Skip to main content

Stem Cells in Neurodegenerative Diseases. Part I: General Consideration

(The Old Idea or A New Therapeutic Concept?)

  • Chapter
  • First Online:
Book cover Stem Cells and Tissue Engineering

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSELECTRIC))

  • 1848 Accesses

Abstract

The pluripotency of stem cells from different sources is the subject of controversies and criticism, but as one of the most prominent features of these cells is also envisioned as a powerful therapeutic approach. Adult stem cells reside in most mammalian tissues, but the extent to which they contribute to normal homeostasis and repair varies widely.

Mankind is searching for a key to longevity and there is no doubt that stem cells could be an important answer to this problem.

– Ratajczak Marius

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sell S (2004) Stem cells. In: Sell S, Sell S (eds) Stem cell handbook., pp 1–18

    Google Scholar 

  2. Forbes SJ, Vig P, Poulsom R, Wright NA, Alison MR (2002) Adult Stem Cell Plasticity: New Pathways of Tissue Regeneration become Visible. Clin Sci 103:355–369

    Google Scholar 

  3. Rando TA (2006) Stem cells, ageing and the quest for immortality. Nature online. Nature, 441:1080–1086. Accessed Feb 16 2006

    Google Scholar 

  4. Weinberg RA (1991) Tumor suppressor genes. Science 254(5035):1138–1146

    Article  Google Scholar 

  5. Weissman I (2005) Stem cell research: paths to cancer therapies and regenerative medicine. JAMA 294(11):1359–66

    Article  Google Scholar 

  6. Lasky JL, Liau LM (2006) Targeting stem cells in brain tumors. Technol Canc Res Treat 5(3):251–260, ISSN 1533-0346

    Google Scholar 

  7. Voskoboynik A, Simon-Blecher N, Soen Y, Rinkevich B, De Tomaso AW, Ishizuka KJ, Weissman IL (2007) Striving for normality: whole body regeneration through a series of abnormal generations. FASEB J 21(7):1335–44

    Article  Google Scholar 

  8. Woo Suk Hwang (2004) Evidence of a pluripotent embryonic stem cell line derived from a cloned blastocyst. Science 303(5664):1669–1674

    Google Scholar 

  9. Hwang WS, Roh SI, Lee BC, Kang SK, Kwon DK, Kim S, Kim SJ, Park SW, Kwon HS, Lee CK, Lee JB, Kim JM, Ahn C, Paek SH, Chang SS, Koo JJ, Yoon HS, Hwang JH, Hwang YY, Park YS, Oh SK, Kim HS, Park JH, Moon SY, Schatten G (2005) Patient-specific embryonic stem cells derived from human SCNT blastocysts. Science 308:1777–1783

    Google Scholar 

  10. Verlinsky Y, Tur-Kaspa I, Cieslak J, Bernal A, Morris R, Taranissi M, Kaplan B, Kuliev A (2005) Preimplantation testing for chromosomal disorders improves reproductive outcome. Reprod Biomed Online 2(2):219–225

    Google Scholar 

  11. Daley, JK, Trounson A et al (2007) Ethics. The ISSCR guidelines for human embryonic stem cell research. Science 315(5812):603–604

    Google Scholar 

  12. Trounson A et al (2007) Ethics. The ISSCR guidelines for human embryonic stem cell research. Science 315(5812):603–604

    Article  Google Scholar 

  13. Zhang X, Stojkovic P, Przyborski S, Cooke M, Armstrong L, Lako M, Stojkovic M (2006) Derivation of human embryonic stem cells from developing and arrested embryos. Stem Cells 24(12):2669–76

    Article  Google Scholar 

  14. Ahmad S, Stewart R, Yung S, Kolli S, Armstrong L, Stojkovic M, Figueiredo F, Lako M (2007) Differentiation of human embryonic stem cells into corneal epithelial like cells by in vitro replication of the corneal epithelial stem cell niche. Stem Cells 25(5):1145–55

    Article  Google Scholar 

  15. Kucia M, Reca R, Campbell FR, Surma-Zuba E, Majka M, Ratajczak M, Ratajczak MZ (2006) A population of very small embryonic—like (VSEL) CXR4+SSEA–1+Oct4+ stem cells identified in adult bone marrow. Leukemia 20:857–69

    Article  Google Scholar 

  16. Guillot PV, Gotherstrom C, Chan J, Kurata H, Fisk NM (2007) Human first-trimester fetal MSC express pluripotency markers and grow faster and have longer telomeres than adult MSC. Stem Cells 25(3):646–54, Epub 2006 Nov 22

    Article  Google Scholar 

  17. Guillot PV, O’Donoghue K, Kurata H, Fisk NM (2006) Fetal stem cells: betwixt and between. Semin Reprod Med 24(5):340–7, Review

    Article  Google Scholar 

  18. Weiss ML, Troyer DL (2006) Stem cells in the umbilical cord. Stem Cell Rev 2(2):155–62, Review

    Article  Google Scholar 

  19. Young-sup Y, Wecker A, Heyd L, Park JS, Losordo DW et al (2005) Clonally expanded novel multipotent stem cells from human bone marrow regenerate myocardium after myocar dial infarction. J Clin Invest 115(2):326–38

    Google Scholar 

  20. Ivanovic Z, Hermitte F, Brunet de la Grange P, Dazey B, Belloc F, Lacombe F, Vezon G, Praloran V (2004) Simultaneous maintenance of human cord blood SCID-repopulating cells and expansion of committed progenitors at low O2 concentration (3%). Stem Cells 22:716–724

    Article  Google Scholar 

  21. Traggiai E, Chicha L, Mazzucchelli L, Bronz L, Piffaretti JC, Lanzavecchia A, Manz MG (2004) Development of a human adaptive immune system in Cord Blood Cell-Transplanted Mice. Science 304(5667):104–7

    Article  Google Scholar 

  22. Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B, Young Oh E, Gaber MW, Finklestein D, Allen M, Frank A, Bayazitov IA, Zakharenko SS, Gajjar A, Davidoff A, Gilbertson RJ (2007) A perivascular niche for brain tumor stem cells. Cancer Cell 11(1):69–82

    Article  Google Scholar 

  23. Lam L (2004) Beachy PA The Hedgehog response network: sensors, switches, and routers. Science 304(5678):1755–9

    Article  Google Scholar 

  24. Karhadkar SS, Bova GS, Beachy PA et al (2004) Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature 431(7009):707–12, Epub 2004 Sep 12

    Article  Google Scholar 

  25. Bergman K, Graff GD (2007) The global stem cell patent landscape: implications for efficient technology transfer and commercial development. Nat Biotechnol 25(4):419–24

    Article  Google Scholar 

  26. Wechsler-Reya RJ (2003) Recent Prog. Horm Res 58:249–261

    Google Scholar 

  27. Henrique D, Hirsonger E, Adam J, Le Roux I, Horowitz D, Lewis J (1997) Maintenance of neuroepithelial progenitor cells by Delta-Notch signalling in the embryonic chick retina. Curr Biol 10:491–500

    Google Scholar 

  28. Rohn JL, Lauring AS, Linenberger ML, Overbaugh J (1998) Transduction of Notch2 in feline leukemia virus-induced thymic lymphoma. Blood 92:1505–1511

    Google Scholar 

  29. Molofsky AV, Pardal R, Iwashita T, Park IK, Clarke MF, Morrison SJ (2003) Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature 425(6961):962–7, Epub 2003 Oct 22

    Article  Google Scholar 

  30. Leung C, Lingbeek M, Shakhova O, Liu J, Tanger E, Saremaslani P, Van Lohuizen M, Marino S (2004) Nature 428:337–341. Abstract + References in Scopus | Cited By in Scopus

    Google Scholar 

  31. Weimann JM, Charlton CA, Brazelton TR, Hackman RC, Blau HM (2003) Contribution of transplanted bone marrow cells to Purkinje neurons in human adult brains. Proc Nat Acad Sci USA 100(4):2088–2093

    Article  Google Scholar 

  32. Joseph NM, Mukouyama Y, Mosher JT, Jaegle M, Steven A, Crone SA, Dormand E-L, Lee KF, Meijer D, Anderson DJ, Morrison SJ (2004) Neural crest stem cells undergo multilineage differentiation in developing peripheral nerves to generate endoneurial fibroblasts in addition to Schwann cell. Development 131:5599–5612, Published by The Company of Biologists 2004

    Article  Google Scholar 

  33. Iwashita et al (2003) Hirschsprung disease is linked to defects in neural crest stem cell function. Science 15 Aug: 972

    Google Scholar 

  34. Angrist M, Bolk S, Halushka M, Lapchak PA, Chakravarti A (1996) Germline mutations in glial cell line-derived neurotrophic factor (GDNF) and RET in a Hirschsprung disease patient. Nat Genet 14:341–344

    Article  Google Scholar 

  35. Mezey E, Chandross KJ, Harta G, Mak RA, McKercher SR (2000) Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 290(5497):1779–1782. doi:10.1126/science.290.5497.177

    Article  Google Scholar 

  36. Brazelton TR, Rossi FM, Keshet GI, Blau HM (2000) From marrow to brain:expression of neuronal phenotypes in adult mice. Science 290(5497):1775–9

    Article  Google Scholar 

  37. Chen J, Zhang ZG, Li Y, Wang L et al (2003) Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats. Circ Res 92(6):629–9

    Article  Google Scholar 

  38. Bang OY, Lee JS, Lee PH et al (2005) Autologous mesenchymal stem cell. transplantation in stroke patients. Ann Neurol 57:874–882

    Article  Google Scholar 

  39. Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B et al (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410:701–5

    Article  Google Scholar 

  40. Stamm C, Westphal B, Kleine HD, Petzsch M, Kittner C, Klinge H et al (2003) Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet 361:45–6

    Article  Google Scholar 

  41. Strauer BE, Brehm M, Zeus T, Köstering M, Hernandez A, Sorg RV et al (2002) Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 106:1913–8

    Article  Google Scholar 

  42. Assmus B, Schachinger V, Teupe C, Britten M, Lehmann R, Döbert N et al (2002) Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI). Circulation 106:3009–17

    Article  Google Scholar 

  43. Tse HF, Kwong YM, Chan JKF, Lo G (2003) Ho C-L, Lau C-P. Angiogenesis in ischaemic myocardium by intramyocardial autologous bone marrow mononuclear cell implantation. Lancet 361:47–9

    Article  Google Scholar 

  44. Perin EC, Dohmann HFR, Borojevic R, Silva SA, Sousa ALS, Mesquita CT et al (2003) Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation 107:2294–302

    Article  Google Scholar 

  45. Obradović S, Rusović S, Dinčić D, Gligić B, Baškot B, Balint B, i sar (2003) Autologe pluripotentne progenitorne ćelije u lečenju ishemijske bolesti srca. Vojnosanit pregl 60(6):725–31

    Google Scholar 

  46. Kucia M, Ratajczak J, Ratajczak ZM (2005) Bone Marrow as a source of circulating CXR4+ tissue-commited Stem Cells. Biol Cell 97:133–146

    Article  Google Scholar 

  47. Kucia M, Zhang YP, Reac R, Wysoczynski M, Machalinski B, Majka M, Ildstad ST, Ratajczak JU, Chields CB, Ratajczak MZ (2006) Cells enriched in markers of neural tissue-commited stem cells reside in the bone marrow and are mobilized into the peripheral blood following stroke. Leukemia 20:18–28

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Pavlovic, M., Balint, B. (2013). Stem Cells in Neurodegenerative Diseases. Part I: General Consideration. In: Stem Cells and Tissue Engineering. SpringerBriefs in Electrical and Computer Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5505-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5505-9_16

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5504-2

  • Online ISBN: 978-1-4614-5505-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics