Skip to main content

The Phenotypes

  • Chapter
  • First Online:

Part of the book series: SpringerBriefs in Food, Health, and Nutrition ((BRIEFSFOOD))

Abstract

Quorum-sensing circuitries and related bacterial signals may regulate and induce a large number of phenotypes. Virulence, synthesis of toxins and exopolysaccharides, biofilm formation, and synthesis of bacteriocins, including the peptide pheromone plantaricin A, having a dual role, are some of the phenotypes described in this chapter. Several of these phenotypes and their mechanisms of control may be of marked interest in relation to foods, either in terms of sensory and nutritional quality or considering foods themselves as vehicles of pathogen bacteria.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hentzer M, Wu H, Andersen JB, Riedel K, Rasmussen TB, Bagge N, Schembri MA, Song Z, Kristoffersen P, Manefield M, Costerton JW, Molin S, Eberl L, Steinberg P, Kjelleberg S, Høiby N, Givskov M (2003) Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J 22:3803–3815

    Article  CAS  Google Scholar 

  2. Wagner VE, Gillis RJ, Iglewski B (2004) Transcriptome analysis of quorum sensing regulation and virulence factor expression in Pseudomonas aeruginosa. Vaccine 22:S15–S20

    Article  CAS  Google Scholar 

  3. Wu L, Estrada O, Zaborina O, Bains M, Shen L, Kohler JE, Patel N, Musch MW, Chang EB, Fu Y-X, Jacobs MA, Nishimura MI, Hancock REW, Turner JR, Alverdy JC (2005) Recognition of host immune activation by Pseudomonas aeruginosa. Science 309:774–777

    Article  CAS  Google Scholar 

  4. Nouwens AS, Beatson SA, Whitchurch CB, Walsh BJ, Schweizer HP, Mattick JS, Cordwell SJ (2003) Proteome analysis of extracellular proteins regulated by the las and rhl quorum sensing system in Pseudomonas aeruginosa PAO1. Microbiology 149:1311–1322

    Article  CAS  Google Scholar 

  5. Braun P, de Groot A, Bitter W, Tommassen J (1998) Secretion of elastinolytic enzymes and their propeptides by Pseudomonas aeruginosa. J Bacteriol 180:3467–3469

    CAS  Google Scholar 

  6. Folders J, Tommassen J, Van Loon LC, Bitter W (2000) Identification of a chitin-binding protein secreted by Pseudomonas aeruginosa. J Bacteriol 182:1257–1263

    Article  CAS  Google Scholar 

  7. Nakao H, Watanabe H, Nakayama S, Takeda T (1995) yst gene expression in Yersinia enterocolitica is positively regulated by a chromosomal region that is highly homologous to Escherichia coli host factor 1 gene (hfq). Mol Microbiol 18:859–865

    Article  CAS  Google Scholar 

  8. Robertson GT, Loop RM Jr (1999) The Brucella abortus host factor I (HF-I) protein contributes to stress resistance during stationary phase and is a major determinant of virulence in mice. Mol Microbiol 34:690–700

    Article  CAS  Google Scholar 

  9. Coulthurst SJ, Monson RE, Salmond GPC (2008) Quorum sensing in the soft-rot Erwinias. In: Winans SC, Bassler BL (eds) Chemical communication among bacteria. ASM Press, Washington, DC, p 185

    Google Scholar 

  10. Lewenza S, Conway B, Greenberg EP, Sokol PA (1999) Quorum sensing in Burkholderia cepacia: identification of the LuxRI homologs CepRI. J Bacteriol 181:748–756

    CAS  Google Scholar 

  11. Gotschlich A, Huber B, Geisenberger O, Tögl A, Steidle A, Riedel K, Hill P, Tümmler B, Vandamme P, Middleton B, Camara M, Williams P, Hardman A, Eberl L (2000) Synthesis of multiple N-acyl-homoserine lactones is wide-spread among the members of the Burkholderia cepacia complex. Syst Appl Microbiol 24:1–14

    Article  Google Scholar 

  12. Huber B, Riedel K, Hentzer M, Heydorn A, Gotschlich A, Givskov M, Molin S, Eberl L (2001) The cep quorum sensing system of Burkholderia cepacia H111 controls biofilm formation and swarming motility. Microbiology 147:2517–2528

    CAS  Google Scholar 

  13. Lewenza S, Sokol PA (2001) Regulation of ornibactin biosynthesis and N-acyl-L-homoserine lactone production by CepR in Burkholderia cepacia. J Bacteriol 183:2212–2218

    Article  CAS  Google Scholar 

  14. Riedel K, Aravalo-Ferro C, Reil G, Gorg A, Lottspeich F, Eberl L (2003) Analysis of the quorum sensing Burkholderia cepacia H111 by proteomics. Electrophoresis 24:740–750

    Article  CAS  Google Scholar 

  15. Hanna SL, Sherman NE, Kinter MT, Goldberg JB (2000) Comparison of proteins expressed by Pseudomonas aeruginosa strains representing initial and chronic isolates from a cystic fibrosis patient: an analysis by 2-D gel electrophoresis and capillary column liquid chromatography-tandem mass spectrometry. Microbiology 146:2495–2508

    CAS  Google Scholar 

  16. Sauer K, Camper AK, Ehrlich GD, Costerton JW, Davies DG (2002) Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 184:1140–1154

    Article  CAS  Google Scholar 

  17. Shao CP, Hor LI (2000) Metalloprotease is not essential for Vibrio vulnificus virulence in mice. Inf Imm 68:3569–3573

    Article  CAS  Google Scholar 

  18. Jeong HS, Rhee JE, Lee JH, Choi HK, Kim DI, Lee MH, Park S-J, Choi SH (2003) Identification of Vibrio vulnificus Irp and its influence on survival under various stresses. J Microbiol Biotechnol 13:159–163

    CAS  Google Scholar 

  19. Shin NR, Lee DY, Yoo HS (2007) Identification of quorum sensing-related regulons in Vibrio vulnificus by two-dimensional gel electrophoresis and differentially displayed reverse transcriptase PCR. FEMS Immunol Med Microbiol 50:94–103

    Article  CAS  Google Scholar 

  20. Miyoshi N, Shinoda S (1997) Bacterial metalloprotease as the toxic factor in infection. J Toxicol Toxin Rev 16:177–194

    CAS  Google Scholar 

  21. Sgarrella F, Poddie FP, Meloni MA, Sciola L, Pippia P, Tozzi MG (1997) Channelling of deoxyribose moiety of exogenous DNA into carbohydrate metabolism: role of deoxyriboaldolase. Comp Biochem Physiol B Biochem Mol Biol 117:253–257

    Article  CAS  Google Scholar 

  22. Di Cagno R, De Angelis M, Calasso M, Gobbetti M (2011) Proteomics of the bacterial cross-talk by quorum sensing. J Proteomics 74:19–34

    Article  Google Scholar 

  23. Lereclus D, Agaisse H, Gominet M, Salamitou S, Sanchis V (1996) Identification of a Bacillus thuringiensis gene that positively regulates transcription of the phosphatidylinositol-specific phospholipase C gene at the onset of the stationary phase. J Bacteriol 178:2749–2756

    CAS  Google Scholar 

  24. Rasko DA, Altherr MR, Han CS, Ravel J (2005) Genomics of the Bacillus cereus group of organisms. FEMS Microbiol Rev 29:303–329

    CAS  Google Scholar 

  25. Dixon TC, Meselson M, Guillemin J, Hanna PC (1999) Anthrax. N Engl J Med 341:815–826

    Article  CAS  Google Scholar 

  26. Slamti L, Lereclus D (2002) A cell-cell signaling peptide activates the PlcR virulence regulon in bacteria of the Bacillus cereus group. EMBO J 21:4550–4559

    Article  CAS  Google Scholar 

  27. Ohtani K, Hayashi H, Shimizu T (2002) The luxS gene is involved in cell-cell signalling for toxin production in Clostridium perfringens. Mol Microbiol 44:171–179

    Article  CAS  Google Scholar 

  28. Donlan RM (2002) Biofilms: microbial life on surfaces. Emerging Infect Dis 8:881–890

    Article  Google Scholar 

  29. Flemming HC, Wingender J (2001) Relevance of microbial extracellular polymeric substances (EPSs)-part I: structural and ecological aspects. Water Sci Technol 43:1–8

    CAS  Google Scholar 

  30. Sutherland IW (2001) Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 147:3–9

    CAS  Google Scholar 

  31. Korber DR, Lawrence JR, Lappin-Scott HM, Costerton JW (1995) Growth of microorganisms on surfaces. In: Lappin-Scott HM, Costerton JW (eds) Microbial biofilms, plant and microbial biotechnology research, vol 5. Cambridge University Press, Cambridge, UK, p 15

    Google Scholar 

  32. Ruiz LM, Valenzuela S, Castro M, Gonzalez A, Frezza M, Soulère L, Rohwerder T, Queneau Y, Doutheau A, Sand W, Jerez CA, Guiliani N (2008) AHL communication is a widespread phenomenon in biomining bacteria and seems to be involved in mineral-adhesion efficiency. Hydrometallurgy 94:133–137

    Article  CAS  Google Scholar 

  33. Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346

    Article  CAS  Google Scholar 

  34. von Bodman SB, Majerczak DR, Coplin DL (1998) A negative regulator mediates quorum sensing control of exopolysaccharide production in Pantoea stewartii subsp. stewartii. Proc Natl Acad Sci USA 95:7687–7692

    Article  Google Scholar 

  35. Rivas M, Seeger M, Holmes DS, Jedlicki E (2005) A Lux-like quorum sensing system in the extreme acidophile Acidithiobacillus ferrooxidans. Biol Res 38:283–297

    Article  CAS  Google Scholar 

  36. Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199

    Article  CAS  Google Scholar 

  37. Cheirsilp B, Shoji H, Shimizu H, Shioya S (2003) Interactions between Lactobacillus kefiranofaciens and Saccharomyces cerevisiae in mixed culture for kefiran production. J Biosci Bioeng 96:279–284

    CAS  Google Scholar 

  38. Chao L, Levin BR (1981) Structured habitats and the evolution of anticompetitor toxins in bacteria. Proc Natl Acad Sci USA 78:6324–6328

    Article  CAS  Google Scholar 

  39. Hooshangi S, Bentley WE (2008) From unicellular properties to multicellular behavior: bacteria quorum sensing circuitry and applications. Curr Opin Biotechnol 19:550–555

    Article  CAS  Google Scholar 

  40. Micheli L, Uccelletti D, Palleschi C, Crescenzi V (1999) Isolation and characterisation of a ropy Lactobacillus strain producing the exopolysaccharide kefiran. Appl Environ Microbiol 53:69–74

    CAS  Google Scholar 

  41. Mercier KA, Cort JR, Kennedy MA, Lockert EE, Ni S, Shortridge MD, Powers R (2009) Structure and function of Pseudomonas aeruginosa protein PA1324 (21–170). Prot Sci 18:606–618

    CAS  Google Scholar 

  42. Cramton SE, Gerke C, Schnell NF, Nichols WW, Gotz F (1999) The intercellular adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm formation. Infect Immun 67:5427–5433

    CAS  Google Scholar 

  43. Dobinsky S, Kiel K, Rohde H, Bartscht K, Knobloch JKM, Horstkotte MA, Mack D (2003) Glucose-related dissociation between icaADBC transcription and biofilm expression by Staphylococcus epidermidis: evidence for an additional factor required for polysaccharide intercellular adhesin synthesis. J Bacteriol 185:2879–2886

    Article  CAS  Google Scholar 

  44. Gerke C, Kraft A, Sussmuth R, Schweitzer O, Gotz F (1998) Characterization of the N-acetylglucosaminyltransferase activity involved in the biosynthesis of the Staphylococcus epidermidis polysaccharide intercellular adhesin. J Biol Chem 273:18586–18593

    Article  CAS  Google Scholar 

  45. Shanks RMQ, Donegan NP, Graber ML, Buckingham SE, Zegans ME, Cheung AL, O’Toole GA (2005) Heparin stimulates Staphylococcus aureus biofilm formation. Infect Immun 73:4596–4606

    Article  CAS  Google Scholar 

  46. Plotkowski MC, Costa AO, Morandi V, Barbosa HS, Nader HB, De Benizmann S, Puchelle E (2001) Role of heparan sulphate proteoglycans as potential receptors for non-piliated Pseudomonas aeruginosa adherence to non-polarised airway epithelial cells. J Med Microbiol 50:183–190

    CAS  Google Scholar 

  47. Read RR, Costerton JW (1987) Purification and characterization of adhesive exopolysaccharides from Pseudomonas putida and Pseudomonas fluorescens. Can J Microbiol 33:1080–1090

    Article  CAS  Google Scholar 

  48. Prouty AM, Schwesinger WH, Gunn JS (2002) Biofilm formation and interaction with the surfaces of gallstones by Salmonella spp. Infect Immun 70:2640–2649

    Article  CAS  Google Scholar 

  49. Sonck KAJ, Kint G, Schoofs G, Wauden CV, Vanderleyden J, De Keersmaecker SCJ (2009) The proteome of Salmonella typhimurium grown under in vivo-mimicking conditions. Proteomics 9:565–579

    Article  CAS  Google Scholar 

  50. Taga ME, Semmelhack JL, Bassler BL (2001) The LuxS-dependent autoinducer AI-2 controls the expression of an ABC transporter that functions in AI-2 uptake in Salmonella typhimurium. Mol Microbiol 42:777–793

    Article  CAS  Google Scholar 

  51. Groisman EA (2001) The pleiotropic two-component regulatory system PhoP-PhoQ. J Bacteriol 183:1835–1842

    Article  CAS  Google Scholar 

  52. Agudo D, Mendoza MT, Castañares C, Nombela C, Rotger R (2004) A proteomic approach to study Salmonella typhi periplasmic proteins altered by a lack of the DsbA thiol: disulfide isomerise. Proteomics 4:355–363

    Article  CAS  Google Scholar 

  53. Stark RM, Gerwig GJ, Pitman RS, Potts LF, Williams NA, Greenman J, Weinzweig IP, Hirst TR, Millar MR (1999) Biofilm formation by Helicobacter pylori. Lett Appl Microbiol 28:121–126

    Article  CAS  Google Scholar 

  54. Romling U (2005) Characterization of the rdar morphotype, a multicellular behaviour in Enterobacteriaceae. Cell Mol Life Sci 62:1234–1246

    Article  CAS  Google Scholar 

  55. Parkhill J, Wren BW, Mungall K, Ketley JM, Churcher C, Basham D, Chillingworth T, Davies RM, Feltwell T, Holroyd S, Jagels K, Karlyshev AV, Moule S, Pallen MJ, Penn CW, Quail MA, Rajandream MA, Rutherford KM, van Vliet AH, Whitehead S, Barrell BG (2000) The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403:665–668

    Article  CAS  Google Scholar 

  56. Svensson SL, Davis LM, Mac Kichan JK, Allan BJ, Pajaniappan M, Thompson SA, Gaynor EC (2009) The CprS sensor kinase of the zootic pathogen Campylobacter jejuni influences biofilm formation and is required for optimal chick colonization. Mol Microbiol 71:253–272

    Article  CAS  Google Scholar 

  57. Sturme MHJ, Nakayama J, Molenaar D, Murakami Y, Kunugi R, Fujii T, Vaughan EE, Kleerebezem M, de Vos WM (2005) An agr-like two-component regulatory system in Lactobacillus plantarum is involved in production of a novel cyclic peptide and regulation of adherence. J Bacteriol 187:5224–5235

    Article  CAS  Google Scholar 

  58. Dufour P, Jarraud S, Vandenesch F, Greenland T, Novick RP, Bes M, Etienne J (2002) High genetic variability of the agr locus in Staphylococcus species. J Bacteriol 184:1180–1186

    Article  CAS  Google Scholar 

  59. Nakayama J, Kariyama R, Kumon H (2002) Description of a 23.9-kilobase chromosomal deletion containing a region encoding fsr genes which mainly determines the gelatinase-negative phenotype of clinical isolates of Enterococcus faecalis in urine. Appl Environ Microbiol 68:3152–3155

    Article  CAS  Google Scholar 

  60. Autret N, Raynaud C, Dubail I, Berche P, Charbit A (2003) Identification of the agr locus of Listeria monocytogenes: role in bacterial virulence. Infect Immun 71:4463–4471

    Article  CAS  Google Scholar 

  61. De Vos WM, Bron PA, Kleerebezem M (2004) Post-genomics of lactic acid bacteria and other food-grade bacteria to discover gut functionality. Curr Opin Biotechnol 15:86–93

    Article  Google Scholar 

  62. Nissen-Meyer J, Nes IF (1997) Ribosomally synthesized antimicrobial peptides: their function, structure, biogenesis, and mechanism of action. Arch Microbiol 167:67–77

    Article  CAS  Google Scholar 

  63. Nes IF, Diep DB, Havarstein LS, Brurberg MB, Eijsink V, Holo H (1996) Biosynthesis of bacteriocins in lactic acid bacteria. Ant Van Leeuw 70:113–128

    Article  CAS  Google Scholar 

  64. Klaenhammer TR (1993) Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev 12:39–86

    CAS  Google Scholar 

  65. Cotter PD, Hill C, Ross RP (2005) Bacteriocins: developing innate immunity for food. Nat Rev Microbiol 3:777–788

    Article  CAS  Google Scholar 

  66. Klarin B, Johansson ML, Molin G, Larsson A, Jeppsson B (2005) Adhesion of the probiotic bacterium Lactobacillus plantarum 299v onto the gut mucosa in critically ill patients: a randomised open trial. Crit Care 9:R285–R293

    Article  Google Scholar 

  67. Hansen JN (1994) Nisin as a model food preservative. Crit Rev Food Sci Nutr 34:69–93

    Article  CAS  Google Scholar 

  68. Kleerebezem M, Quadri LE (2001) Peptide pheromone-dependent regulation of antimicrobial peptide production in Gram-positive bacteria: a case of multicellular behaviour. Peptides 22:1579–1596

    Article  CAS  Google Scholar 

  69. Kuipers OP, Beerthuizen MM, de Ruyter PGGA, Luesink EJ, de Vos WM (1995) Autoregulation of nisin biosynthesis in Lactococcus lactis by a signal transduction. J Biol Chem 270:27299–27304

    Article  CAS  Google Scholar 

  70. Gutowski-Eckel Z, Klei C, Siegers K, Bhom K, Hammalmen M, Entian KD (1994) Growth phase-dependent regulation and membrane localization of SpaB, a protein involved in biosynthesis of the lantibiotic subtilin. Appl Environ Microbiol 60:1–11

    CAS  Google Scholar 

  71. Heinzmann S, Entian KD, Stein T (2006) Engineering Bacillus subtilis ATCC 6633 for improved production of the lantibiotic subtilin. Appl Microbiol Biotechnol 69:532–536

    Article  CAS  Google Scholar 

  72. Fuchs SW, Jaskolla TW, Bochmann S, Kötter P, Wichelhaus T, Karas M, Stein T, Entian K-D (2011) Entianin, a novel subtilin-like lantibiotic from Bacillus subtilis subsp. spizizenii DSM 15029 T with high antimicrobial activity. Appl Environ Microbiol 77:1698–1707

    Article  CAS  Google Scholar 

  73. Stein T, Borchert S, Conrad B, Feesche J, Hofemeister B, Hofemeister J, Entian KD (2002) Two different lantibiotic-like peptides originate from the ericin gene cluster of Bacillus subtilis A1/3. J Bacteriol 184:1703–1711

    Article  CAS  Google Scholar 

  74. Hols P, Hancy F, Fontaine L, Grossiord B, Prozzi D, Leblond-Bourget N, Decaris B, Bolotin A, Delborme C, Ehrlich SD, Guèdon E, Monnet V, Renault P, Kleerebezem M (2005) New insights in the molecular biology and physiology of Streptococcus thermophilus revealed by comparative genomics. FEMS Microbiol Rev 29:435–463

    CAS  Google Scholar 

  75. Maldonado-Barragan A, Ruiz-Barba JL, Jimenez-Diaz R (2009) Knockout of three-component regulatory systems reveals that the apparently constitutive plantaricin production phenotype shown by Lactobacillus plantarum on solid medium is regulated via quorum sensing. Int J Food Microbiol 130:35–42

    Article  CAS  Google Scholar 

  76. Quadri LEN, Kleerebezem M, Kuipers OP, De Vos WM, Roy KL, Vederas JC, Stiles ME (1997) Characterization of a locus from Carnobacterium piscicola LV17B involved in bacteriocin production and immunity: evidence for global inducer-mediated transcriptional regulation. J Bacteriol 179:6163–6171

    CAS  Google Scholar 

  77. Diep DB, Håvarstein LS, Nes IF (1996) Characterization of the locus responsible for the bacteriocin production in Lactobacillus plantarum C11. J Bacteriol 178:4472–4483

    CAS  Google Scholar 

  78. Eijsink VGH, Brurberg MB, Middelhoven PH, Nes IF (1996) Induction of bacteriocin production in Lactobacillus sake by a secreted peptide. J Bacteriol 178:2232–2237

    CAS  Google Scholar 

  79. Nes IF, Eijsink VGH (1999) Regulation of group II peptide bacteriocin synthesis by quorum sensing mechanisms. In: Dunny GM, Winans SC (eds) Cell-cell signaling in bacteria. ASM Press, Washington, DC, p 175

    Google Scholar 

  80. Maldonado A, Ruiz-Barba JL, Jiménez-Díaz R (2004) Production of plantaricin NC8 by Lactobacillus plantarum NC8 is induced in the presence of different types of Gram-positive bacteria. Arch Microbiol 181:8–16

    Article  CAS  Google Scholar 

  81. Diep DB, Straume D, Kjos M, Torres C, Nes IF (2009) An overview of the mosaic bacteriocin pln loci from Lactobacillus plantarum. Peptides 30:1562–1574

    Article  CAS  Google Scholar 

  82. Di Cagno R, De Angelis M, Calasso M, Vincentini O, Vernocchi P, Ndagijimana M, De Vincenzi M, Dessi MR, Guerzoni ME, Gobbetti M (2010) Quorum sensing in sourdough Lactobacillus plantarum DC400: induction of plantaricin A (PlnA) under co-cultivation with other lactic acid bacteria and effect of PlnA on bacterial and Caco-2 cells. Proteomics 10:2175–2190

    Article  Google Scholar 

  83. Straume D, Kjos M, Nes IF, Diep DB (2007) Quorum sensing based bacteriocin production is down-regulated by N-terminally truncated species of gene activators. Mol Genet Genomics 278:283–293

    Article  CAS  Google Scholar 

  84. Hauge HH, Mantzilas D, Moll GN, Konings WN, Driessen AJ, Eijsink VG, Nissen-Meyer J (1998) Plantaricin A is an amphiphilic alpha-helical bacteriocin-like pheromone which exerts antimicrobial and pheromone activities through different mechanisms. Biochemistry 37:16026–16032

    Article  CAS  Google Scholar 

  85. Nissen-Meyer J, Larsen AG, Sletten K, Daeschel M, Nes IF (1993) Purification and characterization of plantaricin A, a Lactobacillus plantarum bacteriocin whose activity depends on the action of two peptides. J Gen Microbiol 139:1973–1978

    Article  CAS  Google Scholar 

  86. Fimland N, Rogne P, Fimland G, Nissen-Meyer J, Kristiansen PE (2008) Three-dimensional structure of the two peptides that constitute the two-peptide bacteriocin plantaricin EF. Biochim Biophys Acta 1784:1711–1719

    Article  CAS  Google Scholar 

  87. Quadri LEN (2002) Regulation of antimicrobial peptide production by autoinducer-mediated quorum sensing in lactic acid bacteria. Ant Van Leeuwen 82:133–145

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Marco Gobbetti and Rafaella Di Cagno

About this chapter

Cite this chapter

Gobbetti, M., Di Cagno, R. (2012). The Phenotypes. In: Bacterial Communication in Foods. SpringerBriefs in Food, Health, and Nutrition. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-5656-8_2

Download citation

Publish with us

Policies and ethics