Skip to main content

The Behavior in Foods

  • Chapter
  • First Online:
Book cover Bacterial Communication in Foods

Part of the book series: SpringerBriefs in Food, Health, and Nutrition ((BRIEFSFOOD))

  • 1356 Accesses

Abstract

The language spoken between bacteria populating the same food ecosystem may condition their phenotypic traits and, consequently, their role as starter, spoilage, or pathogen microorganisms. Conversely, food matrices may contain chemical compounds that interfere with bacterial cell-to-cell communication and act as quorum-quenching signals. This chapter focuses on the most relevant evidence concerning bacterial quorum-sensing mechanisms in sourdough, yogurt starter cultures, and meat and vegetable foods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gobbetti M, De Angelis M, Corsetti A, Di Cagno R (2005) Biochemistry and physiology of sourdough lactic acid bacteria. Trends Food Sci Technol 16:57–69

    Article  CAS  Google Scholar 

  2. Gobbetti M (1998) Interactions between lactic acid bacteria and yeasts in sourdoughs. Trends Food Sci Technol 9:267–274

    Article  CAS  Google Scholar 

  3. Caplice E, Fitzgerald GF (1999) Food fermentations: role of microorganisms in food production and preservation. Int J Food Microbiol 50:131–149

    Article  CAS  Google Scholar 

  4. Ahrne S, Nobaek S, Jeppsson B, Adlerberth I, Wold AE, Molin G (1998) The normal Lactobacillus flora of healthy human rectal and oral mucosa. J Appl Microbiol 85:88–94

    Article  CAS  Google Scholar 

  5. Di Cagno R, De Angelis M, Limitone A, Minervini F, Simonetti MC, Buchin S, Gobbetti M (2007) Cell-cell communication in sourdough lactic acid bacteria: a proteomic study in Lactobacillus sanfranciscensis CB1. Proteomics 7:2430–2446

    Article  Google Scholar 

  6. Di Cagno R, De Angelis M, Coda R, Minervini F, Gobbetti M (2009) Molecular adaptation of sourdough Lactobacillus plantarum DC400 under co-cultivation with other lactobacilli. Res Microbiol 160:358–366

    Article  Google Scholar 

  7. Di Cagno R, De Angelis M, Calasso M, Vincentini O, Vernocchi P, Ndagijimana M, De Vincenzi M, Dessi MR, Guerzoni ME, Gobbetti M (2010) Quorum sensing in sourdough Lactobacillus plantarum DC400: induction of plantaricin A (PlnA) under co-cultivation with other lactic acid bacteria and effect of PlnA on bacterial and Caco-2 cells. Proteomics 10:2175–2190

    Article  Google Scholar 

  8. Adar YY, Simaan M, Ulitzur S (1992) Formation of the LuxR protein in the Vibrio fischeri lux system is controlled by HtpR through the GroESL proteins. J Bacteriol 174:7138–7143

    CAS  Google Scholar 

  9. De Angelis M, Bini L, Pallini V, Cocconcelli PS (2001) The acid-stress response in Lactobacillus sanfranciscensis CB1. Microbiology 147:1863–1873

    Google Scholar 

  10. Wang L, Li J, March JC, Valdes JJ, Bentley WE (2005) LuxS-dependent gene regulation in Escherichia coli K-12 revealed by genomic expression profiling. J Bacteriol 187:8350–8360

    Article  CAS  Google Scholar 

  11. Schauder S, Penna L, Ritton A, Manin C, Parker F, Renauld-Mongenie G (2005) Proteomics analysis by two-dimensional differential gel electrophoresis reveals the lack of a broad response of Neisseria meningitidis to in vitro-produced AI-2. J Bacteriol 187:392–395

    Article  CAS  Google Scholar 

  12. Slaughter JC (1999) The naturally occurring furanones: formation and function from pheromone to food. Biol Rev Camb Philos Soc 74:259–276

    Article  Google Scholar 

  13. Xavier KB, Bassler BL (2005) Interference with AI-2 mediated bacterial cell–cell communication. Nature 437:750–753

    Article  CAS  Google Scholar 

  14. Ndagijimana M, Vallicelli M, Cocconcelli PS, Cappa F, Patrignani F, Lanciotti R, Guerzoni ME (2006) Two 2[5 H]-furanones as possible signalling molecules in Lactobacillus helveticus. Appl Environ Microbiol 72:6053–6061

    Article  CAS  Google Scholar 

  15. Sturme MHJ, Francke C, Siezen RJ, de Vos WM, Kleerebezem M (2007) Making sense of quorum sensing in lactobacilli: a special focus on Lactobacillus plantarum WCFS1. Microbiology 153:3939–3947

    Article  CAS  Google Scholar 

  16. Maldonado A, Ruiz-Barba JL, Jiménez-Díaz R (2004) Production of plantaricin NC8 by Lactobacillus plantarum NC8 is induced in the presence of different types of Gram-positive bacteria. Arch Microbiol 181:8–16

    Article  CAS  Google Scholar 

  17. Diep DB, Straume D, Kjos M, Torres C, Nes IF (2009) An overview of the mosaic bacteriocin pln loci from Lactobacillus plantarum. Peptides 30:1562–1574

    Article  CAS  Google Scholar 

  18. Nes IF, Diep DB, Havarstein LS, Brurberg MB, Eijsink V, Holo H (1996) Biosynthesis of bacteriocins in lactic acid bacteria. Ant Van Leeuw 70:113–128

    Article  CAS  Google Scholar 

  19. Diep DB, Havarstein LS, Nissen-Meyer J, Nes IF (1994) The gene encoding plantaricin A, a bacteriocin from Lactobacillus plantarum C11, is located on the same transcription unit as an agr-like regulatory system. Appl Environ Microbiol 60:160–166

    CAS  Google Scholar 

  20. Hauge HH, Mantzilas D, Moll GN, Konings WN, Driessen AJ, Eijsink VG, Nissen-Meyer J (1998) Plantaricin A is an amphiphilic alpha-helical bacteriocin-like pheromone which exerts antimicrobial and pheromone activities through different mechanisms. Biochemistry 37:16026–16032

    Article  CAS  Google Scholar 

  21. Anderssen EL, Diep DB, Nes IF, Eijsink VG, Nissen-Meyer J (1998) Antagonistic activity of Lactobacillus plantarum C11: two new two-peptide bacteriocins, plantaricins EF and JK, and the induction factor plantaricin A. Appl Environ Microbiol 64:2269–2272

    CAS  Google Scholar 

  22. Kristiansen PE, Fimland G, Mantzilas D, Nissen-Meyer J (2005) Structure and mode of action of the membrane-permeabilizing antimicrobial peptide pheromone plantaricin A. J Biol Chem 280:22945–22950

    Article  CAS  Google Scholar 

  23. Navarro L, Rojo-Bezares B, Saenz Y, Diez L, Zarazaga M, Ruiz-Larrea F, Torres C (2008) Comparative study of the pln locus of the quorum sensing regulated bacteriocin- producing L. plantarum J51 strain. Int J Food Microbiol 128:390–394

    Article  CAS  Google Scholar 

  24. Fujiya M, Musch MW, Nakagawa Y, Hu S, Alverdy J, Kohgo Y, Schneewind O, Jabri B, Chang EB (2007) The Bacillus subtilis quorum sensing molecule CSF contributes to intestinal homeostasis via OCTN2, a host cell membrane transporter. Cell Host Microbe 1:299–308

    Article  CAS  Google Scholar 

  25. Sieuwerts S, de Bok FAM, Hugenholtz J, van Hylckama Vlieg JET (2008) Unraveling microbial interactions in food fermentations: from classical to genomics approaches. Appl Environ Microbiol 74:4997–5007

    Article  CAS  Google Scholar 

  26. Bolotin A, Quinquis B, Renault P, Sorokin A, Ehrlich SD, Kulakauskas S, Lapidus A, Goltsman E, Mazur M, Pusch GD, Fonstein M, Overbeek R, Kyprides N, Purnelle B, Prozzi D, Ngui K, Masuy D, Hancy F, Burteau S, Boutry M, Delcour J, Goffeau A, Hols P (2004) Complete sequence and comparative genome analysis of the dairy bacterium Streptococcus thermophilus. Nat Biotechnol 22:1554–1558

    Article  CAS  Google Scholar 

  27. Foucaud C, Poolman B (1992) Lactose transport system of Streptococcus thermophilus. Functional reconstitution of the protein and characterization of the kinetic mechanism of transport. J Biol Chem 267:22087–22094

    CAS  Google Scholar 

  28. Hutkins R, Morris HA, McKay LL (1985) Galactokinase activity in Streptococcus thermophilus. Appl Environ Microbiol 50:777–780

    CAS  Google Scholar 

  29. Desmazeaud MJ (1990) Le lait milieu de culture. Microbiol Alim Nutr 8:313–325

    CAS  Google Scholar 

  30. Hols P, Hancy F, Fontaine L, Grossiord B, Prozzi D, Leblond-Bourget N, Decaris B, Bolotin A, Delorme C, Ehrlich SD, Guédon E, Monnet V, Renault P, Kleerebezem M (2005) New insights in the molecular biology and physiology of Streptococcus thermophilus revealed by comparative genomics. FEMS Microbiol Rev 29:435–463

    CAS  Google Scholar 

  31. Letort C, Nardi M, Garault P, Monnet V, Juillard V (2002) Casein utilization by Streptococcus thermophilus results in a diauxic growth in milk. Appl Environ Microbiol 68:3162–3165

    Article  CAS  Google Scholar 

  32. Shahbal S, Hemme D, Desmazeaud MJ (1991) High cell wall associated proteinase activity of some Streptococcus thermophilus strains (H-strains) correlated with a high acidification rate in milk. Lait 71:351–357

    Article  CAS  Google Scholar 

  33. Herve-Jimenez L, Guillouard I, Guedon E, Gautier C, Boudebbouze S, Hols P, Monnet V, Rul F, Maguin E (2008) Physiology of Streptococcus thermophilus during the late stage of milk fermentation with special regard to sulfur amino-acid metabolism. Proteomics 8:4273–4286

    Article  CAS  Google Scholar 

  34. Withworth DE, Cock PJA (2008) Two-component systems of the myxobacteria: structure, diversity and evolutionary relationships. Microbiology 154:360–372

    Article  Google Scholar 

  35. Galperin MY (2005) A census of membrane-bound and intracellular signal transduction proteins in bacteria: bacterial IQ extroverts and introverts. BMC Microbiol 5:35–59

    Article  Google Scholar 

  36. Thevenard B, Rasoava N, Fourcassié P, Monnet V (2011) Characterization of Streptococcus thermophilus two-component system: in silico analysis, functional analysis and expression of response regulator genes in pure or mixed culture with yogurt partner Lactobacillus delbrueckii subsp. bulgaricus. Int J Food Microbiol 151:171–181

    Article  CAS  Google Scholar 

  37. Herve-Jimenez L, Guillouard I, Guedon E, Boudebbouze S, Hols P, Monnet V, Maguin E, Rul F (2009) Postgenomic analysis of Streptococcus thermophilus coclutivated in milk with Lactobacillus delbrueckii subsp. bulgaricus: involvement of nitrogen, purine, and iron metabolism. Appl Environ Microbiol 75:2062–2073

    Article  CAS  Google Scholar 

  38. Rul F, Ben-Yahia L, Chegdani F, Wrzosek L, Thomas S, Noordine M-L, Gitton C, Cherbuy C, Langella P, Thomas M (2011) Impact of the metabolic activity of Streptococcus thermophilus of the colon epithelium of gnotobiotic rats. J Biol Chem 286:10288–10296

    Article  CAS  Google Scholar 

  39. Williams P, Winzer K, Chan WC, Cámara M (2007) Look who’s talking: communication and quorum sensing in the bacterial world. Philos Trans R Soc Lond B Biol Sci 362:1119–1134

    Article  CAS  Google Scholar 

  40. Rocha-Estrada J, Aceves-Diez AE, Guarneros G, de la Torre M (2010) The RNPP family of quorum sensing proteins in Gram-positive bacteria. Appl Microbiol Biotechnol 87:913–923

    Article  CAS  Google Scholar 

  41. Fleuchot B, Gitton C, Guillot A, Vidic J, Nicolas P, Besset C, Fontaine L, Hols P, Leblond-Bouget N, Monnet V, Gardan R (2011) Rgg proteins associated with internalized small hydrophobic peptides: a new quorum sensing mechanism in streptococci. Mol Microbiol 80:1102–1119

    Article  CAS  Google Scholar 

  42. Nychas G-JE, Skandamis P (2005) Fresh meat spoilage and modified atmosphere packaging (MAP). In: Sofos JN (ed) Improving the safety of fresh meat. CRC/Woodhead Publishing Limited, Cambridge, UK, p 461

    Chapter  Google Scholar 

  43. Blana VA, Doulgeraki A, Nychas G-JE (2011) Autoinducer-2–like activity in lactic acid bacteria isolated from minced beef packaged under modified atmospheres. J Food Prot 74:631–635

    Article  Google Scholar 

  44. Nychas G-JE, Dourou D, Skandamis P, Koutsoumanis K, Baranyi J, Sofos J (2009) Effect of microbial cell-free meat extract on the growth of spoilage bacteria. J Appl Microbiol 107:1819–1829

    Article  CAS  Google Scholar 

  45. Pinto UM, Viana ES, Martins ML, Vanetti MCD (2007) Detection of acylated homoserine lactones in gram-negative proteolytic psychrotrophic bacteria isolated from cooled raw milk. Food Control 18:1322–1327

    Article  CAS  Google Scholar 

  46. Ercolini D, Russo F, Torrieri E, Masi P, Villani F (2006) Changes in the spoilage-related microbiota of beef during refrigerated storage under different packaging conditions. Appl Environ Microbiol 72:4663–4671

    Article  CAS  Google Scholar 

  47. Jay JM, Vilai JP, Hughes ME (2003) Profile and activity of the bacterial biota of ground beef held from freshness to spoilage at 5–7 °C. Int J Food Microbiol 81:105–111

    Article  CAS  Google Scholar 

  48. Bruhn JB, Christensen AB, Flodgaard LR, Nielsen KF, Larsen TO, Givskov M, Gram L (2004) Presence of acylated homoserine lactones (AHLs) and AHL-producing bacteria in meat and potential role of AHL in spoilage of meat. Appl Environ Microbiol 70:4293–4302

    Article  CAS  Google Scholar 

  49. Stanbridge LH, Davies AR (1998) The microbiology of chill-stored meat. In: Davies AR, Board RG (eds) The microbiology of meat and poultry. Blackie Academic & Professional, London, p 174

    Google Scholar 

  50. Ferrocino I, Ercolini D, Villani F, Moorhead SM, Griffiths MW (2009) Pseudomonas fragi strains isolated from meat do not produce N-Acyl homoserine lactones as signal molecules. J Food Prot 72:2597–2601

    Google Scholar 

  51. Widmer KW, Soni KA, Hume ME, Beier RC, Jesudhasan P, Pillai SD (2007) Identification of poultry meat–derived fatty acids functioning as quorum sensing signal inhibitors to autoinducer- 2 (AI-2). J Food Sci 72:M363–M368

    Article  CAS  Google Scholar 

  52. Lu L, Hume ME, Pillai SD (2004) Autoinducer-2–like activity associated with foods and its interaction with food additives. J Food Prot 67:1457–1462

    CAS  Google Scholar 

  53. Corry JE, Atabay HI (2001) Poultry as a source of Campylobacter and related organisms. Symp Ser Soc Appl Microbiol 30:96S–114S

    Google Scholar 

  54. Park SF (2002) The physiology of Campylobacter species and its relevance to their role as foodborne pathogens. Int J Food Microbiol 74:177–188

    Article  CAS  Google Scholar 

  55. Davis MA, Conner DE (2007) Survival of Campylobacter jejuni on poultry skin and meat at varying temperatures. Poult Sci 86:765–767

    CAS  Google Scholar 

  56. El-Shibiny A, Connerton P, Connerton I (2009) Survival at refrigeration and freezing temperatures of Campylobacter coli and Campylobacter jejuni on chicken skin applied as axenic and mixed inoculums. Int J Food Microbiol 131:197–202

    Article  CAS  Google Scholar 

  57. Ligowska M, Cohn MT, Stabler RA, Wre BW, Brøndsted L (2011) Effect of chicken meat environment on gene expression of Campylobacter jejuni and its relevance to survival in food. Int J Food Microbiol 145:S111–S115

    Article  CAS  Google Scholar 

  58. Feng P, Weagant SD (2002) Bacteriological analytical manual online. Diarrheagenic Escherichia coli. Available from: http://www.cfsan.fda.gov/%7Eebam/bam-4a.html

  59. Uhlich GA, Cooke PH, Solomon EB (2006) Analysis of the red-dry-rough phenotype of an Escherichia coli O157:H7 strain and its role in biofilm formation and resistance to antibacterial agents. Appl Environ Microbiol 72:2564–2572

    Article  CAS  Google Scholar 

  60. Hentzer M, Givskov M (2003) Pharmacological inhibition of quorum sensing for the treatment of chronic bacterial infections. J Clin Investig 112:1300–1307

    CAS  Google Scholar 

  61. Molina L, Constantinescu F, Michel L, Reimmann C, Duffy B, Défago L (2003) Degradation of pathogen quorum sensing molecules by soil bacteria: a preventive and curative biological control mechanism. FEMS Microbiol Ecol 45:71–81

    Article  CAS  Google Scholar 

  62. Medina-Martìnez MS, Uyttendaele M, Rajkovic A, Nadal P, Debevere J (2007) Degradation of N-acyl-L-homoserine lactones by Bacillus cereus in culture media and pork extract. Appl Environ Microbiol 73:2329–2332

    Article  Google Scholar 

  63. Fast W, Tipton PA (2012) The enzymes of bacterial census and censorship. Trends Biochem Sci 37:7–14

    Article  CAS  Google Scholar 

  64. Huang JJ, Han JI, Zhang LH, Leadbetter JR (2003) Utilization of acyl-homoserine lactone quorum signals for growth by a soil pseudomonad and Pseudomonas aeruginosa PAO1. Appl Environ Microbiol 69:5941–5949

    Article  CAS  Google Scholar 

  65. Choo JH, Rukayadi Y, Hwang JK (2006) Inhibition of bacterial quorum sensing by vanilla extract. Lett Appl Microbiol 42:637–641

    CAS  Google Scholar 

  66. Zhu H, Sun SJ (2008) Inhibition of bacterial quorum sensing-regulated behaviors by Tremella fuciformis extract. Curr Microbiol 57:418–422

    Article  CAS  Google Scholar 

  67. Givskov M, de Nys R, Manefield M, Gram L, Maximilien R, Eberl L, Molin S, Steinberg PD, Kjelleberg S (1996) Eukaryotic interference with homoserine lactone-mediated prokaryotic signaling. J Bacteriol 178:6618–6622

    CAS  Google Scholar 

  68. Vasanthi HR, Mukherjee S, Das DK (2009) Potential health benefits of broccoli – a chemico-biological overview. Mini Rev Med Chem 9:749–759

    Article  CAS  Google Scholar 

  69. Sperandio V, Torres AG, Jarvis B, Nataro JP, Kaper JB (2003) Bacteria–host communication: the language of hormones. Proc Natl Acad Sci USA 100:8951–8956

    Article  CAS  Google Scholar 

  70. Jakobsen TH, Bragason SK, Phipps RK, Christensen LD, van Gennip M, Alhede M, Skindersoe M, Larsen TO, Høiby N, Bjarnsholt T, Givskov M (2012) Food as a source for quorum sensing inhibitors: iberin from horseradish revealed as a quorum sensing inhibitor of Pseudomonas aeruginosa. Appl Environ Microbiol 78:2410–2421

    Article  CAS  Google Scholar 

  71. Wang R, Starkey M, Hazan R, Rahme LG (2012) Honey’s ability to counter bacterial infections arises from both bactericidal compounds and QS inhibition. Front Microbiol 3:1–8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Marco Gobbetti and Rafaella Di Cagno

About this chapter

Cite this chapter

Gobbetti, M., Di Cagno, R. (2012). The Behavior in Foods. In: Bacterial Communication in Foods. SpringerBriefs in Food, Health, and Nutrition. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-5656-8_3

Download citation

Publish with us

Policies and ethics