Skip to main content

Cellular and Molecular Mechanisms Involved in Breaching of the Blood–Brian Barrier by Circulating Breast Cancer Cells

  • Chapter
  • First Online:
  • 2567 Accesses

Abstract

Brain metastases are prevalent in lung, melanoma and breast cancers and are associated with high morbidity and mortality. Therefore, targeted treatments and preventative strategies of brain metastasis are needed. Brain metastases of breast cancer confer significant morbidity and appear to be increasing in incidence (~35 %) in subpopulations of metastatic breast cancer patients, particularly those with Her2+ or “triple-negative” breast cancer (TNBC). Current therapy for brain metastases of breast cancer involves radiation, surgery and chemotherapy. Unfortunately, both disease progression in brain and treatments cause significant patient morbidity, including cognitive defects. The main question is how are circulating breast tumor cells (CBTCs) able to penetrate the blood–brain barrier (BBB) and gain access to the brain parenchyma, forming brain metastases. The BBB is a dynamic and highly selective barrier due to existence of tight junctions and adherens junctions between adjacent brain microvascular endothelial cells (BMECs). Although, the disruption of the BBB by brain metastases of human triple-negative and basal-type breast cancer was observed, very little is known on the cellular and molecular mechanisms involved in the process of CBTC infiltration through the BBB. This review focuses on the BBB and BMECs as well as several biological determinants by which breast tumor cells infiltrate the BBB and activate BMECs, resulting in co-option and colonization of tumor cells in brain.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

Ang:

Angiopoietin

Ang-2:

Angiopoietin-2

α-SMA:

Alpha smooth muscle actin

BBB:

Blood–brain barrier

BCM:

Breast cancer metastasis

BCM/brain:

Breast cancer metastasis in brain

BMECs:

Brain microvascular endothelial cells

BTB:

Blood–tumor barrier

CBTCs:

Circulating breast tumor cells

CNS:

Central nervous system

DMECs:

Dermal microvascular endothelial cells

EC:

Endothelial cells

ER :

Estrogen receptor negative

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

HUVECs:

Human umbilical vein endothelial cells

HBMECs:

Human brain microvascular endothelial cells

IHC:

Immunohistochemistry

IF:

Immunostaining

LCM:

Laser capture microdissection

PR :

Progesterone receptor negative

RT-PCR:

Reverse transcription polymerase chain reaction

TJs:

Tight junctions

TEER:

Trans-endothelial electrical resistance

TNBCs:

Triple negative and basal type breast cancer

VEGF:

Vascular endothelial growth factor

VEGFR-2:

Vascular endothelial growth factor receptor 2

WB:

Western blotting

References

  1. Steeg PS, Camphausen KA, Smith QR (2011) Brain metastases as preventive and therapeutic targets. Nat Rev Cancer 11(5):352–363

    Article  PubMed  CAS  Google Scholar 

  2. Fidler IJ (2011) The role of the organ microenvironment in brain metastasis. Semin Cancer Biol 21(2):107–112

    Article  PubMed  Google Scholar 

  3. Gril B et al (2010) Translational research in brain metastasis is identifying molecular pathways that may lead to the development of new therapeutic strategies. Eur J Cancer 46(7):1204–1210

    Article  PubMed  CAS  Google Scholar 

  4. Nguyen DX, Bos PD, Massagué J (2009) Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer 9(4):274–284

    Article  PubMed  CAS  Google Scholar 

  5. Arshad F et al (2010) Blood–brain barrier integrity and breast cancer metastasis to the brain. Pathol Res Int 2011:920509

    Google Scholar 

  6. Lesniak MS, Brem H (2004) Targeted therapy for brain tumors. Nat Rev Drug Discov 3(6):499–508

    Article  PubMed  CAS  Google Scholar 

  7. Chodosh LA (2011) Breast cancer: current state and future promise. Breast Cancer Res 13(6):113

    Article  PubMed  Google Scholar 

  8. Rakha EA, Chan S (2011) Metastatic triple-negative breast cancer. Clin Oncol R Coll Radiol 23(9):587–600

    Article  PubMed  CAS  Google Scholar 

  9. Teng YH et al (2011) Therapeutic targets in triple negative breast cancer—where are we now? Recent Pat Anticancer Drug Discov 6(2):196–209

    Article  PubMed  CAS  Google Scholar 

  10. Stark A et al (2010) African ancestry and higher prevalence of triple-negative breast cancer: findings from an international study. Cancer 116(21):4926–4932

    Article  PubMed  Google Scholar 

  11. Dolle JM et al (2009) Risk factors for tripe-negative breast cancer in women under age 45. Cancer Epidemiol Biomarkers Prev 18(4):1157–1166

    Article  PubMed  Google Scholar 

  12. Carotenuto P et al, Triple negative breast cancer: from molecular portrait to therapeutic intervention. Crit Rev Eukaryot Gene Expr 20(1):17–34

    Google Scholar 

  13. Tosoni A, Franceschi E, Brandes AA (2008) Chemotherapy in breast cancer patients with brain metastases: have new chemotherapic agents changed the clinical outcome? Crit Rev Oncol Hematol 68(3):212–221

    Article  PubMed  Google Scholar 

  14. Sharma M, Abraham J (2007) CNS metastasis in primary breast cancer. Expert Rev Anticancer Ther 7(11):1561–1566

    Article  PubMed  Google Scholar 

  15. Cheng X, Hung MC (2007) Breast cancer brain metastases. Cancer Metastasis Rev 26(3–4):635–643

    Article  PubMed  Google Scholar 

  16. Eichler AF, Loeffler JS (2007) Multidisciplinary management of brain metastases. Oncologist 12(7):884–898

    Article  PubMed  CAS  Google Scholar 

  17. Kaal EC, Vecht CJ (2007) CNS complications of breast cancer: current and emerging treatment options. CNS Drugs 21(7):559–579

    Article  PubMed  CAS  Google Scholar 

  18. Amos KD, Adamo B, Anders CK (2012) Triple-negative breast cancer: an update on neoadjuvant clinical trials. Int J Breast Cancer 2012:385978

    Google Scholar 

  19. Metzger-Filho O et al (2012) Dissecting the heterogeneity of triple-negative breast cancer. J Clin Oncol 30(15):1879–1887

    Google Scholar 

  20. Gucalp A, Traina TA (2011) Triple-negative breast cancer: adjuvant therapeutic options. Chemother Res Pract 2011:696208

    Google Scholar 

  21. Park Y et al (2012) Triple-negative breast cancer and Poly(ADP-ribose) polymerase inhibitors. Anticancer Agents Med Chem 12(6):672–677

    Google Scholar 

  22. Santarosa M, Maestro R (2011) BRACking news on triple-negative/basal-like breast cancers: how BRCA1 deficiency may result in the development of a selective tumor subtype. Cancer Metastasis Rev

    Google Scholar 

  23. Fornier M, Fumoleau P (2012) The paradox of triple negative breast cancer: novel approaches to treatment. Breast J 18(1):41–51

    Article  PubMed  Google Scholar 

  24. Abbott NJ, Rönnbäck L, Hansson E (2006) Astrocyte–endothelial interactions at the blood–brain barrier. Nat Rev Neurosci 7(1):41–53

    Article  PubMed  CAS  Google Scholar 

  25. Hawkins BT, Davis TP (2005) The blood–brain barrier/neurovascular unit in health and disease. Pharmacol Rev 57(2):173–185

    Article  PubMed  CAS  Google Scholar 

  26. Greenwood J (1991) Mechanisms of blood–brain barrier breakdown. Neuroradiology 33(2):95–100

    Article  PubMed  CAS  Google Scholar 

  27. Yonemori K et al (2010) Disruption of the blood brain barrier by brain metastases of triple-negative and basal-type breast cancer but not HER2/neu-positive breast cancer. Cancer 2:302–308

    Article  Google Scholar 

  28. Alvarez JI et al (2011) The Hedgehog pathway promotes blood–brain barrier integrity and CNS immune quiescence. Science 334(6063):1727–1731

    Article  PubMed  CAS  Google Scholar 

  29. Daneman R et al (2012) Pericytes are required for blood–brain barrier integrity during embryogenesis. Nature 468(7323):562–566

    Article  Google Scholar 

  30. Lin NU, Bellon JR, Winer EP (2004) CNS metastases in breast cancer. J Clin Oncol 22(17):3608–3617

    Article  PubMed  Google Scholar 

  31. Lin NU, Winer EP (2007) Brain metastases: the HER2 paradigm. Clin Cancer Res 13(6):1648–1655

    Article  PubMed  CAS  Google Scholar 

  32. Weil RJ et al (2005) Breast cancer metastasis to the central nervous system. Am J Pathol 167(4):913–920

    Article  PubMed  CAS  Google Scholar 

  33. Bendell JC et al (2003) Central nervous system metastases in women who receive trastuzumab-based therapy for metastatic breast carcinoma. Cancer 97(12):2972–2977

    Article  PubMed  Google Scholar 

  34. Lin NU et al (2008) Sites of distant recurrence and clinical outcomes in patients with metastatic triple-negative breast cancer: high incidence of central nervous system metastases. Cancer 113(10):2638–2645

    Article  PubMed  Google Scholar 

  35. Kienast Y et al (2010) Real-time imaging reveals the single steps of brain metastasis formation. Nat Med 16(1):116–122

    Article  PubMed  CAS  Google Scholar 

  36. Lockman PR et al (2010) Heterogeneous blood–tumor barrier permeability determines drug efficacy in experimental brain metastases of breast cancer. Clin Cancer Res 16(23):5664–5678

    Article  PubMed  CAS  Google Scholar 

  37. Reddy BY et al (2010) The microenvironmental effect in the progression, metastasis, and dormancy of breast cancer: a model system within bone marrow. Int J Breast Cancer 721659

    Google Scholar 

  38. Martin TA, Mason MD, Jiang WG (2011) Tight junctions in cancer metastasis. Front Biosci 16:898–936

    Article  PubMed  CAS  Google Scholar 

  39. Phares TW et al (2006) Regional differences in blood–brain barrier permeability changes and inflammation in the apathogenic clearance of virus from the central nervous system. J Immunol 176(12):7666–7675

    PubMed  CAS  Google Scholar 

  40. Begley DJ (2004) Delivery of therapeutic agents to the central nervous system: the problems and the possibilities. Pharmacol Ther 104(1):29–45

    Article  PubMed  CAS  Google Scholar 

  41. Machein MR, Plate KH (2000) VEGF in brain tumors. J Neurooncol 50(1–2):109–120

    Article  PubMed  CAS  Google Scholar 

  42. Carbonell WS et al (2009) The vascular basement membrane as “soil” in brain metastasis. PLoS One 4(6):e5857

    Article  PubMed  Google Scholar 

  43. Hu G, Kang Y, Wang XF, From breast to the brain: Unraveling the puzzle of metastasis organotropism. J Mol Cell Biol 1(1):3–5

    Google Scholar 

  44. Bos PD, Nguyen DX, Massagué J (2010) Modeling metastasis in the mouse. Curr Opin Pharmacol 10(5):571–577

    Article  PubMed  CAS  Google Scholar 

  45. Lorger M, Felding-Habermann B (2010) Capturing changes in the brain microenvironment during initial steps of breast cancer brain metastasis. Am J Pathol 176(6):2958–2971

    Article  PubMed  Google Scholar 

  46. Cascone T, Heymach JV (2012) Targeting the angiopoietin/Tie2 pathway: cutting tumor vessels with a double-edged sword? J Clin Oncol 30(4):441–444

    Article  PubMed  CAS  Google Scholar 

  47. Hashizume H et al (2010) Complementary actions of inhibitors of angiopoietin-2 and VEGF on tumor angiogenesis and growth. Cancer Res 70(6):2213–2223

    Article  PubMed  CAS  Google Scholar 

  48. Imanishi Y et al (2011) Angiopoietin-2, an angiogenic regulator, promotes initial growth and survival of breast cancer metastases to the lung through the integrin-linked kinase (ILK)-AKT-B cell lymphoma 2 (Bcl-2) pathway. J Biol Chem 286(33):29249–29260

    Article  PubMed  CAS  Google Scholar 

  49. Falcón BL et al (2009) Contrasting actions of selective inhibitors of angiopoietin-1 and angiopoietin-2 on the normalization of tumor blood vessels. Am J Pathol 175(5):2159–2170

    Article  PubMed  Google Scholar 

  50. Vates GE et al (2005) Angiogenesis in the brain during development: the effects of vascular endothelial growth factor and angiopoietin-2 in an animal model. J Neurosurg 103(1):136–450

    Article  PubMed  CAS  Google Scholar 

  51. Schulz P et al (2011) Angiopoietin-2 drives lymphatic metastasis of pancreatic cancer. FASEB J 25(10):3325–3335

    Article  PubMed  CAS  Google Scholar 

  52. Saharinen P, Bry M, Alitalo K (2010) How do angiopoietins tie in with vascular endothelial growth factors? Curr Opin Hematol 17(3):198–205

    PubMed  CAS  Google Scholar 

  53. Thomas M et al (2010) Angiopoietin-2 stimulation of endothelial cells induces alphavbeta3 integrin internalization and degradation. J Biol Chem 285(31):23842–23849

    Article  PubMed  CAS  Google Scholar 

  54. Saharinen P et al (2008) Angiopoietins assemble distinct Tie2 signalling complexes in endothelial cell–cell and cell–matrix contacts. Nat Cell Biol 10(5):527–537

    Article  PubMed  CAS  Google Scholar 

  55. Fukuhara S et al (2008) Differential function of Tie2 at cell–cell contacts and cell–substratum contacts regulated by angiopoietin-1. Nat Cell Biol 10(5):513–526

    Article  PubMed  CAS  Google Scholar 

  56. Rameshwar P (2012) The tachykinergic system as avenues for drug intervention. Recent Pat CNS Drug Discov

    Google Scholar 

  57. Muñoz M, Coveñas R (2011) NK-1 receptor antagonists: a new paradigm in pharmacological therapy. Curr Med Chem 18(12):1820–1831

    Article  PubMed  Google Scholar 

  58. Muñoz M, Rosso M, Coveñas R (2011) The NK-1 receptor: a new target in cancer therapy. Curr Drug Targets 12(6):909–921

    Article  PubMed  Google Scholar 

  59. Harford-Wright E, Lewis KM, Vink R (2011) Towards drug discovery for brain tumors: interaction of kinins and tumors at the blood brain barrier interface. Recent Pat CNS Drug Discov 6(1):31–40

    Article  PubMed  CAS  Google Scholar 

  60. White DE, Muller WJ (2007) Multifaceted roles of integrins in breast cancer metastasis. J Mammary Gland Biol Neoplasia 12(2–3):135–142

    Article  PubMed  Google Scholar 

  61. Lu W, Bucana CD, Schroit AJ (2007) Pathogenesis and vascular integrity of breast cancer brain metastasis. Int J Cancer 120(5):1023–1026

    Article  PubMed  CAS  Google Scholar 

  62. Zhang C, Yu D (2011) Microenvironment determinants of brain metastasis. Cell Biosci 1(1):8

    Article  PubMed  Google Scholar 

  63. Hariharan S et al (2007) Assessment of the biological and pharmacological effects of the αvβ3 and αvβ5 integrin receptor antagonist, cilengitide (EMD 121974)m, in patients with advanced solid tumors. Ann Oncol 18(8):1400–1407

    Article  PubMed  CAS  Google Scholar 

  64. Huber JD, Egleton RD, Davis TP (2001) Molecular physiology and pathophysiology of tight junctions in the blood-brain barrier. Trends Neurosci 24(12):719–725

    Google Scholar 

Download references

Acknowledgments

This research was supported in part by CA135226, DOD Idea Awards (HA), and BC102246, and BC-094909.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hava Karsenty Avraham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Avraham, H.K., Jiang, S., Wang, L., Fu, Y., Avraham, S. (2013). Cellular and Molecular Mechanisms Involved in Breaching of the Blood–Brian Barrier by Circulating Breast Cancer Cells. In: Ahmad, A. (eds) Breast Cancer Metastasis and Drug Resistance. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5647-6_12

Download citation

Publish with us

Policies and ethics