Skip to main content

Neurological Diseases and Stem Cell Therapy

  • Chapter
  • First Online:
Book cover Stem Cells and Tissue Engineering

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSELECTRIC))

  • 1863 Accesses

Abstract

In stroke, occlusion of a cerebral artery leads to focal ischemia in a restricted central nervous system (CNS) region. Many different types of neurons and glial cells degenerate in stroke. It has not yet been convincingly demonstrated that neuronal replacement induces symptomatic relief in individuals who have suffered strokes.

In questions of science, the authority of a thousand is not worth the humble reasoning of a single individual.

Galileo Galilei

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pluchino S, Zanotti L, Deleldi M, Martino G (2005) Neural stem cells and their use as therapeutic tool in neurological disorders. Curr Drug Target 6(1):3–19

    Article  Google Scholar 

  2. Ben-Hur T, Einstein O, Bulte JWM (2005) Stem cell therapy for myelin diseases. Curr Pharm Des 11(10):1255–1265

    Article  Google Scholar 

  3. Barker RA, Jain M, Armstrong RJE, Caldwell MA (2003) Stem cells and neurological disease. J Neurol Neurosurg Psychiatr 74:553–557

    Article  Google Scholar 

  4. Herzog EL, Chai L, Krause DS (2003) Plasticity of marrow derived stem cells. Blood 102(10):3483–3493

    Article  Google Scholar 

  5. Long Y, Yang KY (2003) Bone marrow derived cells for brain repair: recent findings and current controversies. Curr Mol Med 3(8):719–725

    Article  Google Scholar 

  6. Song SJ, Sanzhez-Ramos J (2003) Brain as the sea of marrow. Exp Neurol 184(1):54–60

    Article  Google Scholar 

  7. Priller J (2003) Adult bone marrow cells populate the brain. Histochem Cell Biol 120(2):85–89

    Article  Google Scholar 

  8. Hara K, Yasuhara T, Maki M, Matsukawa N, Masuda Seong T, Yu J, Ali M, Yu G, Xu Seung L, DavidU K, Hess and Cesar C, Borlongan V (2008) Neural progenitor NT2N cell lines from teratocarcinoma for transplantation therapy in stroke. Prog Neurobiol 85(3):318–334

    Article  Google Scholar 

  9. Darsalia V, Kallur T, Kokaia Z (2007) Survival, migration and neuronal differentiation of human fetal striatal and cortical neural stem cells grafted in stroke-damaged rat striatum. Europ J Neurosci 26(3):605–614

    Article  Google Scholar 

  10. Molina-Holgado F, Rubio-Araiz A, Garcia-Ovejero D, Moore WRJ, Arevalo-Martin A, Gomez-Torres O, Molina-Holgado E (2007) CB2 cannabinoid receptors promot mouse neural stem cell proliferation. Europ J Neurosci 25:3

    Article  Google Scholar 

  11. Ma V, Fitzgerald W, Liu Q-Y, Shaugnessy TJ, Maric D, Lin HJ, Alkon DL, Barker JL (2004) CNS stem and progenitor cell differentiation into functional neuronal circuits in three dimensional collagen gels. Exp Neur 190(2):276–288

    Article  Google Scholar 

  12. Hess DC, Hill WD, Carroll JE, Borlongan CV (2004) Do bone marrow cells generate neurons? Arch Neurol 61(4):483–485

    Article  Google Scholar 

  13. Vitry S, Bertrand JY, Cumano A, Dubois-Dalcq M (2003) Primordial hematopoietic stem cells generate microglia but not myelin-forming cells in a neural environment. J Neurosci 23(33):10724–10731

    Google Scholar 

  14. Seaberg RM, Smukler SR, Kieeffer TJ, Enikolopov G, Asghar Z, Wheeler MB, Korbutt G, van der Kooy D (2004) Clonal identification of multipotent precursors from adult mouse pancreas that generate neural and pancreatic lineages. Nat Biotechnol 22:1115–1124

    Article  Google Scholar 

  15. Johansson CB, Momma S, Clarke DL, Risling M, Lendahl U, Frisen J (1999) Identification of a neural stem cell in the adult mammalian central nervous system. Cell 96:25–34

    Article  Google Scholar 

  16. Gage FH, Kempermann G, Palmer TD, Peterson DA, Jasodhara R (1998) Multipotent progenitor cells in the adult dentate gyrus. J Neurobiol 36(2):249–266

    Article  Google Scholar 

  17. Gage FH, Coates PW, Palmer TD, Kuhn HG, Fisher LJ, Suhonen JO, Peterson DA, Suhr ST, Jasodhara R (1995) Survival and differentiation of adult neuronal progenitor cells transplanted to the adult brain. PNAS 92(25):11879–11883

    Article  Google Scholar 

  18. Shyu W-C, Lin S-Z, Lee C-C, Liu DD, Li H (2006) Granulocyte colony stimulating factor for acute ischemic stroke: a randomized controlled trial. CMAJ 174:927–933

    Article  Google Scholar 

  19. Lee ST, Chu K, Jung KH, Ko SY, Kim EH, Sinn DI, Lee YS, Lo EH, Kim M, Roh JK (2005) Granulocyte colony stimulating factor enhances angiogenesis after focal cerebral ischemia. Brain Res 1058:120–128

    Article  Google Scholar 

  20. Kucia M, Reca R, Jala VR, Dawn B, Ratajczak J, Ratajczak MZ (2005) Bone marrow as home of heterogeneous populations of nonhematopoietic stem cells. Leukemia 19:1118–1127

    Article  Google Scholar 

  21. Kucia M, Ratajczak J, Ratajczak ZM (2005) Bone marrow as a source of circulating CXR4+ tissue-committed stem cells. Biol Cell 97:133–146

    Article  Google Scholar 

  22. Kucia M, Ratajczak J, Ratjczak MX (2005) Are bone marrow cells plastic or heterogeneous—that is the question. Exp Hematol 33(6):613–623

    Article  Google Scholar 

  23. Ratajczak J, Miekus K, Kucia M, Zhang J, Reca R, Dvorak P, Ratajczak MZ (2006) Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia 20:847–856

    Article  Google Scholar 

  24. Kucia M, Wojakowski W, Ryan R, Machalinski B, Gozdzik J, Majka M, Baran J, Ratajczak J, Ratjczak MZ (2006) The migration of bone marrow-derived non-hematopoietic tissue-committed stem cells is regulated in and SDF-1-, HGF-, and LIF dependent manner. Arch Immunol Ther Exp 54(2):121–135

    Article  Google Scholar 

  25. Kucia M, Zhang YP, Reac R, Wysoczynski M, Machalinski B, Majka M, Ildstad ST, Ratajczak JU, Chields CB, Ratajczak MZ (2006) Cells enriched in markers of neural tissue-committed stem cells reside in the bone marrow and are mobilized into the peripheral blood following stroke. Leukemia 20:18–28

    Article  Google Scholar 

  26. Kucia M, Reca R, Campbell FR, Surma-Zuba E, Majka M, Ratajczak M, Ratajczak MZ (2006) A population of very small embryonic-like (VSEL) CXR4+SSEA-1+Oct4+ stem cells identified in adult bone marrow. Leukemia 20:857–869

    Article  Google Scholar 

  27. Gilbertson RJ (2007) Brain tumor stem cells lurk in perivascular niches. Cancer Cell 11:3–5

    Article  Google Scholar 

  28. Nakano I, Dougherty JD, Kim K, Geschwind DH, Kornblum HI (2007) Phosphoserine phosphatase is expressed in neural stem cell niche and regulates neural stem cell proliferation. Stem Cells 25(8):1975–1984

    Article  Google Scholar 

  29. Nakano I, Masterman-Smith M, Horvath S, Paucar AA, Lilievre V, Waschek JA, Lazareff JA, Freije WA, Gilbertson RJ, Liau LM, Geschwind DH, Nelson S, Mischel PS, Kornblum HI (2007) Maternal embryonic leucine zipper kinase (MELK) is a key regulator of the proliferation of malignant brain tumors, including brain tumor stem cells. J Neurosci Res 86(1):48–60

    Article  Google Scholar 

  30. Virchow R (1863) Cellular pathology as based upon physiological and pathological histology. Lippincott, Philadelphia

    Google Scholar 

  31. Stevens LC (1970) Experimental production of testicular teratomas in mice of strains 129, A/He, and their F1hybrids. J Natl Cancer Inst 44:923–929

    Google Scholar 

  32. McCulloch EA, Minden MD, Miyauchi J, Kelleher CA, Wang C (1988) Stem cell renewal and differentiation in acute myeloblastic leukaemia. J Cell Sci Suppl 10:267–281

    Google Scholar 

  33. Yang Z-J, Ellis T, Markant SL, Read T-A, Kessler JD, Bourboulas M, Schüller U, Machold R, Fishell G, Rowitch DH, Wainwright BH, Wechsler-Reya RJ (2008) Medulloblastoma can be initiated in lineage-restricted progenitors or stem cells. Cancer Cell 14:135–145

    Article  Google Scholar 

  34. Hemmati HD, Nakano I, Lazareff JA, Masterman-Smith M, Geschwind DH, Bronner-Fraser M, Kornblum HI (2003) Cancerous stem cells can arise from pediatric brain tumors. PNAS 100(25):15178–15183

    Article  Google Scholar 

  35. Nakano I, Kornblum HI (2009) Methods for analysis of brain tumor stem cell and neural stem cell self-renewal. Methods Mol Biol 568:37–56

    Article  Google Scholar 

  36. Till JE, McCulloch EA (1961) A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res 14:2213–2222

    Article  Google Scholar 

  37. Thomas ED (1999) Bone marrow transplantation: a review. Semin Hematol 36:95–103

    Google Scholar 

  38. Jackson KA, Goodell MA (2004) Generation and stem cell repair of cardiac tissue. In: Sell S (ed) Stem cell handbook. Humana Press, Totowa, pp 259–266

    Google Scholar 

  39. Barker RA, Widner H (2004) Immune problems in the central nervous system cell therapy. NeuroRx 1:472–481

    Article  Google Scholar 

  40. Espinosa-Heidmann DG, Caicedo A, Hernandez EP, Csaky KG, Cousins SW (2003) Bone marrow-derived progenitor cells contribute to experimental choroidal neovascularization. Invest Ophthalmol Vis Sci 44(11):4914–4919

    Article  Google Scholar 

  41. Locatelli F, Corti S, Donadoni C, Guglieri M, Capra F et al (2003) Neuronal differentiation of murine bone marrow Thy-1- and Sca 1-positiev cells. J Hematother Stem Cell Res 12(6):727–734

    Article  Google Scholar 

  42. Jin HK, Schuchman EH (2003) Ex vivo gene therapy using bone marrow-derived cells: combined effects of intracerebral and intravenous transplantation in a mouse model of Niemann-Pick disease. Mol Ther 8(6):876–885

    Article  Google Scholar 

  43. Kitazawa M, Vasilevko V, Cribbs DH, LaFerla FM (2009) Immunization with amyloid-beta attebuates inclusion body myositis-like myopathy and motor impairment in a transgenic mouse. J Neurosc 29(19):6132–6141

    Article  Google Scholar 

  44. Sugaya K (2003) Stem cell therapy—a new option for AD patients? In: Richter RW, Richter B (eds) Alzheimer’s disease—the basics. A Physician’s guide to the practical management. Humana Press Spring, Totowa

    Google Scholar 

  45. Sugaya K (2005) Stem cell strategies for Alzheimer’s disease. In: Hanin I, Cacabelos R, Fisher A (eds) Recent progress in Alzheimer’s and Parkinson’s diseases. Taylor & Francis, London, pp 183–190

    Google Scholar 

  46. Pulido JS, Sugaya K (2005) Papel de las celulas madre en la degeneracion macular asociada a l’edad. In: Mones J, Gomez-Ula (eds) Degeneracion macular asocial a la edad. Prous Science, Barcelona, pp 343–350

    Google Scholar 

  47. Sugaya K (2005) Possible stem cell therapy for Alzheimer’s disease and its future direction. In: Kanazawa I, Shibazaki H, Tougi H (eds) Modern medical treatment in neurology. Brains Network, Japan, pp 108–114

    Google Scholar 

  48. Kwak Y-D, Sugaya K (2006) RNA interference in human NTera-2/D1 cell lines using human U6 promoter-based siRNA PCR products. Biotechnology and Bioprocess Engineering 2006, 11(3):273–276

    Google Scholar 

  49. Kwak Y-D, Choumkina E, Sugaya K (2006) Amyloid precursor protein is involved in staurosporine induced glial differentiation of neural progenitor cells. Biochem Biophys Res Commun 344(1):431–437

    Article  Google Scholar 

  50. Kwak Y-D, Kim HM, Qu T, Brannen CL, Soba P, Majumdar A, Kaplan A, Beyreuther K, Sugaya K (2006) Amyloid precursor protein cause glial differentiation of human neural stem cell. Stem Cell Dev 15:381–389

    Article  Google Scholar 

  51. Sugaya K, Qu K, Sugaya T, Pappas GD (2006) Genetically engineered human mesenchymal stem cells produce Met-Enkephalin at augmented higher levels in vitro. Cell Transplant 15:225–230

    Article  Google Scholar 

  52. Sanchez-Ramos, Raj A (2009) Blood stem cell growth factor reverses memory decline in mice. The randomized, controlled trial. At: www.physorg.com/newsn165684042.html. Accessed 6 Jun 2012

  53. Baier PC, Schindehutte HJ, Thinane K, Flugge G, Fuchs E, Mansouri A, Paulus W, Gruss P, Trenwalder C (2004) Behavioral changes in unilaterally 6-hydroxy-dopamine lesioned rats after transplantation of differentiated mouse embryonic stem cells without morphological integration. Stem Cells 22:396–404

    Article  Google Scholar 

  54. Lindvall O, Bjorklund A (2004) Cell therapy in Parkinson’s disease. NeuroRx 1:382–393

    Article  Google Scholar 

  55. Polgar S, Morris ME, Reilly S, Bilney B, Sanberg PR (2003) Reconstructive neurosurgery for Parkinson’s disease: a systematic review and preliminary meta-analysis. Brain Res Bull 60:1–24

    Article  Google Scholar 

  56. Zheng X, Cai J, Chen J, Luo Y, Zhi-Bing Y, Fotter E, Wang Y, Harvey B, Miura T, Backman C, Chen G-J, Rao MS, Freed WJ (2004) Dopaminergic differentiation of human embryonic stem cells. Stem Cells 22:925–940

    Article  Google Scholar 

  57. Peterson DA (2004) Stem cell therapy for neurological disease and injury. Panminerva Med 46(1):75–80

    Google Scholar 

  58. Todorovic V, Markovic D, Milosevic-Jovcic N, Petakov M, Balint B, Colic M, Milenkovic A, Colak I, Jokanovic V, Nikolic N (2008) Matiène æelije zubne pulpe i njihov potencijalni znaèaj u regenerativnoj medicine. Stomatološki glasnik Srbije 55(3):170–179

    Article  Google Scholar 

  59. Anderson KE (2009) Huntington’s disease and related disorders. Psychiatr Clin North Am 28(1):275–290

    Article  Google Scholar 

  60. Hague SM, Klaffke S, Bandmann O (2005) Neurodegenerative disorders: Huntington’s disease and Parkinson’s disease. J Neurol Neurosurg Psychiatry 76:1058–1063

    Article  Google Scholar 

  61. Ross CA, Margolis RL (2001) Huntington’s disease. Clin Neurosci 1:142–152

    Article  Google Scholar 

  62. McMurray CT (2001) Huntington’s disease: new hope for therapeutics. TINS 24:S32–S38

    Google Scholar 

  63. Huntington’s Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeats that is expanded and unstable on Huntington’s disease chromosome. Cell 72:971–983

    Article  Google Scholar 

  64. Reddy PH, Williams M, Tagle DA (1999) Recent advances in understanding the pathogenesis of Huntington’s disease. Trends Neurosci 22(6):248–255

    Article  Google Scholar 

  65. Cattaneo E, Rigamonti D, Goffredo D (2001) Loss of normal Huntingtin function: new developments in Huntington’s disease research. Trends Neurosci 24(3):182–188

    Article  Google Scholar 

  66. Cha JJ (2000) Transcriptional dysregulation in Huntington’s disease. Trends Neurosci 23(9):387–392

    Article  Google Scholar 

  67. http://www.aboutus.org/Keltner-Inc.com. (Alexa Keltner Inc). Accessed 6 Jun 2012

  68. Feng Z, Jin S, Zupnick A, Hoh J, de Stanchina E, Lowe S, Prives C, Levine AJ (2006) p53 tumor suppressor protein regulates the levels of hunting tin gene expression. Oncogene 25:1–7

    Article  Google Scholar 

  69. Mitchell I, Cooper AJ, Griffiths MR (1999) The selective vulnerability of striatopallidal neurons. Prog Neurobiol 59:691–719

    Article  Google Scholar 

  70. Clement AM, Nguyen MD, Roberts EA et al (2003) Wild-type nonneuronal cells extend survival of SOD1 mutant motor nneurons in ALS mice. Science 302:113–117

    Article  Google Scholar 

  71. Beal MF, Hantraye P (2001) Novel therapies in the search for a cure for Huntington’s disease. Proc Natl Acad Sci USA 98(1):3–4

    Article  Google Scholar 

  72. Jackel RJ, Maragos WF (2000) Neuronal cell death in Huntington’s disease: a potential role for dopamine. Trends Neurosci 23:239–245

    Article  Google Scholar 

  73. Schilling G, Coonfield ML, Ross CA et al (2001) Coenzyme Q10 and ramacemide hydrochloride ameliorate motor deficits in a Huntington’s disease transgenic mouse model. Neurosci Lett 315(3):149–153

    Article  Google Scholar 

  74. Rigamonti D, Sipione S, Goffredo D et al (2001) Huntington’s neuroprotective activity occurs via inhibition of procaspase-9 processing. J Biol Chem 276:14545–14548

    Article  Google Scholar 

  75. Freeman TB, Cicchetti F, Hauser RA et al (2000) Transplanted fetal striatum in Huntington’s disease: phenotypic development and lack of pathology. Proc Natl Acad Sci USA 97(25):13877–13882

    Article  Google Scholar 

  76. Bachoud-Levi AC, Remy P, Nguyen JP et al (2000) Motor and cognitive improvements in patients with Huntington’s disease after neural transplantation. Lancet 356(9246):1975–1979

    Article  Google Scholar 

  77. Mazzini L, Fagioli F, Boccaletti R, Mareschi K, Madon E, Oliveri G, Ilaria CO, Pastore R, Huttmann MA, Li CL, Duhrsen U (2003) Bone marrow-derived stem cells and ‘plasticity’. Ann Hematol 82(10):599–604

    Article  Google Scholar 

  78. Silani S, Cova L, Corbo M, Ciammola A, Polli E (2004) Stem cell therapy for amyotrophic lateral sclerosis. Lancet 364(9429):200–202

    Article  Google Scholar 

  79. Mazzini L et al (2003) Stem cell therapy in amyotrophic lateral sclerosis: a methodological approach in humans. Amyotroph Lateral Scler Other Motor Neuron Disord 4:158–161

    Article  Google Scholar 

  80. McDonald JW, Xiao-Zhong L, Qu Y, Su L, Mickey SK, Turestsky D, Gottlieb DI, Choi D (1999) Transplanted embryonic stem cells survive, differentiate and promote recovery in the injured rat spinal cord. Nat Med 5(12):1410–1412

    Article  Google Scholar 

  81. Sigurjonsson AE, Perreault MC, Egeland T, Glover JC (2005) Adult human hematopoietic stem cells produce neurons efficiently in the regenerating chicken embryo spinal cord. Stem Cells 23(3):392–400

    Article  Google Scholar 

  82. Rebuilding the nervous system with stem cells (off the National Institutes of Health Website). http://www.nih.gov/news/stemcell/chapter8.pdf. Accessed 6 Jun 2012

  83. Human neuronal progenitor cells. http://www.neuroguide.com/hnpcs.html. Accessed 6 Jun 2012

  84. Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255(5052):1707–1710

    Article  Google Scholar 

  85. Luskin MB (1993) Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron 11(1):173–189

    Article  Google Scholar 

  86. Kuhn G, Winkler J, Kempermann G, Thal LJ, Gage FH (1997) Epidermal growth factor and fibrolast growth factor-2 have different affects on neural progenitors in the adult Rat brain. J Neurosci 17(15):5820–5829

    Google Scholar 

  87. Barnabé-Heider F, Frisén J (2008) Stem cells for spinal cord repair. Stem Cell 3(1):16–24

    Article  Google Scholar 

  88. Johansson CB, Momma S, Clarke DL, Risling M, Lendahl U, Frisén J (1999) Identification of a neural stem cell in the adult mammalian central nervous system. Cell 96(1):25–34

    Article  Google Scholar 

  89. Huber AB, Ehrengruber MU, Schwab ME, Brösamle C (2001) Adenoviral gene transfer to the injured spinal cord of the adult rat. Eur J Neurosci 12(9):3437–3442

    Article  Google Scholar 

  90. Grill R, Gage FH, Murai K, Blesch A, Tuszynski MH (1997) Cellular delivery of neurotrophin-3 promotes corticospinal axonal growth and partial functional recovery after spinal cord injury. J Neurosci 17:5560–5572

    Google Scholar 

  91. Cristopher ReeveParalysis Foundation. http://www.christopherreeve.org/research/researchmain.cfm. Accessed 6 Jun 2012

  92. Yano S, Kuroda S, Lee JB, Shichinohe H, Seki T et al (2005) In vivo fluorescence tracking of bone marrow stromal cells transplanted into a pneumatic injury model of rat spinal cord. J Pathol 205(1):1–13

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Pavlovic, M., Balint, B. (2013). Neurological Diseases and Stem Cell Therapy. In: Stem Cells and Tissue Engineering. SpringerBriefs in Electrical and Computer Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5505-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5505-9_17

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5504-2

  • Online ISBN: 978-1-4614-5505-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics