Skip to main content

Ocean Acidification

  • Chapter
  • First Online:
Book cover Earth System Monitoring

Abstract

The oceans play a central role in the maintenance of life on Earth. Oceans provide extensive ecosystems for marine animals and plants covering two-thirds of the Earth’s surface, are essential sources of food, economic activity, and biodiversity, and are central to the global biogeochemical cycles. The oceans are the largest reservoir of carbon in the Planet, and absorb approximately one-third of the carbon emissions that are released to the Earth’s atmosphere as a result of human activities. Since the beginning of industrialization, humans have been responsible for the increase in one greenhouse gas, carbon dioxide (CO2), from approximately 280 parts per million (ppm) at the end of the nineteenth century to the current levels of 390ppm. As well as affecting the surface ocean pH, and the organisms living at the ocean surface, these increases in CO2 are causing global mean surface temperatures to rise.

This chapter was originally published as part of the Encyclopedia of Sustainability Science and Technology edited by Robert A. Meyers. DOI:10.1007/978-1-4419-0851-3

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Acclimation:

Organisms’ physiological, morphological, and behavioral changes associated with environmental selection pressure. These are typically changes in size, growth rates, production rates of metabolites, or reproduction rates.

Adaptation:

Change in population composition and numbers in response to environmental selection pressure. Adaptation is largely driven by the inherent genomic properties of a population (e.g., gene richness, genomic complexity, genetic diversity). In order for a population to adapt, a subset of its members (genotypes/ecotypes) may change in relative abundance.

Anthropocene:

Period since the beginning of industrialization when the release of CO2 and other by-products of human activities have had a profound effect on the Earth’s ecosystems.

Biological pump:

The biological processes (e.g., photosynthesis, calcification) that contribute to the downward flux of carbon from the ocean surface to the deep sea.

Biota:

Animals and plants associated with a specific geographical region.

Calcification:

Deposition of the soluble mineral phase of calcium carbonate (CaCO3). In the marine environment, calcifiers include plants (e.g., coccolithophores, green and red algae, calcareous dinoflagellates) and animals (e.g., foraminifera, pteropods, fish, bivalves, gastropods, corals, echinoderms, crustacea, sponges).

Calcium carbonate saturation horizon:

The depth of the ocean below which the saturation state of calcium carbonate is below 1, and therefore dissolution increases dramatically. This depth is also termed lysocline and it is dependent upon temperature and pressure.

Ocean acidification:

Period of accelerated decline in ocean pH as a result of increasing formation of carbonic acid from rising dissolved carbon dioxide in seawater as a result of human activities.

pH:

pH is defined as –log10 [H+] and represents a measure of the acidity of a solution. A pH of 7 is neutral, a pH below 7 indicates that the solution is acid, and a pH above 7 indicates that the solution is alkaline. The pH scale is logarithmic, which means that each unit change in pH equals a tenfold change in acidity. The average surface ocean pH is ∼8.1.

Saturation state of calcium carbonate (Ω):

The product of the concentration of dissolved calcium and carbonate ions in seawater divided by the stoichiometric solubility product (Ω = [Ca2+][CO 2−3 ]/K sp) of the biomineral produced by an organism, that is, aragonite or calcite. When Ω>1, the water is in supersaturated state with respect to calcite or aragonite, and carbonate precipitates; when Ω<1 the water is in undersaturated state with respect to calcite or aragonite and these minerals dissolve; when Ω=1 the water is in saturated state with respect to calcite or aragonite and there is no precipitation or dissolution of carbonate.

Bibliography

Primary Literature

  1. Caldeira K, Wickett ME (2003) Anthropogenic carbon and ocean pH. Nature 425:365

    Article  ADS  Google Scholar 

  2. Caldeira K, Wickett ME (2005) Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. J Geophys Res 110:C09S04, doi:10.1029/2004JC002671

    MATH  Google Scholar 

  3. Ridgwell A, Schmidt DN (2010) Past constraints on the vulnerability of marine calcifiers to massive carbon dioxide release. Nat Geosci 3:196–200

    Article  ADS  Google Scholar 

  4. Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009) Ocean acidification: the other CO2 problem. Ann Rev Mar Sci 1:169–192. doi:10.1146/annurev.marine.010908.163834

    Article  Google Scholar 

  5. Cooley SR, Doney SC (2009) Anticipating ocean acidification’s economic consequences for commercial fisheries. Environ Res Lett 4:024007. doi:10.1088/1748-9326/4/2/024007

    Article  ADS  Google Scholar 

  6. Gibbs SJ, Bown PR, Sessa JA, Bralower TJ, Wilson PA (2006) Nannoplankton extinction and origination across the Paleocene-Eocene thermal maximum. Science 314:1770–1773

    Article  ADS  Google Scholar 

  7. Tyrrell T, Zeebe RE (2004) History of carbonate ion concentration over the last 100 million years. Geochim Cosmochim Acta 68:3521–3530

    Article  ADS  Google Scholar 

  8. Iglesias-Rodrıguez MD, Halloran PR, Rickaby REM, Hall IR, Colmenero-Hidalgo E, Gittins JR, Green DRH, Tyrrell T, Gibbs SJ, von Dassow P, Rehm E, Armbrust VE, Boessenkool KP (2008) Phytoplankton calcification in a high CO2 world. Science 320:336–339

    Article  ADS  Google Scholar 

  9. MacLeod N, Rawson PF, Forey PL, Banner FT, Boudagher-Fadel MK, Bown PR, Burnett JA, Chambers P, Culver S, Evans SE, Jeffret C, Kaminski MA, Lord AR, Milner AC, Milner AR, Morris N, Owen E, Rosen BR, Smith AB, Taylor PD, Urquart E, Young JR (1997) The Cretaceous-tertiary biotic transition. J Geol Soc 154:265–292

    Article  Google Scholar 

  10. Knoll AH, Bambach RK, Payne JL, Pruss S, Fischer WW (2007) Paleophysiology and end-Permian mass extinction. Earth Planet Sci Lett 256:295–313

    Article  ADS  Google Scholar 

  11. Feely RA et al (2008) PICES Press 16(1):22–26

    Google Scholar 

  12. Sarmiento JL, Gruber N (2002) Sinks for anthropogenic carbon. Phys Today 55:30–36

    Article  Google Scholar 

  13. Archer D (2005) Fate of fossil fuel CO2 in geological time. J Geophys Res 110: C09S05, doi:10.1029/2004JC002625

    Google Scholar 

  14. Garcia HE, Boyer TP, Levitus S, Locarnini RA, Antonov JI (2005) Climatological annual cycle of upper ocean oxygen content anomaly. Geophys Res Lett 32:L09604. doi:10.1029/2004GL022286

    Article  Google Scholar 

  15. Brierley AS, Kingsford MJ (2009) Impacts of climate change on marine organisms and ecosystems. Curr Biol 19:R602–R614. doi:10.1016/j.cub.2009.05.046

    Article  Google Scholar 

  16. Keeling RF, Körtzinger A, Gruber N (2010) Ocean deoxygenation in a warming world. Ann Rev Mar Sci 2:199–229

    Article  Google Scholar 

  17. Zeebe RE, Wolf-Gladrow D (2001) CO2 in seawater: equilibrium, kinetics, isotopes. Elsevier Oceanography Series, 65, Amsterdam, pp 346

    Google Scholar 

  18. Sabine CL, Feely RA, Gruber N, Key RM, Lee K, Bullister JL, Wanninkhof R, Wong CS, Wallace DWR, Tilbrook B, Millero FJ, Peng T-H, Kozyr A, Ono T, Rios AF (2004) The oceanic sink for anthropogenic CO2. Science 305:367–371

    Article  ADS  Google Scholar 

  19. Frankignoulle M, Canon C, Gattuso J-P (1994) Marine calcification as a source of carbon dioxide: positive feedback of increasing atmospheric CO2. Limnol Oceanogr 39:458–462

    Article  Google Scholar 

  20. Intergovernmental Panel on Climate Change (2001) Climate change 2001: impacts, adaptation and vulnerability. In: McCarthy JJ et al (eds) Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York

    Google Scholar 

  21. Wood HL, Spicer JI, Widdicombe S (2008) Ocean acidification may increase calcification rates, but at a cost. Proc Roy Soc Lon B 275:1767–1773

    Article  Google Scholar 

  22. Ries JB, Cohen AL, McCorkle DC (2009) Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 37:1131–1134

    Article  Google Scholar 

  23. Venn AA, Tambutté E, Lotto S, Zoccola D, Allemand D, Tambutté S (2009) Imaging intracellular pH in a reef coral and symbiotic anemone. Proc Natl Acad Soc 106:16574–16579

    Article  Google Scholar 

  24. Raven JA, Caldeira K, Elderfield H, Hoegh-Guldberg O, Liss P, Riebesell U, Shepherd J, Turley C, Watson A (2005) Ocean acidification due to increasing atmospheric carbon dioxide. The Royal Society policy Document 12/05, London

    Google Scholar 

  25. Tortell PD, Rau GH, Morel FMM (2000) Inorganic carbon acquisition in coastal Pacific phytoplankton communities. Limnol Oceanogr 45:1485–1500

    Article  Google Scholar 

  26. Tortell PD, Payne CD, Li Y, Trimborn S, Rost, B, Smith, WO, Riesselman, C, Dunbar, RB, Sedwick, P, and DiTullio, GR (2008) CO2 sensitivity of Southern ocean phytoplankton. Geophys Res Lett 35: L04605, 5 pp, doi:10.1029/2007GL032583

    Google Scholar 

  27. Riebesell U, Zondervan I, Rost B, Tortell PD, Zeebe RE, Morel FMM (2000) Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature 407:364–367

    Article  ADS  Google Scholar 

  28. Shi D, Xu Y, Morel FMM (2009) Effects of the pH/pCO2 control method on medium chemistry and phytoplankton growth. Biogeosciences 6:1199–1207

    Article  ADS  Google Scholar 

  29. Palacios SL, Zimmerman RC (2007) Response of eelgrass Zostera marina to CO2 enrichment: possible impacts of climate change and potential for remediation of coastal habitats. Mar Ecol Prog Ser 344:1–13

    Article  Google Scholar 

  30. Zimmerman RC, Kohrs DG, Steller DL, Alberte RS (1997) Impacts of CO2 enrichment on productivity and light requirements of Eelgrass. Plant Physiol 115:599–607

    Google Scholar 

  31. Shi D, Xu Y, Hopkinson BM, Morel FMM (2010) Effect of ocean acidification on iron availability to marine phytoplankton. Science 327:676–679

    Article  ADS  Google Scholar 

  32. Tortell PD, DiTullio GR, Sigman DM, Morel FMM (2002) CO2 effects on taxonomic composition and nutrient utilization in an equatorial Pacific phytoplankton assemblage. Mar Ecol Prog Ser 236:37–43

    Article  Google Scholar 

  33. Blackford JC (2010) Predicting the impacts of ocean acidification: challenges from an ecosystem perspective. J Mar Syst 81:12–18. doi:10.1016/j.jmarsys.2009.12.016

    Article  Google Scholar 

  34. Barcelos e Ramos J, Biswas H, Schulz KG, LaRoche J, Riebesell U (2007) Effect of rising atmospheric carbon dioxide on the marine nitrogen fixer. Trichodesmium Glob Biogeochem Cycles 21: GB2028, 6 pp, doi:10.1029/2006GB002898

    Google Scholar 

  35. Hutchins DA, Fu F-X, Zhang Y, Warner ME, Feng Y, Portune K, Bernhardt PW, Mulholland MR (2007) CO2 control of Trichodesmium N2 fixation, photosynthesis, growth rates, and elemental ratios: Implications for past, present, and future ocean biogeochemistry. Limnol Oceanogr 52:1293–1304

    Article  Google Scholar 

  36. Feely RA, Orr J, Fabry VJ, Kleypas JA, Sabine CL, Landgon C (2009) Present and future changes in seawater chemistry due to ocean acidification. In: McPherson BJ, Sundquist ET (eds) Carbon sequestration and its role in the global carbon cycle. AGU Monograph, Washington, DC

    Google Scholar 

  37. Morse JW, Andersson AJ, Mackenzie FT (2006) Initial responses of carbonate-rich shelf1369 sediments to rising atmospheric pCO2 and “ocean acidification”: role of high Mg-calcites. Geochim Cosmochim Acta 70:5814–5830

    Article  ADS  Google Scholar 

  38. Gattuso J-P, Frankignoulle M, Bourge I, Romaine S, Buddemeier RW (1998) Effect of calcium carbonate saturation of seawater on coral calcification. Glob Planet Change 18:37–46

    Article  ADS  Google Scholar 

  39. Kleypas JA, Buddemeier RW, Archer D, Gattuso J-P, Langdon C, Opdyke BN (1999) Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science 284:118–120

    Article  ADS  Google Scholar 

  40. Kleypas JA, Buddemeier RW, Gattuso J-P (2001) The future of coral reefs in an age of global change. Int J Earth Sci 90:426–437

    Article  Google Scholar 

  41. Zondervan I, Zeebe RE, Rost B, Riebesell U (2001) Decreasing marine biogenic calcification: a negative feedback on rising atmospheric pCO2. Glob Biogeochem Cycles 15:507–516

    Article  ADS  Google Scholar 

  42. Feely RA, Sabine CL, Lee K, Millero FJ, Lamb MF, Greeley D, Bullister JL, Key RM, Peng T-H, Kozyr A, Ono T, Wong CS (2002) In situ calcium carbonate dissolution in the Pacific Ocean. Glob Biogeochem Cycles 16:1144

    Article  ADS  Google Scholar 

  43. Leclercq N, Gattuso J-P, Jaubert J (2002) Primary production, respiration, and calcification of a coral reef mesocosm under increased CO2 partial pressure. Limnol Oceanogr 47:558–564

    Article  Google Scholar 

  44. Zondervan I, Rost B, Riebesell U (2002) Effect of CO2 concentration on the PIC/POC ratio in the coccolithophore Emiliania huxleyi grown under light-limiting conditions and different daylengths. J Exp Marine Biol Ecol 272:55–70

    Article  Google Scholar 

  45. Guinotte JM, Buddemeier RW, Kleypas JA (2003) Future coral reef habitat marginality: temporal and spatial effects of climate change in the Pacific basin. Coral Reefs 22:551–558

    Article  Google Scholar 

  46. Langdon C, Broecker WS, Hammond DE, Glenn E, Fitzsimmons K, Nelson SG, Peng T-S, Hajdas I, Bonani G (2003) Effect of elevated CO2 on the community metabolism of an experimental coral reef. Glob Biogeochem Cycles 17:1–14. doi:10.1029/2002GB001941

    Article  Google Scholar 

  47. Reynaud S, Leclercq N, Romaine-Lioud S, Ferrier-Pages C, Jaubert J, Gattuso JP (2003) Interacting effects of CO2 partial pressure and temperature on photosynthesis and calcification in a scleractinian coral. Glob Chang Biol 9:1660–1668

    Article  Google Scholar 

  48. Langdon C, Atkinson MJ (2005) Effect of elevated pCO2 on photosynthesis and calcification of corals and interactions with seasonal change in temperature/irradiance and nutrient enrichment. J Geophys Res 110: C09S07, doi:10.1029/2004JC002576

    Google Scholar 

  49. Guinotte JM, Orr J, Cairns S, Freiwald A, Morgan L, George R (2006) Will human induced changes in seawater chemistry alter the distribution of deep-sea scleractinian corals? Front Ecol Environ 4:141–146

    Article  Google Scholar 

  50. Kleypas JA, Feely RA, Fabry VJ, Langdon C, Sabine CL, Robbins LL (2006) Impacts of ocean acidification on coral reefs and other marine calcifiers: a guide for future research, report of a workshop, St. Petersburg, FL, USA, 18–20 Apr 2005, sponsored by NSF, NOAA, and the US Geological Survey http://www.ucar.edu/communications/Final_acidification.pdf

  51. Gazeau F, Quiblier C, Jansen JM, Gattuso J-P, Middelburg JJ, Heip CHR (2007) Impact of elevated CO2 on shellfish calcification. Geophys Res Lett 34: L07603, doi:10.1029/2006GL028554

    Google Scholar 

  52. Fabry VJ, Seibel BA, Feely RA, Orr JC (2008) Impacts of ocean acidification on marine fauna and ecosystem processes ICES. J Mar Sci 65:414–432

    Google Scholar 

  53. Hall-Spencer JM, Rodolfo-Metalpa R, Martin S, Ransome E, Fine M, Turner SM, Rowley SJ, Tedesco D, Buia M-C (2008) Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454:96–99. doi:10.1038/nature07051

    Article  ADS  Google Scholar 

  54. Nienhuis S, Palmer AR, Harley CDG (2010) Elevated CO2 affects shell dissolution rate but not calcification rate in a marine snail. Proc Roy Soc B: Biol Sci 277(1693):2553–2558. doi:10.1098/rspb.2010.0206

    Article  Google Scholar 

  55. Rodolfo-Metalpa R, Martin S, Ferrier-Pages C, Gattuso J-P (2010) Response of the temperate coral Cladocora caespitosa to mid- and long-term exposure to pCO2 and temperature levels projected for the year 2100 AD. Biogeosciences 7:289–300

    Article  ADS  Google Scholar 

  56. Anthony KRN, Kline DI, Diaz-Pulido G, Dove S, Hoegh-Guldberg O (2008) Ocean acidification causes bleaching and productivity loss in coral reef builders. Proc Natl Acad Soc 105:17442–17446

    Article  ADS  Google Scholar 

  57. Langer G, Nehrke G, Probert I, Ly J, Ziveri P (2009) Strain specific responses of Emiliania huxleyi to changing seawater carbonate chemistry. Biogeosciences 6:2637–2646, http://www.biogeosciences.net/6/2637/2009/

    Article  ADS  Google Scholar 

  58. Müller MN, Schulz KG, Riebesell U (2010) Effects of long-term high CO2 exposure on two species of coccolithophores. Biogeosciences 7:1109–1116

    Article  ADS  Google Scholar 

  59. Steinacher M, Joos F, Frölicher TL, Plattner G-K, Doney SC (2009) Imminent ocean acidification in the Arctic projected with the NCAR global coupled carbon cycle-climate model. Biogeosciences 6:515–533, www.biogeosciences.net/6/515/2009/

    Article  ADS  Google Scholar 

  60. Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC et al (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686

    Article  ADS  Google Scholar 

  61. Findlay HS, Wood HL, Kendall MA, Spicer JI, Twitchett RJ, Widdicombe S (2009) Calcification, a physiological process to be considered in the context of the whole organism. Biogeosciences Discuss 6:2267–2284, www.biogeosciences-discuss.net/6/2267/2009/

    Article  ADS  Google Scholar 

  62. Walther K, Sartoris FJ, Bock C, Pörtner HO (2009) Impact of anthropogenic ocean acidification on thermal tolerance of the spider crab Hyas araneus. Biogeosciences 6:2207–2215

    Article  ADS  Google Scholar 

  63. Kleppel GS, Dodge RE, Reese CJ (1989) Changes in pigmentation associated with the bleaching of stony corals. Limnol Oceanogr 34:1331–1335

    Article  Google Scholar 

  64. Herfort L, Thake B, Taubner I (2008) Bicarbonate stimulation of calcification and photosynthesis in two hermatypic corals. J Phycol 44:91–98

    Article  Google Scholar 

  65. Bown PR, Lees JA, Young JR (2004) In: Thierstein HR, Young JR (eds) Coccolithophores –from molecular processes to global impact. Springer, Berlin, p 481

    Google Scholar 

  66. Vinogradov AP (1953) The elementary chemical composition of marine organisms. Sears Foundation for Marine Research, New Haven

    Google Scholar 

  67. Weber JN (1969) The incorporation of magnesium into the skeletal calcites of echinoderms. Am J Sci 267:537–566

    Article  Google Scholar 

  68. Lipps JH (1970) Plankton evolution. Evolution 24:1–21

    Article  Google Scholar 

  69. Comperse EL, Bates JM (1973) Determination of calcite: aragonite ratios in mollusc shells by infrared spectra. Limnol Oceanogr 18:326–331

    Article  Google Scholar 

  70. Wilkinson BH (1979) Biomineralization, paleoceanography, and the evolution of calcareous marine organisms. Geology 7:524–527

    Article  ADS  Google Scholar 

  71. Zhuravlev AY, Wood RA (2008) Eve of biomineralization: controls on carbonate mineralogy. Geology 36:923–926

    Article  Google Scholar 

  72. Zhuravlev AY, Wood RA (2009) Controls on carbonate skeletal mineralogy: global CO2 evolution and mass extinctions. Geology 37:1123–1126

    Article  Google Scholar 

  73. de Vargas C, Aubry M-P, Probert I, Young J (2007) In: Thierstein HR, Young JR (eds) Coccolithophores – from molecular processes to global impact. Springer, Berlin, p 251

    Google Scholar 

  74. Feely RA, Sabine CL, Hernandez-Ayon JM, Ianson D, Hales B (2008) Evidence for upwelling of corrosive “acidified” water onto the continental shelf. Science 320:1490–1492

    Article  ADS  Google Scholar 

  75. Bates NR (2007) Interannual variability of the oceanic CO2 sink in the subtropical gyre of the North Atlantic Ocean over the last 2 decades. J Geophys Res 112:C09013. doi:10.1029/2006JC003759

    Article  Google Scholar 

  76. Bates NR, Peters AJ (2007) The contribution of atmospheric acid deposition to ocean acidification in the subtropical North Atlantic Ocean. Mar Chem 107:547–558

    Article  Google Scholar 

  77. Chung SN, Lee K, Feely RA, Sabine CL, Millero FJ, Wanninkhof R, Bullister JL, Key RM, Peng T-H (2003) Calcium carbonate budget in the Atlantic Ocean based on water column inorganic carbon chemistry. Glob Biogeochem Cycles 17:1093

    Article  ADS  Google Scholar 

  78. Feely RA, Sabine CL, Lee K, Berelson W, Kleypas J et al (2004) Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305:362–366

    Article  ADS  Google Scholar 

  79. Sabine CL, Feely RA (2007) The oceanic sink for carbon dioxide. In: Reay D, Hewitt N, Grace J, Smith K (eds) Greenhouse gas sinks. CABI, Oxfordshire, pp 31–49

    Chapter  Google Scholar 

  80. Santana-Casiano JM, Gonzalez-Davila M, Rueda MJ, Llinas O, Gonzalez-Davila EF (2007) The interannual variability of oceanic CO2 parameters in the northeast Atlantic subtropical gyre at the ESTOC site. Glob Biogeochem Cycles 21:GB1015. doi:10.1029/2006GB002788

    Article  ADS  Google Scholar 

  81. Watson AJ, Schuster U, Bakker DCE, Bates NR, Corbière A, González-Dávila M, Friedrich T, Hauck J, Heinze C, Johannessen T, Körtzinger A, Metzl N, Olafsson J, Olsen A, Oschlies A, Padin XA, Pfeil B, Santana-Casiano JM, Steinhoff T, Telszewski M, Rios AF, Wallace DWR, Wanninkhof R (2009) Tracking the variable North Atlantic sink for atmospheric CO2. Science 326:1391–1393

    Article  ADS  Google Scholar 

  82. Dore JE, Lukas R, Sadler DW, Church MJ, Karl DM (2009) Physical and biogeochemical modulation of ocean acidification in the central North Pacific. Proc Natl Acad Soc USA 106:12235–12240

    Article  ADS  Google Scholar 

  83. Cao L, Caldeira K (2008) Atmospheric CO2 stabilization and ocean acidification. Geophys Res Lett 35:L19609, 5 pp, doi:10.1029/2008GL035072

    Google Scholar 

  84. Gehlen M, Gangstø R, Schneider B, Bopp L, Aumont O, Ethe C (2007) The fate of pelagic CaCO3 production in a high CO2 ocean: a model study. Biogeosciences 4:505–519

    Article  ADS  Google Scholar 

  85. Feely RA, Byrne RH, Acker JG, Betzer PR, Chen CTA et al (1988) Winter summer variations of calcite and aragonite saturation in the northeast Pacific. Mar Chem 25:227–241

    Article  Google Scholar 

  86. Bates NR, Mathis JT, Cooper L (2009) The effect of ocean acidification on biologically induced seasonality of carbonate mineral saturation states in the Western Arctic Ocean. J Geophys Res Oceans 114:C11007, doi:10.1029/2008JC004862

    Google Scholar 

  87. Yamamoto-Kawai M, McLaughlin FA, Carmack EC, Nishino S, Shimada K (2009) Aragonite undersaturation in the Arctic Ocean: effects of ocean acidification and sea ice melt. Science 326:1098–1100

    Article  ADS  Google Scholar 

Books and Reviews

  • Feely RA, Fabry VJ, Dickson AG, Gattuso J-P, Bijma J, Riebesell U, Doney S, Turley C, Saino T, Lee K, Anthony K, and Kleypas J (2010) An international observational network for ocean acidification, OceanObs white paper (https://abstracts.congrex.com/scripts/jmevent/abstracts/FCXNL-09A02a-1664525-1-Feely-cwp2c04.pdf)

  • Houghton JT, Ding Y, Griggs DJ, Noger M, van der Linden PJ, Xiaosu D (2001) Climate change 2001: the scientific basis. In: Contrinbution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change 2001. Cambridge University Press, Cambridge, 944 p

    Google Scholar 

  • Kleypas JA, Feely RA, Fabry VJ, Langdon C, Sabine CL, Robbins LL (2006) Impacts of ocean acidification on coral reefs and other marine calcifiers: a guide for future research. Report of St. Petersburg Workshop, FL, sponsored by NSF, NOAA, and U.S. Geological Survey, 88 p

    Google Scholar 

  • Schubert R, Schellnhuber H-J, Buchmann N, Epiney A, Grieβhammer R, Kulessa M, Messner D, Rahmstorf S, Schmid J (2006) The future oceans – warming up, rising high, turning sour. German Advisor Council on global change, Special Report, Berlin, 110 p

    Google Scholar 

  • Zeebe RE, Zachos JC, Caldeira K, Tyrrell T (2008) Oceans: carbon emissions and acidification. Science (Perspectives) 321:51–52

    Google Scholar 

Documents

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Debora Iglesias-Rodriguez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Iglesias-Rodriguez, M.D. (2013). Ocean Acidification. In: Orcutt, J. (eds) Earth System Monitoring. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5684-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5684-1_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5683-4

  • Online ISBN: 978-1-4614-5684-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics