Skip to main content

The Biological Effects and Possible Modes of Action of Nanosilver

  • Chapter
  • First Online:
Book cover Reviews of Environmental Contamination and Toxicology Volume 223

Abstract

Engineered nanomaterials are increasingly employed in a variety of applications. The size of nanoparticles, by definition, ranges between 1 and 100 nm in at least one dimension (The Royal Society and The Royal Academy of Engineering 2004). Such dimensions result in a high surface area to volume ratio. The subsequent chemical, physical, and biological properties of nanomaterials are unique, and lead to diverse technical applications and prospectively to widespread use in commercial products. In 2004, the production volume of nanomaterials was estimated to be 2,000 t worldwide, and is expected to rise to 58,000 t within the next decade (The Royal Society and The Royal Academy of Engineering 2004).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahamed M, AlSalhi MS, Siddiqui MKJ (2010) Silver nanoparticle applications and human health. Clin Chim Acta 411:1841–1848

    Article  CAS  Google Scholar 

  • Allen HJ, Impellitteri CA, Macke DA, Heckman JL, Poynton HC, Lazorchak JM, Govindaswamy S, Roose DL, Nadagouda MN (2010) Effects from filtration, capping agents, and presence/absence of food on the toxicity of silver nanoparticles to Daphnia magna. Environ Toxicol Chem 29:2742–2750

    Article  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  Google Scholar 

  • Arora S, Jain J, Rajwade JM, Paknikar KM (2009) Interactions of silver nanoparticles with primary mouse fibroblasts and liver cells. Toxicol Appl Pharm 236:310–318

    Article  CAS  Google Scholar 

  • AshaRani PV, Wu YL, Gong Z, Valiyaveettil S (2008) Toxicity of silver nanoparticles in zebrafish models. Nanotechnology 19(25):255102

    Article  CAS  Google Scholar 

  • AshaRani PV, Hande MP, Valiyaveettil S (2009a) Anti-proliferative activity of silver nanoparticles. BMC Cell Biol 10:65

    Article  CAS  Google Scholar 

  • AshaRani PV, Mun GLK, Hande MP, Valiyaveettil S (2009b) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3:279–290

    Article  CAS  Google Scholar 

  • Ashkenazi A, Dixit VM (1998) Death receptors: signaling and modulation. Science 281:1305–1308

    Article  CAS  Google Scholar 

  • Auffan M, Rose J, Wiesner MR, Bottero JY (2009) Chemical stability of metallic nanoparticles: a parameter controlling their potential cellular toxicity in vitro. Environ Pollut 157:1127–1133

    Article  CAS  Google Scholar 

  • Baek YW, An YJ (2011) Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus. Sci Total Environ 409:1603–1608

    Article  CAS  Google Scholar 

  • Belizário JE, Alves J, Occhiucci JM, Garay-Malpartida M, Sesso A (2007) A mechanistic view of mitochondrial death decision pores. Braz J Med Biol Res 40:1011–1024

    Article  Google Scholar 

  • Benn TM, Westerhoff P (2008) Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42:4133–4139

    Article  CAS  Google Scholar 

  • Bianchini A, Wood CM (2002) Physiological effects of chronic silver exposure in Daphnia magna. Comp Biochem Phys C 133:137–145

    Google Scholar 

  • Bianchini A, Wood CM (2003) Mechanism of acute silver toxicity in Daphnia magna. Environ Toxicol Chem 22:1361–1367

    CAS  Google Scholar 

  • Bianchini A, Bowles KC, Brauner CJ, Gorsuch JW, Kramer JR, Wood CM (2002) Evaluation of the effect of reactive sulfide on the acute toxicity of silver (I) to Daphnia magna. Part II: toxicity results. Environ Toxicol Chem 21:1294–1300

    CAS  Google Scholar 

  • Bindhumol V, Chitra KC, Mathur PP (2003) Bisphenol A induces reactive oxygen species generation in the liver of male rats. Toxicology 188:117–124

    Article  CAS  Google Scholar 

  • Bonfoco E, Krainc D, Ankarcrona M, Nicotera P, Lipton SA (1995) Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc Natl Acad Sci U S A 92:7162–7166

    Article  CAS  Google Scholar 

  • Bouwmeester H, Poortman J, Peters RJ, Wijma E, Kramer E, Makama S, Puspitaninganindita K, Marvin HJP, Peijnenburg Ad ACM, Hendriksen PJM (2011) Characterization of translocation of silver nanoparticles and effects on whole-genome gene expression using an in vitro intestinal epithelium coculture model. ACS Nano 5:4091–4103

    Article  CAS  Google Scholar 

  • Bradford A, Handy RD, Readman JW, Atfield A, Mühling M (2009) Impact of silver nanoparticle contamination on the genetic diversity of natural bacterial assemblages in estuarine sediments. Environ Sci Technol 43:4530–4536

    Article  CAS  Google Scholar 

  • Bragg PD, Rainnie DJ (1974) The effect of silver ions on respiratory-chain of Escherichia coli. Can J Microbiol 20:883–889

    Article  CAS  Google Scholar 

  • Brauner CJ, Wood CM (2002) Effect of long-term silver exposure on survival and ionoregulatory development in rainbow trout (Oncorhynchus mykiss) embryos and larvae, in the presence and absence of added dissolved organic matter. Comp Biochem Phys C 133:161–173

    Article  Google Scholar 

  • Braydich-Stolle L, Hussain S, Schlager JJ, Hofmann MC (2005) In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci 88:412–419

    Article  CAS  Google Scholar 

  • Brunner TJ, Wick P, Manser P, Spohn P, Grass RN, Limbach LK, Bruinink A, Stark WJ (2006) In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ Sci Technol 40:4374–4381

    Article  CAS  Google Scholar 

  • Bury NR, Galvez F, Wood CM (1999) Effects of chloride, calcium, and dissolved organic carbon on silver toxicity: comparison between rainbow trout and fathead minnows. Environ Toxicol Chem 18:56–62

    Article  CAS  Google Scholar 

  • Buttke TM, Sandstrom PA (1994) Oxidative stress as a mediator of apoptosis. Immunol Today 15:7–10

    Article  CAS  Google Scholar 

  • Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2(4):MR17–MR71

    Article  Google Scholar 

  • Carlson C, Hussain SM, Schrand AM, Braydich-Stolle LK, Hess KL, Jones RL, Schlager JJ (2008) Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B 112:13608–13619

    Article  CAS  Google Scholar 

  • Chen KL, Elimelech M (2006) Aggregation and deposition kinetics of fullerene (C60) nanoparticles. Langmuir 22:10994–11001

    Article  CAS  Google Scholar 

  • Choi O, Hu ZQ (2008) Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol 42:4583–4588

    Article  CAS  Google Scholar 

  • Choi O, Deng KK, Kim NJ, Ross L, Surampalli RY, Hu ZQ (2008) The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res 42:3066–3074

    Article  CAS  Google Scholar 

  • Clarkson TW (1993) Molecular and ionic mimicry of toxic metals. Annu Rev Pharmacol 33:545–571

    Article  CAS  Google Scholar 

  • Cohen GM (1997) Caspases: the executioners of apoptosis. Biochemical J 326:1–16

    CAS  Google Scholar 

  • Curtin JF, Donovan M, Cotter TG (2002) Regulation and measurement of oxidative stress in apoptosis. J Immunol Methods 265:49–72

    Article  CAS  Google Scholar 

  • Davies PH, Goettl JP, Sinley JR (1978) Toxicity of silver to rainbow trout (Salmo gairdneri). Water Res 12:113–117

    Article  CAS  Google Scholar 

  • Deratani A, Sebille B (1981) Metal ion extraction with a thiol hydrophilic resin. Anal Chem 53:1742–1746

    Article  CAS  Google Scholar 

  • Eisler R (1996) Silver hazards to fish, wildlife, and invertebrates: a synoptic review. Contaminant Hazard Reviews. Biological Report 32. National Biological Service, Washington, DC, pp 1–44

    Google Scholar 

  • U.S. Environmental Protection Agency (1993) Reregistration eligibility decision fact sheet. Silver. Office of Prevention, Pesticides And Toxic Substances. EPA-738-F-93-005. http://www.epa.gov/oppsrrd1/REDs/factsheets/4082fact.pdf. Acessed 26 Sep 2012

  • U.S. Environmental Protection Agency (2010) Pesticide news story: EPA proposes conditional registration of nanosilver pesticide product. http://epa.gov/oppfead1/cb/csb_page/updates/2010/nanosilver.html. Accessed 20 Mar 2012

  • Eom HJ, Choi J (2010) P38 MAPK activation, DNA damage, cell cycle arrest and apoptosis as mechanisms of toxicity of silver nanoparticles in Jurkat T cells. Environ Sci Technol 44:8337–8342

    Article  CAS  Google Scholar 

  • Fabrega J, Fawcett SR, Renshwa JC, Lead JR (2009) Silver nanoparticle impact on bacterial growth: effect of pH, concentration, and organic matter. Environ Sci Technol 43:7285–7290

    Article  CAS  Google Scholar 

  • Fadeel B, Åhlin A, Henter JI, Orrenius S, Hampton MB (1998) Involvement of caspases in neutrophil apoptosis: regulation by reactive oxygen species. Blood 92:4808–4818

    CAS  Google Scholar 

  • Farkas J, Peter H, Christian P, Urrea JAG, Hassellöv M, Tuoriniemi J, Gustafsson S, Olsson E, Hylland K, Thomas KV (2011) Characterization of the effluent from a nanosilver producing washing machine. Environ Int 37:1057–1062

    Article  CAS  Google Scholar 

  • Farré M, Gajda-Schrantz K, Kantiani L, Barceló D (2009) Ecotoxicity and analysis of nanomaterials in the aquatic environment. Anal Bioanal Chem 393:81–95

    Article  CAS  Google Scholar 

  • Feng QL, Wu J, Cheng GQ, Cui FZ, Kim TN, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52:662–668

    Article  CAS  Google Scholar 

  • Foldbjerg R, Dang DA, Autrup H (2011) Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Arch Toxicol 85:743–750

    Article  CAS  Google Scholar 

  • Franklin NM, Rogers NJ, Apte SC, Batley GE, Gadd GE, Casey PS (2007) Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ Sci Technol 41:8484–8490

    Article  CAS  Google Scholar 

  • Fridovich I (1978) The biology of oxygen radicals. Science 201:875–880

    Article  CAS  Google Scholar 

  • Gaiser BK, Fernandes TF, Jepson M, Lead JR, Tyler CR, Stone V (2009) Assessing exposure, uptake and toxicity of silver and cerium dioxide nanoparticles from contaminated environments. Environ Health 8:S2

    Article  CAS  Google Scholar 

  • Gaiser BK, Biswas A, Rosenkranz P, Jepson MA, Lead JR, Stone V, Tyler CR, Fernandes TF (2011) Effects of silver and cerium dioxide micro- and nano-sized particles on Daphnia magna. J Environ Monitor 13:1227–1235

    Article  CAS  Google Scholar 

  • Ghandour W, Hubbard JA, Deistung J, Hughes MN, Poole RK (1988) The uptake of silver ions by Escherichia coli K12: toxic effects and interaction with copper ions. Appl Microbiol Biot 28:559–565

    Article  CAS  Google Scholar 

  • Glover CN, Wood CM (2005) Accumulation and elimination of silver in Daphnia magna and the effect of natural organic matter. Aquat Toxicol 73:406–417

    Article  CAS  Google Scholar 

  • Gogoi SK, Gopinath P, Paul A, Ramesh A, Ghosh SS, Chattopadhyay A (2006) Green fluorescent protein-expressing Escherichia coli as a model system for investigating the antimicrobial activities of silver nanoparticles. Langmuir 22:9322–9328

    Article  CAS  Google Scholar 

  • Gopinath P, Gogoi SK, Chattopadhyay A, Ghosh SS (2008) Implications of silver nanoparticle induced cell apoptosis for in vitro gene therapy. Nanotechnology 19:075104

    Article  CAS  Google Scholar 

  • Griffitt RJ, Luo J, Gao J, Bonzongo JC, Barber DS (2008) Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ Toxicol Chem 27:1972–1978

    Article  CAS  Google Scholar 

  • Heinlaan M, Ivask A, Blinova I, Dubourguier HC, Kahru A (2008) Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 71:1308–1316

    Article  CAS  Google Scholar 

  • Holt KB, Bard AJ (2005) Interaction of silver(I) ions with the respiratory chain of Escherichia coli: an electrochemical and scanning electrochemical microscopy study of the antimicrobial mechanism of micromolar Ag+. Biochemistry 44:13214–13223

    Article  CAS  Google Scholar 

  • Hook SE, Fisher NS (2001) Sublethal effects of silver in zooplankton: importance of exposure pathways and implications for toxicity testing. Environ Toxicol Chem 20:568–574

    Article  CAS  Google Scholar 

  • Hsin YH, Chen CF, Huang S, Shih TS, Lai PS, Chueh PJ (2008) The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol Lett 179:130–139

    Article  CAS  Google Scholar 

  • Huang ZB, Zheng X, Yan DH, Yin GF, Liao XM, Kang YQ, Yao YD, Huang D, Hao BQ (2008) Toxicological effect of ZnO nanoparticles based on bacteria. Langmuir 24:4140–4144

    Article  CAS  Google Scholar 

  • Hussain S, Anner RM, Anner BM (1992) Cysteine protects Na, K-ATPase and isolated human lymphocytes from silver toxicity. Biochem Bioph Res Co 189:1444–1449

    Article  CAS  Google Scholar 

  • Hussain S, Meneghini E, Moosmayer M, Lacotte D, Anner BM (1994) Potent and reversible interaction of silver with pure Na, K-ATPase and Na, K-ATPase-liposomes. Biochim Biophys Acta 1190:402–408

    Article  CAS  Google Scholar 

  • Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ (2005) In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol in Vitro 19:975–983

    Article  CAS  Google Scholar 

  • Hwang ET, Lee JH, Chae YJ, Kim YS, Kim BC, Sang BI, Gu MB (2008) Analysis of the toxic mode of action of silver nanoparticles using stress-specific bioluminescent bacteria. Small 4:746–750

    Article  CAS  Google Scholar 

  • Ivask A, Bondarenko O, Jepihhina N, Kahru A (2010) Profiling of the reactive oxygen species-related ecotoxicity of CuO, ZnO, TiO2, silver and fullerene nanoparticles using a set of recombinant luminescent Escherichia coli strains: differentiating the impact of particles and solubilised metals. Anal Bioanal Chem 398:701–716

    Article  CAS  Google Scholar 

  • Jain P, Pradeep T (2005) Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter. Biotechnol Bioeng 90:59–63

    Article  CAS  Google Scholar 

  • Janssen-Heininger YMW, Poynter ME, Baeuerle PA (2000) Recent advances towards understanding redox mechanisms in the activation of nuclear factor κB. Free Radical Bio Med 28:1317–1327

    Article  CAS  Google Scholar 

  • Jensen RH, Davidson N (1966) Spectrophotometric, potentiometric, and density gradient ultracentrifugation studies of the binding of silver ion by DNA. Biopolymers 4:17–32

    Article  CAS  Google Scholar 

  • Jiang W, Mashayekhi H, Xing BS (2009) Bacterial toxicity comparison between nano- and micro-scaled oxide particles. Environ Pollut 157:1619–1625

    Article  CAS  Google Scholar 

  • Jiménez I, Gotteland M, Zarzuelo A, Uauy R, Speisky H (1997) Loss of the metal binding properties of metallothionein induced by hydrogen peroxide and free radicals. Toxicology 120:37–46

    Article  Google Scholar 

  • Jung WK, Koo HC, Kim KW, Shin S, Kim SH, Park YH (2008) Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microb 74:2171–2178

    Article  CAS  Google Scholar 

  • Kahru A, Dubourguier HC (2010) From ecotoxicology to nanoecotoxicology. Toxicology 269:105–119

    Article  CAS  Google Scholar 

  • Keller AA, Wang HT, Zhou DX, Lenihan HS, Cherr G, Cardinale BJ, Miller R, Ji ZX (2010) Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ Sci Technol 44:1962–1967

    Article  CAS  Google Scholar 

  • Kim BR, Anderson JE, Mueller SA, Gaines WA, Kendall AM (2002) Literature review—efficacy of various disinfectants against Legionella in water systems. Water Res 36:4433–4444

    Article  CAS  Google Scholar 

  • Kim YS, Kim JS, Cho HS, Rha DS, Kim JM, Park JD, Choi BS, Lim R, Chang HK, Chung YH, Kwon IH, Jeong J, Han BS, Yu IJ (2008a) Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague-Dawley rats. Inhal Toxicol 20:575–583

    Article  CAS  Google Scholar 

  • Kim JY, Lee C, Cho M, Yoon J (2008b) Enhanced inactivation of E. coli and MS-2 phage by silver ions combined with UV-A and visible light irradiation. Water Res 42:356–362

    Article  CAS  Google Scholar 

  • Kim YJ, Yang SI, Ryu JC (2010) Cytotoxicity and genotoxicity of nano-silver in mammalian cell lines. Mol Cell Toxicol 6:119–125

    Article  CAS  Google Scholar 

  • Kora AJ, Arunachalam J (2011) Assessment of antibacterial activity of silver nanoparticles on Pseudomonas aeruginosa and its mechanism of action. World J Microb Biot 27:1209–1216

    Article  CAS  Google Scholar 

  • Korsvik C, Patil S, Seal S, Self WT (2007) Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem Commun 10:1056–1058

    Article  CAS  Google Scholar 

  • Laban G, Nies LF, Turco RF, Bickham JW, Sepúlveda MS (2010) The effects of silver nanoparticles on fathead minnow (Pimephales promelas) embryos. Ecotoxicology 19:185–195

    Article  CAS  Google Scholar 

  • Lee HY, Park HK, Lee YM, Kim K, Park SB (2007) A practical procedure for producing silver nanocoated fabric and its antibacterial evaluation for biomedical applications. Chem Commun 28:2959–2961

    Article  CAS  Google Scholar 

  • Lesser MP (2006) Oxidative stress in marine environments: biochemistry and physiological ecology. Annu Rev Physiol 68:253–278

    Article  CAS  Google Scholar 

  • Li T, Albee B, Alemayehu M, Diaz R, Ingham L, Kamal S, Rodriguez M, Bishnoi SW (2010a) Comparative toxicity study of Ag, Au, and Ag-Au bimetallic nanoparticles on Daphnia magna. Anal Bioanal Chem 398:689–700

    Article  CAS  Google Scholar 

  • Li WR, Xie XB, Shi QS, Zeng HY, OU-Yang YS, Chen YB (2010b) Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol 85:1115–1122

    Article  CAS  Google Scholar 

  • Liau SY, Read DC, Pugh WJ, Furr JR, Russell AD (1997) Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterial action of silver ions. Lett Appl Microbiol 25:279–283

    Article  CAS  Google Scholar 

  • Liu Y, He L, Mustapha A, Li H, Hu ZQ, Lin M (2009) Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7. J Appl Microbiol 107:1193–1201

    Article  CAS  Google Scholar 

  • Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun HZ, Tam PKH, Chiu JF, Che CM (2006) Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 5:916–924

    Article  CAS  Google Scholar 

  • Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun H, Tam PKH, Chiu JF, Che CM (2007) Silver nanoparticles: partial oxidation and antibacterial activities. J Biol Inorg Chem 12:527–534

    Article  CAS  Google Scholar 

  • Luk KFS, Maki AH, Hoover RJ (1975) Studies of heavy-metal binding with polynucleotides using optical detection of magnetic-resonance. Silver(I)binding. J Am Chem Soc 97:1241–1242

    Article  CAS  Google Scholar 

  • Marambio-Jones C, Hoek EMV (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12:1531–1551

    Article  CAS  Google Scholar 

  • Martínez-Castañón GA, Niño-Martínez N, Martínez-Gutierrez F, Martínez-Mendoza JR, Ruiz F (2008) Synthesis and antibacterial activity of silver nanoparticles with different sizes. J Nanopart Res 10:1343–1348

    Article  CAS  Google Scholar 

  • Morgan IJ, Henry RP, Wood CM (1997) The mechanism of acute silver nitrate toxicity in freshwater rainbow trout (Oncorhynchus mykiss) is inhibition of gill Na+ and Cl- transport. Aquat Toxicol 38:145–163

    Article  CAS  Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353

    Article  CAS  Google Scholar 

  • Moutin MJ, Abramson JJ, Salama G, Dupont Y (1989) Rapid Ag+-induced release of Ca2+ from sarcoplasmic reticulum vesicles of skeletal muscle: a rapid filtration study. Biochim Biophys Acta 984:289–292

    Article  CAS  Google Scholar 

  • Mueller NC, Nowack B (2008) Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42:4447–4453

    Article  CAS  Google Scholar 

  • Nebeker AV, McAuliffe CK, Mshar R, Stevens DG (1983) Toxicity of silver to steelhead and rainbow trout, fathead minnows and Daphnia magna. Environ Toxicol Chem 2:95–104

    CAS  Google Scholar 

  • Orrenius S, McCabe MJ, Nicotera P (1992) Ca2+-dependent mechanisms of cytotoxicity and programmed cell death. Toxicol Lett 64–65:357–364

    Article  Google Scholar 

  • Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl Environ Microb 73:1712–1720

    Article  CAS  Google Scholar 

  • Ratte HT (1999) Bioaccumulation and toxicity of silver compounds: a review. Environ Toxicol Chem 18:89–108

    Article  CAS  Google Scholar 

  • Ringwood AH, McCarthy M, Bates TC, Carroll DL (2010) The effects of silver nanoparticles on oyster embryos. Mar Environ Res 69:S49–S51

    Article  CAS  Google Scholar 

  • Robertson JD, Orrenius S (2000) Molecular mechanisms of apoptosis induced by cytotoxic chemicals. Crit Rev Toxicol 30:609–627

    Article  CAS  Google Scholar 

  • Roh JY, Sim SJ, Yi J, Park K, Chung KH, Ryu DY, Choi J (2009) Ecotoxicity of silver nanoparticles on the soil nematode Caenorhabditis elegans using functional ecotoxicogenomics. Environ Sci Technol 43:3933–3940

    Article  CAS  Google Scholar 

  • Sakon S, Xue X, Takekawa M, Sasazuki T, Okazaki T, Kojima Y, Piao JH, Yagita H, Okumura K, Doi T, Nakano H (2003) NF-κB inhibits TNF-induced accumulation of ROS that mediate prolonged MAPK activation and necrotic cell death. EMBO J 22:3898–3909

    Article  CAS  Google Scholar 

  • Sanpui P, Chattopadhyay A, Ghosh SS (2011) Induction of apoptosis in cancer cells at low silver nanoparticle concentrations using chitosan nanocarrier. ACS Appl Mater Interfaces 3:218–228

    Article  CAS  Google Scholar 

  • Schreurs WJA, Rosenberg H (1982) Effect of silver ions on transport and retention of phosphate by Escherichia coli. J Bacteriol 152:7–13

    CAS  Google Scholar 

  • Shrivastava S, Bera T, Roy A, Singh G, Ramachandrarao P, Dash D (2007) Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology 18:225103

    Article  CAS  Google Scholar 

  • Sies H (1997) Oxidative stress: oxidants and antioxidants. Exp Physiol 82:291–295

    CAS  Google Scholar 

  • Silver S, Phung LT, Silver G (2006) Silver as biocides in burn and wound dressings and bacterial resistance to silver compounds. J Ind Microbiol Biot 33:627–634

    Article  CAS  Google Scholar 

  • Simon HU, Haj-Yehia A, Levi-Schaffer F (2000) Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 5:415–418

    Article  CAS  Google Scholar 

  • Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interf Sci 275:177–182

    Article  CAS  Google Scholar 

  • Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radical Bio Med 18:321–336

    Article  CAS  Google Scholar 

  • Tarnuzzer RW, Colon J, Patil S, Seal S (2005) Vacancy engineered ceria nanostructures for protection from radiation-induced cellular damage. Nano Lett 5:2573–2577

    Article  CAS  Google Scholar 

  • The Royal Society and The Royal Academy of Engineering (2004) Nanoscience and nanotechnologies: opportunities and uncertainties. The Royal Society and The Royal Academy of Engineering, London

    Google Scholar 

  • Thiel J, Pakstis L, Buzby S, Raffi M, Ni C, Pochan DJ, Shah SI (2007) Antibacterial properties of silver-doped titania. Small 3:799–803

    Article  CAS  Google Scholar 

  • Tolaymat TM, El Badawy AM, Genaidy A, Scheckel KG, Luxton TP, Suidan M (2010) An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: a systematic review and critical appraisal of peer-reviewed scientific papers. Sci Total Environ 408:999–1006

    Article  CAS  Google Scholar 

  • Viarengo A, Nicotera P (1991) Possible role of Ca2+ in heavy metal cytotoxicity. Comp Biochem Phys C 100:81–84

    Article  CAS  Google Scholar 

  • Wei LN, Tang JL, Zhang ZX, Chen YM, Zhou G, Xi TF (2010) Investigation of the cytotoxicity mechanism of silver nanoparticles in vitro. Biomed Mater 5:044103

    Article  CAS  Google Scholar 

  • Wijnhoven SWP, Peijnenburg WJGM, Herberts CA, Hagens WI, Oomen AG, Heugens EHW, Roszk B, Bisschops J, Gosens I, van de Meent D, Dekkers S, de Jong WH, van Zijverden M, Sips AJAM, Geertsma RE (2009) Nano-silver—a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology 3:109–138

    Article  CAS  Google Scholar 

  • Woodrow Wilson International Center for Scholars (2011) The project on emerging nanotechnologies. http://www.nanotechproject.org/inventories/consumer/analysis_draft/. Accessed 20 Jul 2011

  • Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, Sioutas C, Yeh JI, Wiesner MR, Nel AE (2006) Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 6:1794–1807

    Article  CAS  Google Scholar 

  • Xia T, Kovochich M, Liong M, Mädler L, Gilbert B, Shi HB, Yeh JI, Zink JI, Nel AE (2008) Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2:2121–2134

    Article  CAS  Google Scholar 

  • Yamane T, Davidson N (1962) On the complexing of deoxyribonucleic acid by silver(I). Biochim Biophys Acta 55:609–621

    Article  CAS  Google Scholar 

  • Yeo MK, Kang M (2008) Effects of nanometer sized silver materials on biological toxicity during zebrafish embryogenesis. B Kor Chem Soc 29:1179–1184

    Article  CAS  Google Scholar 

  • Yu BP (1994) Cellular defenses against damage from reactive oxygen species. Physiol Rev 74:139–162

    CAS  Google Scholar 

  • Zhao CM, Wang WX (2010) Biokinetic uptake and efflux of silver nanoparticles in Daphnia magna. Environ Sci Technol 44:7699–7704

    Article  CAS  Google Scholar 

  • Zhao CM, Wang WX (2011) Comparison of acute and chronic toxicity of silver nanoparticles and silver nitrate to Daphnia magna. Environ Toxicol Chem 30:885–892

    Article  CAS  Google Scholar 

  • Zimmermann R, Wickner W (1983) Energetics and intermediates of the assembly of protein OmpA into the outer membrane of Escherichia coli. J Biol Chem 258:3920–3925

    CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank D. Whitacre and H. Hollert for critically commenting on and editing the manuscript. This work was financially supported by the German National Academic Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolin Völker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer New York

About this chapter

Cite this chapter

Völker, C., Oetken, M., Oehlmann, J. (2013). The Biological Effects and Possible Modes of Action of Nanosilver. In: Whitacre, D. (eds) Reviews of Environmental Contamination and Toxicology Volume 223. Reviews of Environmental Contamination and Toxicology, vol 223. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5577-6_4

Download citation

Publish with us

Policies and ethics