens G, Werner CA, White RA (2008) Instrumentation recommendations for volcano monitoring at US volcanoes under the National Volcano Early Warning System. USGS Scientific Investigations Report 2008–5114

    Google Scholar 

  83. Dean KG, Dehn J, Engle K, Izbekov P, Papp K (2002) Operational satellite monitoring of volcanoes at the Alaska Volcano Observatory. In: Harris AJH, Wooster M, Rothery DA (eds) Monitoring volcanic hotspots using thermal remote sensing. Adv Environ Monit Model 1:70–97

    Google Scholar 

  84. Mouginis-Mark PJ, Crisp JA, Fink JH (eds) (2000) Remote sensing of active volcanism, AGU Geophysical Monograph 116. American Geophysical Union, Washington, DC

    Google Scholar 

  85. Prata J (1989) Observations of volcanic ash clouds in the 10–12 μm window using AVHRR/2 data. Int J Remote Sens 10:751–761

    Article  Google Scholar 

  86. Corradini S, Merucci L, Prata AJ, Piscini A (2010) Volcanic ash and SO2 in the 2008 Kasatochi eruption: retrievals comparison from different IR satellite sensors. J Geophs Res 115:D00L21. doi:10.1029/2009JD013634

    Article  Google Scholar 

  87. Schneider DJ, Dean KG, Dehn J, Miller TP, Kirianov VY (2000) Monitoring and analysis of volcanic activity using remote sensing data at the Alaska Volcano Observatory: case study for Kamchatka, Russia, December 1997. In: Mouginis-Mark PJ, Crisp JA, Fink JH (eds) Remote sensing of active volcanism, AGU Geophysical Monograph 116. American Geophysical Union, Washington, DC

    Google Scholar 

  88. Zehner E (2010) Monitoring volcanic ash from space. European Space Agency, Noordwijk, p 110

    Google Scholar 

  89. Schneider DJ, Vallance JW, Wessels RL, Logan M, Ramsey MS (2008) Use of thermal infrared imaging for monitoring renewed dome growth at Mount St. Helens, 2004. In: Sherrod DR, Scott WE, Stauffer PH (eds) A volcano rekindled; the renewed eruption of Mount St. Helens, 2004–2006, U.S. Geological Survey Professional Paper 1750. U.S. Dept. of the Interior, U.S. Geological Survey, Reston, p 856 and DVD-ROM [http://pubs.usgs.gov/pp/1750/]

    Google Scholar 

  90. Wessels RL, Coombs ML, Schneider DJ, Dehn J, Ramsey MS (2010) High-resolution satellite and airborne thermal infrared imaging of the 2006 eruption of Augustine volcano. In: Power JA, Coombs ML, Freymueller JT (eds) The 2006 eruption of Augustine volcano, Alaska, U.S. Geological Survey Professional Paper 1769. U.S. Geological Survey, Reston, pp 527–552

    Google Scholar 

  91. Patrick MR, Harris AJL, Ripepe M, Dehn J, Rothery DA, Calvari S (2007) Strombolian explosive styles and source conditions: insights from thermal (FLIR) video. Bull Volcanol 69:769–784

    Article  ADS  Google Scholar 

  92. Krueger AJ, Schaefer SJ, Krotkov N, Bluth G, Barker S (2000) Ultraviolet remote sensing of volcanic emissions. In: Mouginis-Mark PJ, Crisp JA, Fink JH (eds) Remote sensing of active volcanism, AGU Geophysical Monograph 116. American Geophysical Union, Washington, DC

    Google Scholar 

  93. Carn SA, Krueger AJ, Krotkov NA, Yang K, Evans K (2009) Tracking volcanic sulfur dioxide clouds for aviation hazard mitigation. Nat Hazard 51:325–343

    Article  Google Scholar 

  94. McNutt SR, Williams ER (2010) Volcanic lightening: global observations and constraints on source mechanisms. Bull Volcanol 72:1153–1167

    Article  ADS  Google Scholar 

  95. Schilling SP, Thompson RA, Messerich JA, Iwatsubo EY (2008) Use of digital aerophotogrammerty to determine rates of lava dome growth, Mount St. Helens, Washington, 2004–2005. In: Sherrod DR, Scott WE, Stauffer PH (eds) A volcano rekindled; the renewed eruption of Mount St. Helens, 2004–2006, U.S. Geological Survey Professional Paper 1750. U.S. Dept. of the Interior, U.S. Geological Survey, Reston, p 856 and DVD-ROM [http://pubs.usgs.gov/pp/1750/]

    Google Scholar 

  96. Garces MA, Iguchi M, Ishihara K, Morrissey M, Sudo Y, Tsutsui T (1999) Infrasonic precursors to a Vulcanian eruption at Sakurajima volcano, Japan. Geophys Res Lett 26:2537–2540

    Article  ADS  Google Scholar 

  97. Johnson JB (2003) Generation and propagation of infrasonic airwaves from volcanic explosions. J Volcanol Geotherm Res 121:1–14

    Article  ADS  Google Scholar 

  98. Johnson JB, Aster RC, Ruiz MC, Malone SD, McChesney PJ, Lees JM, Kyle PR (2003) Interpretation and utility of infrasonic records from erupting volcanoes. J Volcanol Geotherm Res 121:15–63

    Article  ADS  Google Scholar 

  99. Matoza RS, Fee D, Garces MA, Seiner JM, Ramon PA, Hedlin MAH (2009) Infrasonic jet noise from volcanic eruptions. Geophys Res Lett 36. doi:1029/2008GL036486

  100. Caplan-Auerbach J, Bellesiles A, Fernandes JK (2010) Estimates of eruption velocity and plume height from infrasonic recordings of the 2006 eruption of Augustine volcano, Alaska. J Volcanol Geotherm Res 189:12–18

    Article  ADS  Google Scholar 

  101. Blong R (1996) Volcanic hazards risk assessment. In: Scarpa R, Tilling R (eds) Monitoring and mitigation of volcano hazards. Springer, Berlin

    Google Scholar 

  102. Annen C, Wagner J-J (2003) The impact of volcanic eruptions during the 1990s. Nat Hazard Rev 4:169–175

    Article  Google Scholar 

  103. Hoblitt RP, Miller CD, Scott WE (1987) Volcanic hazards with regard to siting nuclear-power plants in the Pacific Northwest. U.S. Geological Survey Open-File Report 87-297

    Google Scholar 

  104. Siebert L (1996) Hazards of large debris avalanches. In: Scarpa R, Tilling R (eds) Monitoring and mitigation of volcano hazards. Springer, Berlin

    Google Scholar 

  105. Ewert JW, Murray T, Lockhart A, Miller C (1993) Preventing volcanic catastrophe: the U. S. International Volcano Disaster Assistance Program. Earthq Volcanoes 24:270–291

    Google Scholar 

  106. Wright TL, Pierson TC (1992) Living with volcanoes: The U. S. Geological Survey’s Volcano Hazards Program, USGS Circular 1973. United States Government Printing Office, Washington, DC

    Google Scholar 

  107. Alvarado GE, Soto GJ, Schmincke H-U, Blge LL, Sumita M (2006) The 1968 andesitic lateral blast eruption at Arenal volcano, Costa Rica. J Volcanol Geotherm Res 157:9–33

    Article  ADS  Google Scholar 

  108. Fisher RV, Heiken G, Hulen J (1998) Volcanoes: crucibles of change. Princeton University Press, Princeton

    Google Scholar 

  109. Holloway M (2000) The killing lakes. Sci Am 283:92–99

    Article  ADS  Google Scholar 

  110. Sutton AJ, Elias T (1993) Volcanic gases create air pollution on the Island of Hawai`i: U.S. Geological Survey. Earthq Volcanoes 24:178–196

    Google Scholar 

  111. Gardner CA, Guffanti MC (2006) U.S. Geological Survey’s alert notification system for volcanic activity. U.S. Geological Survey Fact Sheet 2006-3139p

    Google Scholar 

  112. Swanson DA, Casadevall TJ, Dzurisin D, Holcomb RT, Newhall CG, Malone SD, Weaver CS (1985) Forecasts and predictions of eruptive activity at Mount St. Helens, USA: 1974–1984. Science 3:397–423

    Google Scholar 

  113. Power JA, Jolly A, Nye C, Harbin M (2002) A conceptual model of the Mount Spurr magmatic system from seismic and geochemical observations of the 1992 Crater Peak eruption sequence. Bull Volcanol 64:206–218

    Article  ADS  Google Scholar 

  114. Ruppert NA, Prejean S, Hansen RA (2011) Seismic swarm associated with the 2008 eruption of Kasatochi volcano, Alaska: earthquake locations and source parameters. J Geophys Res 116:B00B07. doi:10.1029/2010JB007435

    Article  Google Scholar 

  115. Abe K (1992) Seismicity of the caldera-making eruption of Mount Katmai, Alaska in 1912. Bull Seismol Soc Am 82:175–191

    Google Scholar 

  116. Japan Meteorological Agency (JMA) (2000) Recent seismic activity in the Miyakejima and Niijima-Kozushima region, Japan – the largest earthquake swarm ever recorded. Earth Planets Space 52:i–iv

    Google Scholar 

  117. Guffanti M, Diefenbach AK, Ewert JW, Ramsey DW, Cervelli PF, Schilling SP (2008) Volcano-monitoring instrumentation in the United States, 2008. USGS Open-File Report 2009-1165

    Google Scholar 

  118. Dzurisin D (2003) A comprehensive approach to monitoring volcano deformation as a window on the eruption cycle. Rev Geophys 41:1–29

    Google Scholar 

  119. Benoit JP, McNutt SR (1996) Global volcanic earthquake swarm database and preliminary analysis of volcanic earthquake swarm duration. Annali de Geofisca 39:221–229

    Google Scholar 

  120. Power JA, Coombs ML, Freymueller JT (eds) (2010) The 2006 eruption of Augustine volcano, Alaska, U.S. Geological Survey Professional Paper 1769. U.S. Geological Survey, Reston

    Google Scholar 

  121. Power JA, Lalla DJ (2010) Seismic observations of Augustine volcano, 1970–2007. In: Power JA, Coombs ML, Freymueller JT (eds) The 2006 eruption of Augustine volcano, Alaska, U.S. Geological Survey Professional Paper 1769. U.S. Geological Survey, Reston, pp 527–552

    Google Scholar 

  122. McGee KA, Doukas MP, McGimsey RG, Neal CA, Wessels RL (2010) Emission of SO2, CO2, and H2S from Augustine volcano, 2002–2008. In: Power JA, Coombs ML, Freymueller JT (eds) The 2006 eruption of Augustine volcano, Alaska, U.S. Geological Survey Professional Paper 1769. U.S. Geological Survey, Reston, pp 609–630

    Google Scholar 

  123. Neal CA, Murray TL, Power JA, Adleman JN, Whitmore PM, Osiensky JM (2010) Hazard information management, interagency coordination, and impacts of the 2005–2006 eruption of Augustine volcano. In: Power JA, Coombs ML, Freymueller JT (eds) The 2006 eruption of Augustine volcano, Alaska, U.S. Geological Survey Professional Paper 1769. U.S. Geological Survey, Reston, pp 645–667

    Google Scholar 

  124. Freymueller JT, Kaufman AM (2010) Changes in the magma system during the 2008 eruption of Okmok volcano, Alaska, based on GPS measurements. J Geophys Res 115:B12415, 14 pp. doi:10.1029/2010JB007716

    Google Scholar 

  125. Lu Z, Dzurisin D, Biggs Wicks JC Jr, McNutt S (2010) Ground surface deformation patterns, magma supply, and magma storage at Okmok volcano, Alaska, from InSAR analysis: 1. Intereruption deformation, 1997–2008. J Geophys Res 115:B00B02. doi:10.1029/2009JB006969

    Article  Google Scholar 

  126. Larsen J, Neal C, Webley P, Freymueller J, Haney M, McNutt S, Schneider D, Prejean S, Schaefer J, Wessels R (2009) Eruption of Alaska volcano breaks historic pattern. Eos Trans Am Geophys Union 90:173–174

    Article  ADS  Google Scholar 

  127. Johnson JH, Prejean S, Savage MK, Townend J (2010) Anisotropy, repeating earthquakes, and seismicity associated with the 2008 eruption of Omok volcano, Alaska. J Geophs Res 115. doi:10;1029/2009JB006991

    Google Scholar 

  128. Linde AT, Sacks IS (1998) Triggering of volcanic eruptions. Nature 395:888–890

    Article  ADS  Google Scholar 

  129. Manga M, Brodsky EE (2006) Seismic triggering of eruptions in the far field: volcanoes and geysers. Annu Rev Earth Planet Sci 34:263–291

    Article  ADS  Google Scholar 

  130. Walter TR, Amelung F (2007) Volcanic eruptions following M > = 9 megathrust earthquakes: implications of the Sumatra-Andaman volcanoes. Geology 35:539–542

    Article  ADS  Google Scholar 

  131. Hill DP, Pollitz F, Newhall C (2002) Earthquake-volcano interactions. Phys Today 55:41–47

    Article  Google Scholar 

  132. Hill DP, Reasenberg PA, Michael AJ, Arabasz WJ, Beroza GC (1993) Seismicity remotely triggered by the magnitude 7.3 Landers, California earthquake. Science 260:1617–1623

    Article  ADS  Google Scholar 

  133. Prejean SG, Hill DP (2009) Earthquakes, dynamic triggering of. In: Encyclopedia of complexity and system science, editor in-cheif Meyers RA. Complexity in earthquakes, tsunamis, and volcanoes, and forecast, Lee WHK (ed). Springer, Berlin

    Google Scholar 

  134. Spudich P, Steck LK, Hellweg M, Fletcher JB, Baker LM (1992) Transient stresses at Parkfield, California, produced by the M 7.4 Landers earthquake of June 28, 1992: observations from the UPSAR dense seismograph array. J Geophys Res 100:675–690. doi:10.1029/94JB02477

    Article  ADS  Google Scholar 

  135. McGee KA, Doukas MP, Kessler R, Gerlach TM (1997) Impacts of volcanic gases on climate, the environment, and people. U.S. Geological Survey Open-File 97-262

    Google Scholar 

  136. Robb LJ (2005) Introduction to ore-forming processes. Blackwell Science, Carlton

    Google Scholar 

  137. Peterson DW (1996) Mitigation measures and preparedness plans for volcanic emergencies. In: Scarpa R, Tilling R (eds) Monitoring and mitigation of volcano hazards. Springer, Berlin

    Google Scholar 

  138. Self S (2006) The effects and consequences of very large explosive volcanic eruptions. Philos Trans R Soc A 364:2073–2097

    Article  ADS  Google Scholar 

  139. Simkin T, Siebert L, Blong R (2001) Volcano fatalities: lessons from the historical record. Science 291:255

    Article  Google Scholar 

  140. Ewert JW, Harpel CJ (2004) In harm’s way: population and volcanic risk. Geotimes 49:14–17

    Google Scholar 

  141. International Air Travel Association (2010) Volcano crisis cost airlines $1.7 billion in revenue – IATA urges measures to mitigate impact, IATA press release

    Google Scholar 

  142. USGS (1997) Volcanic ash – danger to aircraft in the North Pacific. U.S. Geological Survey Fact Sheet 030-97

    Google Scholar 

  143. Geothermal Energy Association (2010) Geothermal energy: international market update, 7 pp

    Google Scholar 

  144. U.S. Energy Information Administration (2009) Annual Energy Review

    Google Scholar 

  145. Ewert JW, Guffanti M, Murray TL (2005) An assessment of volcanic threat and monitoring capabilities in the United States: framework for a National Volcano Early Warning System. USGS Open-File Report 2005-1164

    Google Scholar 

  146. Song W-Z, Shirazi B, Huang BR, Xu M, Peterson N, LaHusen R, Pallister J, Dzurisin D, Moran S, Lisowski M, Kedar S, Chien S, Webb F, Kiely A, Doubleday J, Davies A, Pieri D (2010) Optimized autonomous space in-situ sensor web for volcano monitoring. IEEE J Sel Topics Appl Earth Observ Remote Sens 3:541–546

    Article  Google Scholar 

  147. Fleming K, Picozzi M, Milkereit C, Kuehnlenz F, Lichtblau B, Fischer J, Zulfikar C, Oezel O, Zschau J, Veit I, Jaeckel KH, Hoenig M, Nachtigall J, Woith H, Redlich JP, Ahrens K, Eveslage I, Heglmeier S, Erdik M, Kafadar N (2009) The self-organizing seismic early warning information network (SOSEWIN). Seismol Res Lett 80:755–771

    Article  Google Scholar 

  148. Huang R, Song W-Z, Xu M, Picone N, Shirazi B, LaHusen R (2011) Real-world sensor network for long-term volcano monitoring: design and findings. IEEE Trans Parallel Distrib Syst 99, doi:10.1109/TPDS.2011.170

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clifford Thurber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Thurber, C., Prejean, S. (2013). Volcanoes, Observations and Impact. In: Orcutt, J. (eds) Earth System Monitoring. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5684-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5684-1_19

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5683-4

  • Online ISBN: 978-1-4614-5684-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics