Skip to main content

Pre-Clinical Modeling of Breast Cancer: Which Model to Choose?

  • Chapter
  • First Online:
Book cover Breast Cancer Metastasis and Drug Resistance
  • 2532 Accesses

Abstract

Breast cancer is a highly heterogeneous disease with several morphological and genetic sub-types identified in recent decades. The recognition that the breast microenvironment plays an active role in dictating mammary epithelial cell behavior calls for a need for models which better define the in vivo environment to use in breast research. However, given that breast cancer is so diverse one model is unlikely to recapitulate all aspects of breast cancer progression. Here we discuss the advantages and disadvantages of a variety of models available to researchers and outline their suitability to specific applications of breast cancer research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2D:

Two dimensional

3D:

Three dimensional

ECM:

Extracellular matrix

GEM:

Genetically engineered mice

MMTV-LTR:

Mouse mammary tumour virus- long terminal repeat

WAP:

Whey acidic protein

References

  1. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lonning PE, Borresen-Dale A-L, Brown PO, Botstein D (2000) Molecular portraits of human breast tumors. Nature 406(6797):747–752.doi:http://www.nature.com/nature/journal/v406/n6797/suppinfo/406747a0_S1.html

    Google Scholar 

  2. Sørlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Lønning PE, Børresen-Dale A-L (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 98(19):10869–10874. doi:10.1073/191367098

    Article  PubMed  Google Scholar 

  3. Curtis C, Shah SP, Chin S-F, Turashvili G, Rueda OM, Dunning MJ, Speed D, Lynch AG, Samarajiwa S, Yuan Y, Graf S, Ha G, Haffari G, Bashashati A, Russell R, McKinney S, Langerod A, Green A, Provenzano E, Wishart G, Pinder S, Watson P, Markowetz F, Murphy L, Ellis I, Purushotham A, Borresen-Dale A-L, Brenton JD, Tavare S, Caldas C, Aparicio S (2012) The genomic and transcriptomic architecture of 2,000 breast tumors reveals novel subgroups. Nature advance online publication. doi:http://www.nature.com/nature/journal/vaop/ncurrent/abs/nature10983.html#supplementary-information

  4. Forozan F, Veldman R, Ammerman CA, Parsa NZ, Kallioniemi A, Kallioniemi OP, Ethier SP (1999) Molecular cytogenetic analysis of 11 new breast cancer cell lines. Br J Cancer 81(8):1328–1334

    Article  PubMed  CAS  Google Scholar 

  5. Miller FR, Santner SJ, Tait L, Dawson PJ (2000) MCF10DCIS.com Xenograft Model of Human Comedo Ductal Carcinoma In Situ. J Natl Cancer Inst 92(14):1185a–1186. doi:10.1093/92.14.1185A

    Google Scholar 

  6. Charafe-Jauffret E, Ginestier C, Birnbaum D (2009) Breast cancer stem cells: tools and models to rely on. BMC Cancer 9(1):202

    Article  PubMed  Google Scholar 

  7. Holliday DL, Speirs V (2011) Choosing the right cell line for breast cancer research. Breast Cancer Res 13(4):215. doi:10.1186/2889

    Article  PubMed  Google Scholar 

  8. Burdall SE, Hanby AM, Lansdown MRJ, Speirs V (2003) Breast cancer cell lines: friend or foe? Breast Cancer Res 5(2):89. doi:10.1186/577

    Article  PubMed  Google Scholar 

  9. Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T, Clark L, Bayani N, Coppe JP, Tong F, Speed T, Spellman PT, DeVries S, Lapuk A, Wang NJ, Kuo WL, Stilwell JL, Pinkel D, Albertson DG, Waldman FM, McCormick F, Dickson RB, Johnson MD, Lippman M, Ethier S, Gazdar A, Gray JW (2006) A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10(6):515–527. doi:10.1016/2006.10.008

    Article  PubMed  CAS  Google Scholar 

  10. Weigelt B, Bissell MJ (2008) Unraveling the microenvironmental influences on the normal mammary gland and breast cancer. Semin Cancer Biol 18(5):311–321. doi:10.1016/2008.03.013S1044-579X(08)00034-5

    Article  PubMed  CAS  Google Scholar 

  11. Lutolf MP, Hubbell JA (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotech 23(1):47–55

    Article  CAS  Google Scholar 

  12. Tibbitt MW, Anseth KS (2009) Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol Bioeng 103(4):655–663. doi:10.1002/22361

    Article  PubMed  CAS  Google Scholar 

  13. Debnath J, Muthuswamy SK, Brugge JS (2003) Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods 30(3):256–268. doi:10.1016/s1046-2023(03)00032-x

    Article  PubMed  CAS  Google Scholar 

  14. Bissell MJ, Radisky DC, Rizki A, Weaver VM, Petersen OW (2002) The organizing principle: microenvironmental influences in the normal and malignant breast. Differentiation 70(9–10):537–546. doi:10.1046/1432-0436.2002.700907.x

    Article  PubMed  Google Scholar 

  15. Hebner C, Weaver VM, Debnath J (2008) Modeling morphogenesis and oncogenesis in three-dimensional breast epithelial cultures. Annu Rev Pathol: Mech Dis 3(1):313–339. doi:10.1146/annurev.pathmechdis.3.121806.151526

    Article  CAS  Google Scholar 

  16. Lopez JI, Mouw JK, Weaver VM (2008) Biomechanical regulation of cell orientation and fate. Oncogene 27(55):6981–6993

    Article  PubMed  CAS  Google Scholar 

  17. Swamydas M, Eddy J, Burg K, Dréau D (2010) Matrix compositions and the development of breast acini and ducts in 3D cultures. In Vitro Cellular Dev Biol-Animal 46(8):673–684. doi:10.1007/s11626-010-9323-1

    Article  CAS  Google Scholar 

  18. Runswick SK, O’Hare MJ, Jones L, Streuli CH, Garrod DR (2001) Desmosomal adhesion regulates epithelial morphogenesis and cell positioning. Nat Cell Biol 3(9):823–830

    Article  PubMed  CAS  Google Scholar 

  19. Novitskaya V, Romanska H, Dawoud M, Jones JL, Berditchevski F (2010) Tetraspanin CD151 regulates growth of mammary epithelial cells in three-dimensional extracellular matrix: implication for mammary ductal carcinoma in situ. Cancer Res 70(11):4698–4708. doi:10.1158/0008-5472.09-4330

    Article  PubMed  CAS  Google Scholar 

  20. Weaver VM, Petersen OW, Wang F, Larabell CA, Briand P, Damsky C, Bissell MJ (1997) Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. J Cell Biol 137(1):231–245. doi:10.1083/137.1.231

    Article  PubMed  CAS  Google Scholar 

  21. Provenzano PP, Inman DR, Eliceiri KW, Keely PJ (2009) Matrix density-Induced mechanoregulation of breast cell phenotype, signaling and gene expression through a FAK-ERK linkage. Oncogene 28(49):4326–4343. doi:10.1038/2009299

    Article  PubMed  CAS  Google Scholar 

  22. Dhimolea E, Maffini MV, Soto AM, Sonnenschein C (2010) The role of collagen reorganization on mammary epithelial morphogenesis in a 3D culture model. Biomaterials 31(13):3622–3630. doi:10.1016/2010.01.077

    Article  PubMed  CAS  Google Scholar 

  23. Liu H, Radisky DC, Wang F, Bissell MJ (2004) Polarity and proliferation are controlled by distinct signaling pathways downstream of PI3-kinase in breast epithelial tumor cells. J Cell Biol 164(4):603–612. doi:10.1083/200306090

    Article  PubMed  CAS  Google Scholar 

  24. Debnath J, Muthuswamy SK, Brugge JS (2003) Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods 30(3):256–268. doi:S104620230300032X

    Article  PubMed  CAS  Google Scholar 

  25. Streuli CH, Bailey N, Bissell MJ (1991) Control of mammary epithelial differentiation: basement membrane induces tissue-specific gene expression in the absence of cell–cell interaction and morphological polarity. J Cell Biol 115(5):1383–1395. doi:10.1083/115.5.1383

    Article  PubMed  CAS  Google Scholar 

  26. Wang F, Hansen RK, Radisky D, Yoneda T, Barcellos-Hoff MH, Petersen OW, Turley EA, Bissell MJ (2002) Phenotypic reversion or death of cancer cells by altering signaling pathways in three-dimensional contexts. J Nat Cancer Inst 94(19):1494–1503. doi:10.1093/94.19.1494

    Article  PubMed  CAS  Google Scholar 

  27. Krause S, Maffini MV, Soto AM, Sonnenschein C (2008) A novel 3d in vitro culture model to study stromal–epithelial interactions in the mammary gland. Tissue Eng PT C: Methods 14(3):261–271. doi:10.1089/2008.0030

    Article  CAS  Google Scholar 

  28. Wang X, Sun L, Maffini MV, Soto A, Sonnenschein C, Kaplan DL (2010) A complex 3D human tissue culture system based on mammary stromal cells and silk scaffolds for modeling breast morphogenesis and function. Biomaterials 31(14):3920–3929. doi:10.1016/2010.01.118

    Article  PubMed  CAS  Google Scholar 

  29. Wang X, Zhang X, Sun L, Subramanian B, Maffini MV, Soto A, Sonnenschein C, Kaplan DL (2009) Preadipocytes stimulate ductal morphogenesis and functional differentiation of human mammary epithelial cells on 3D silk scaffolds. Tissue Eng Part A 15(10):3087–3098. doi:10.1089/2008.0670

    Article  PubMed  CAS  Google Scholar 

  30. Shekhar MPV, Werdell J, Tait L (2000) Interaction with endothelial cells is a prerequisite for branching ductal-alveolar morphogenesis and hyperplasia of preneoplastic human breast epithelial cells: Regulation by estrogen. Cancer Res 60(2):439–449

    PubMed  CAS  Google Scholar 

  31. Holliday DL, Brouilette KT, Markert A, Gordon LA, Jones JL (2009) Novel multicellular organotypic models of normal and malignant breast: Tools for dissecting the role of the microenvironment in breast cancer progression. Breast Cancer Res 11(1):R3. doi:10.1186/2218

    Article  PubMed  Google Scholar 

  32. Holliday DL, Brouilette KT, Markert A, Gordon LA, Jones JL (2009) Novel multicellular organotypic models of normal and malignant breast: tools for dissecting the role of the microenvironment in breast cancer progression. Breast Cancer Res 11(1):R3. doi:10.1186/2218

    Article  PubMed  Google Scholar 

  33. Kleinman HK, McGarvey ML, Liotta LA, Robey PG, Tryggvason K, Martin GR (1982) Isolation and characterization of type IV procollagen, laminin, and heparan sulfate proteoglycan from the EHS sarcoma. Biochem 21(24):6188–6193

    Article  CAS  Google Scholar 

  34. Wisdom BJ, Gunwar S, Hudson MD, Noelken ME, Hudson BG (1992) Type IV collagen of Engelbreth-Holm-Swarm tumor matrix: Identification of constituent chains. Connect Tissue Res 27(4):225–234. doi:10.3109/03008209209006998

    Article  PubMed  Google Scholar 

  35. Vaillant F, Lindeman G, Visvader J (2011) Jekyll or Hyde: does Matrigel provide a more or less physiological environment in mammary repopulating assays? Breast Cancer Res 13(3):108

    Article  PubMed  Google Scholar 

  36. Leeper AD, Farrell J, Dixon JM, Wedden SE, Harrison DJ, Katz E (2011) Long-term culture of human breast cancer specimens and their analysis using optical projection tomography. J Vis Exp (53). doi:10.3791/3085

  37. Leeper AD, Farrell J, Williams LJ, Thomas JS, Michael Dixon J, Wedden SE, Harrison DJ, Katz E (2012) Determining tamoxifen sensitivity using primary breast cancer tissue in collagen-based three-dimensional culture. Biomaterials 33(3):907–915. doi:10.1016/2011.10.028

    Article  PubMed  CAS  Google Scholar 

  38. Hood CJ, Parham DM (1998) A simple method of tumour culture. Pathol- Res Pract 194(3):177–181. doi:10.1016/s0344-0338(98)80019-8

    Article  PubMed  CAS  Google Scholar 

  39. Longatto Filho A, Lopes JM, Schmitt FC (2010) Angiogenesis and breast cancer. J Oncol 2010

    Google Scholar 

  40. Iyengar P, Espina V, Williams TW, Lin Y, Berry D, Jelicks LA, Lee H, Temple K, Graves R, Pollard J, Chopra N, Russell RG, Sasisekharan R, Trock BJ, Lippman M, Calvert VS, Petricoin EF, Liotta L, Dadachova E, Pestell RG, Lisanti MP, Bonaldo P, Scherer PE (2005) Adipocyte-derived collagen VI affects early mammary tumor progression in vivo, demonstrating a critical interaction in the tumor/stroma microenvironment. J Clin Invest 115(5):1163–1176

    PubMed  CAS  Google Scholar 

  41. Celis JE, Moreira JMA, Cabezón T, Gromov P, Friis E, Rank F, Gromova I (2005) Identification of extracellular and intracellular signaling components of the mammary adipose tissue and its interstitial fluid in high risk breast cancer patients. Mol Cell Proteomics 4(4):492–522. doi:10.1074/M500030200

    Article  PubMed  CAS  Google Scholar 

  42. Israyelyan AH, Melancon JM, Lomax LG, Sehgal I, Leuschner C, Kearney MT, Chouljenko VN, Baghian A, Kousoulas KG (2007) Effective treatment of human breast tumor in a mouse xenograft model with herpes simplex virus type 1 specifying the NV1020 genomic deletion and the gBsyn3 syncytial mutation enabling high viral replication and spread in breast cancer cells. Hum Gene Ther 18(5):457–473. doi:10.1089/2006.145

    Article  PubMed  CAS  Google Scholar 

  43. Baselga J, Norton L, Albanell J, Kim YM, Mendelsohn J (1998) Recombinant humanized anti-HER2 antibody (Herceptin) enhances the antitumor activity of paclitaxel and doxorubicin against HER2/neu overexpressing human breast cancer xenografts. Cancer Res 58(13):2825–2831

    PubMed  CAS  Google Scholar 

  44. Eirew P, Stingl J, Raouf A, Turashvili G, Aparicio S, Emerman JT, Eaves CJ (2008) A method for quantifying normal human mammary epithelial stem cells with in vivo regenerative ability. Nat Med 14(12):1384–1389. doi:http://www.nature.com/nm/journal/v14/n12/suppinfo/nm.1791_S1.html

    Google Scholar 

  45. Nakayama T, Yao L, Tosato G (2004) Mast cell–derived angiopoietin-1 plays a critical role in the growth of plasma cell tumors. J Clin Invest 114(9):1317–1325

    PubMed  CAS  Google Scholar 

  46. Chen J, Yao Y, Gong C, Yu F, Su S, Chen J, Liu B, Deng H, Wang F, Lin L, Yao H, Su F, Anderson Karen S, Liu Q, Ewen Mark E, Yao X, Song E (2011) CCL18 from Tumor-Associated macrophages promotes breast cancer metastasis via PITPNM3. Cancer Cell 19(4):541–555. doi:10.1016/2011.02.006

    Article  PubMed  CAS  Google Scholar 

  47. Bernard D, Peakman M, Hayday AC (2008) Establishing humanized mice using stem cells: maximizing the potential. Clin Exp Immunol 152(3):406–414. doi:10.1111/1365-2249.2008.03659.x

    Article  PubMed  CAS  Google Scholar 

  48. Parmar H, Cunha GR (2004) Epithelial-stromal interactions in the mouse and human mammary gland in vivo. Endocr Relat Cancer 11(3):437–458. doi:10.1677/1.00659

    Article  PubMed  CAS  Google Scholar 

  49. Rangarajan A, Hong SJ, Gifford A, Weinberg RA (2004) Species- and cell type-specific requirements for cellular transformation. Cancer Cell 6(2):171–183. doi:10.1016/2004.07.009

    Article  PubMed  CAS  Google Scholar 

  50. Olsen CJ, Moreira J, Lukanidin EM, Ambartsumian NS (2010) Human mammary fibroblasts stimulate invasion of breast cancer cells in a three-dimensional culture and increase stroma development in mouse xenograft. BMC Cancer 10:444. doi:10.1186/1471-2407-10-444

    Article  PubMed  Google Scholar 

  51. Kuperwasser C, Chavarria T, Wu M, Magrane G, Gray JW, Carey L, Richardson A, Weinberg RA (2004) Reconstruction of functionally normal and malignant human breast tissues in mice. Proc Natl Acad Sci U S A 101(14):4966–4971. doi:10.1073/0401064101

    Article  PubMed  CAS  Google Scholar 

  52. Ottewell PD, Coleman RE, Holen I (2006) From genetic abnormality to metastases: murine models of breast cancer and their use in the development of anticancer therapies. Breast Cancer Res Treat 96(2):101–113. doi:10.1007/s10549-005-9067-x

    Article  PubMed  CAS  Google Scholar 

  53. Aslakson CJ, Miller FR (1992) Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Res 52(6):1399–1405

    PubMed  CAS  Google Scholar 

  54. Kwan H, Pecenka V, Tsukamoto A, Parslow TG, Guzman R, Lin TP, Muller WJ, Lee FS, Leder P, Varmus HE (1992) Transgenes expressing the Wnt-1 and int-2 proto-oncogenes cooperate during mammary carcinogenesis in doubly transgenic mice. Mol Cell Biol 12(1):147–154. doi:10.1128/mcb.12.1.147

    PubMed  CAS  Google Scholar 

  55. Li B, Murphy KL, Laucirica R, Kittrell F, Medina D, Rosen JM (1998) A transgenic mouse model for mammary carcinogenesis. Oncogene 16(8):997–1007. doi:10.1038/1201621

    Article  PubMed  CAS  Google Scholar 

  56. Sinn E, Muller W, Pattengale P, Tepler I, Wallace R, Leder P (1987) Coexpression of MMTV/v-Ha-ras and MMTV/c-myc genes in transgenic mice: synergistic action of oncogenes in vivo. Cell 49(4):465–475. doi:10.1016/0092-8674(87)90449-1

    Article  PubMed  CAS  Google Scholar 

  57. Siegel PM, Dankort DL, Hardy WR, Muller WJ (1994) Novel activating mutations in the neu proto-oncogene involved in induction of mammary tumors. Mol Cell Biol 14(11):7068–7077. doi:10.1128/14.11.7068

    PubMed  CAS  Google Scholar 

  58. Gunther EJ, Belka GK, Wertheim GB, Wang J, Hartman JL, Boxer RB, Chodosh LA (2002) A novel doxycycline-inducible system for the transgenic analysis of mammary gland biology. FASEB J 16(3):283–292. doi:10.1096/01-0551

    Article  PubMed  CAS  Google Scholar 

  59. Sauer B, Henderson N (1989) Cre-stimulated recombination at loxP-containing DNA sequences placed into the mammalian genome. Nucleic Acids Res 17(1):147–161

    Article  PubMed  CAS  Google Scholar 

  60. Lyons SK, Meuwissen R, Krimpenfort P, Berns A (2003) The generation of a conditional reporter that enables bioluminescence imaging of Cre/loxP-dependent tumorigenesis in mice. Cancer Res 6(21):7042–7046

    Google Scholar 

  61. Ahmed F, Wyckoff J, Lin EY, Wang W, Wang Y, Hennighausen L, Miyazaki J, Jones J, Pollard JW, Condeelis JS, Segall JE (2002) GFP expression in the mammary gland for imaging of mammary tumor cells in transgenic mice. Cancer Res 62(24):7166–7169

    PubMed  CAS  Google Scholar 

  62. Prowse KR, Greider CW (1995) Developmental and tissue-specific regulation of mouse telomerase and telomere length. Proc Natl Acad Sci U S A 92(11):4818–4822

    Article  PubMed  CAS  Google Scholar 

  63. Cardiff RD, Anver MR, Gusterson BA, Hennighausen L, Jensen RA, Merino MJ, Rehm S, Russo J, Tavassoli FA, Wakefield LM, Ward JM, Green JE (2000) The mammary pathology of genetically engineered mice: the consensus report and recommendations from the Annapolis meeting. Oncogene 19(8):968–988

    Article  PubMed  CAS  Google Scholar 

  64. Holstege H, van Beers E, Velds A, Liu X, Joosse SA, Klarenbeek S, Schut E, Kerkhoven R, Klijn CN, Wessels LF, Nederlof PM, Jonkers J (2010) Cross-species comparison of aCGH data from mouse and human BRCA1- and BRCA2-mutated breast cancers. BMC Cancer 10:455. doi:10.1186/1471-2407

    Article  PubMed  CAS  Google Scholar 

  65. Lin S-CJ, Lee K-F, Nikitin AY, Hilsenbeck SG, Cardiff RD, Li A, Kang K-W, Frank SA, Lee W-H, Lee EY-HP (2004) Somatic Mutation of p53 Leads to Estrogen Receptor α-Positive and -Negative Mouse Mammary Tumors with High Frequency of Metastasis. Cancer Res 64(10):3525–3532. doi:10.1158/0008-5472

    Article  PubMed  CAS  Google Scholar 

  66. Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, Deng S, Johnsen H, Pesich R, Geisler S, Demeter J, Perou CM, Lønning PE, Brown PO, Børresen-Dale AL, Botstein D (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A 100(14):8418–8423. doi:10.1073/0932692100

    Article  PubMed  CAS  Google Scholar 

  67. Wagner K-U (2004) Models of breast cancer: Quo vadis, animal modeling? Breast Cancer Res 6(1):31–38

    Article  PubMed  CAS  Google Scholar 

  68. Lim CK, Yuan Z-X, Lamb JH, White INH, De Matteis F, Smith LL (1994) A comparative study of tamoxifen metabolism in female rat, mouse and human liver microsomes. Carcinog 15(4):589–593. doi:10.1093/15.4.589

    Article  CAS  Google Scholar 

  69. Mestas J, Hughes CCW (2004) Of Mice and Not Men: differences between mouse and human immunology. J Immunol 172(5):2731–2738

    PubMed  CAS  Google Scholar 

  70. The Komen Tissue Bank, Susan G (2012) Komen for the Cure Tissue Bank. http://komentissuebank.iu.edu/. Accessed 08 May 2012

  71. Breast Cancer Campaign Tissue Bank (2012) About-Tissue-Bank. http://breastcancertissuebank.org/about-tissue-bank.php. Accessed 08 May 2012

Download references

Acknowledgments

We thank Drs Deborah Holliday and Mihaela Lorger for useful discussions and Marcus Moss for the provision of the image in Fig. 9.2. CN is a recipient of a Leeds Institute of Molecular Medicine Studentship. This work is supported by Breast Cancer Campaign, the Lord Dowding Fund, and the Dr Hadwen Trust for Humane Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerie Speirs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nash, C., Speirs, V. (2013). Pre-Clinical Modeling of Breast Cancer: Which Model to Choose?. In: Ahmad, A. (eds) Breast Cancer Metastasis and Drug Resistance. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5647-6_9

Download citation

Publish with us

Policies and ethics