Skip to main content

Clustering

  • Chapter
  • First Online:
Book cover Structured Peer-to-Peer Systems
  • 1408 Accesses

Abstract

In the previous chapters we considered the dynamic differentiation of nodes and resources in flat P2P systems. This chapter shows that the design principles of the differentiation evolve to the clustering principle. It is the last conceptual step before the traditional hierarchy of HDHTs. We focus on reasons of clustering and consider local group formations possible on the top flat DHT overlays. Such formations eventually appear non-negligible from the point of view of the global overlay topology. They provide a mechanism to control the tradeoff between local and global routing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    JXTA is a programming language and platform independent Open Source protocol started by Sun Microsystems for P2P networking in 2001. Official website is http://jxta.kenai.com/. In November 2010, Oracle officially announced its withdrawal from this project. It is currently migrating from Java.net to Project Kenaï.

  2. 2.

    Another variant, which [43] also considered, makes clusters from nodes belonging to the same autonomous system.

References

  1. Akers, S.B., Krishnamurthy, B.: A group-theoretic model for symmetric interconnection networks. IEEE Trans. Comput. 38(4), 555–566 (1989). doi: http://dx.doi.org/10.1109/12.21148

    Google Scholar 

  2. Bawa, M., Condie, T., Ganesan, P.: LSH forest: self-tuning indexes for similarity search. In: Proceedings of 14th International Conference World Wide Web (WWW ’05), pp. 651–660. ACM, New York (2005). doi: http://doi.acm.org/10.1145/1060745.1060840

  3. Bejan, A., Ghosh, S.: Self-optimizing DHTs using request profiling. In: Proceedings of 8th International Conference on Principles of Distributed Systems (OPODIS 2004). Revised Selected Papers. Lecture Notes in Computer Science, vol. 3544, pp. 140–153. Springer, Berlin (2005)

    Google Scholar 

  4. Bezdek, J.C., Pal, N.R.: Some new indexes of cluster validity. IEEE Trans. Syst. Man Cybern. B 28(3), 301–315 (1998). doi: http://dx.doi.org/10.1109/3477.678624

    Google Scholar 

  5. Bharambe, A.R., Agrawal, M., Seshan, S.: Mercury: supporting scalable multi-attribute range queries. SIGCOMM Comput. Commun. Rev. 34(4), 353–366 (2004). doi: http://doi.acm.org/10.1145/1030194.1015507

  6. Carchiolo, V., Malgeri, M., Mangioni, G., Nicosia, V.: An adaptive overlay network inspired by social behaviour. J. Parallel Distrib. Comput. 70(3), 282–295 (2010). doi: http://dx.doi.org/10.1016/j.jpdc.2009.05.004

    Google Scholar 

  7. Castro, M., Drushel, P., Hu, Y., Rowstron, A.: Exploiting network proximity in peer-to-peer networks. Technical Report MSR-TR-2002-82, Microsoft Research (2002)

    Google Scholar 

  8. Chazapis, A., Asiki, A., Tsoukalas, G., Tsoumakos, D., Koziris, N.: Replica-aware, multi-dimensional range queries in distributed hash tables. Comput. Commun. 33(8), 984–996 (2010). doi: http://dx.doi.org/10.1016/j.comcom.2010.01.024

  9. Dabek, F., Kaashoek, M.F., Karger, D., Morris, R., Stoica, I.: Wide-area cooperative storage with CFS. In: Proceedings of 18th ACM Symposium Operating Systems Principles (SOSP ’01), pp. 202–215. ACM, New York (2001). doi: http://doi.acm.org/10.1145/502034.502054

  10. Dabek, F., Cox, R., Kaashoek, F., Morris, R.: Vivaldi: a decentralized network coordinate system. In: Proceedings of ACM SIGCOMM’04, pp. 15–26. ACM, New York (2004). doi: http://doi.acm.org/10.1145/1015467.1015471

  11. Godfrey, P.B., Stoica, I.: Heterogeneity and load balance in distributed hash tables. In: Proceedings of IEEE INFOCOM’05, pp. 596–606. IEEE (2005). doi:10.1109/INFCOM.2005.1497926

    Google Scholar 

  12. Hales, D., Edmonds, B.: Applying a socially inspired technique (tags) to improve cooperation in P2P networks. IEEE Trans. Syst. Man Cybern. A Syst. Hum. 35, 385–395 (2005)

    Article  Google Scholar 

  13. Karger, D., Lehman, E., Leighton, T., Panigrahy, R., Levine, M., Lewin, D.: Consistent hashing and random trees: distributed caching protocols for relieving hot spots on the world wide web. In: STOC ’97: Proceedings of 29th Annual ACM Symposium on Theory of Computing, pp. 654–663. ACM, New York (1997). doi: http://doi.acm.org/10.1145/258533.258660

  14. Karger, D.R., Ruhl, M.: Simple efficient load balancing algorithms for peer-to-peer systems. In: SPAA ’04: Proceedings of 16th Annual ACM Symposium on Parallelism in Algorithms and Architectures, pp. 36–43. ACM, New York (2004). doi: http://doi.acm.org/10.1145/1007912.1007919

  15. Korzun, D., Gurtov, A.: A local equilibrium model for P2P resource ranking. ACM SIGMETRICS Perform. Eval. Rev. 37(2), 27–29 (2009). doi: http://doi.acm.org/10.1145/1639562.1639572

  16. Krishnamurthy, B., Wang, J., Xie, Y.: Early measurements of a cluster-based architecture for P2P systems. In: IMW ’01: Proceedings of 1st ACM SIGCOMM Workshop on Internet Measurement, pp. 105–109. ACM, New York (2001). doi: http://doi.acm.org/10.1145/505202.505216

  17. Ledlie, J., Pietzuch, P., Seltzer, M.: Stable and accurate network coordinates. In: Proceedings of 26th IEEE International Conference Distributed Computing Systems (ICDCS ’06). IEEE Computer Society (2006). doi: http://dx.doi.org/10.1109/ICDCS.2006.79

  18. Lee, J., Lee, H., Kang, S., Kim, S.M., Song, J.: CISS: An efficient object clustering framework for DHT-based peer-to-peer applications. Comput. Netw. 51(4), 1072–1094 (2007). doi: http://dx.doi.org/10.1016/j.comnet.2006.07.005

  19. Legout, A., Liogkas, N., Kohler, E., Zhang, L.: Clustering and sharing incentives in BitTorrent systems. ACM SIGMETRICS Perform. Eval. Rev. 35(1), 301–312 (2007). doi: http://doi.acm.org/10.1145/1269899.1254919

  20. Li, J., Vuong, S.: Ontology-based clustering and routing in peer-to-peer networks. In: PDCAT ’05: Proceedings of 6th International Conference Parallel and Distributed Computing Applications and Technologies, pp. 791–795. IEEE Computer Society (2005). doi: http://dx.doi.org/10.1109/PDCAT.2005.178

  21. Liu, B., Lee, W.C., Lee, D.L.: Supporting complex multi-dimensional queries in P2P systems. In: ICDCS ’05: Proceedings of 25th IEEE International Conference on Distributed Computing Systems, pp. 155–164. IEEE Computer Society (2005). doi: http://dx.doi.org/10.1109/ICDCS.2005.75

  22. Locher, T., Schmid, S., Wattenhofer, R.: eQuus: a provably robust and locality-aware peer-to-peer system. In: Proceedings of 6th IEEE International Conference Peer-to-Peer Computing (P2P), pp. 3–11. IEEE Computer Society (2006). doi: http://dx.doi.org/10.1109/P2P.2006.17

  23. Loguinov, D., Kumar, A., Rai, V., Ganesh, S.: Graph-theoretic analysis of structured peer-to-peer systems: routing distances and fault resilience. IEEE/ACM Trans. Netw. 13(5), 1107–1120 (2005)

    Article  Google Scholar 

  24. Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45, 167–256 (2003). doi: http://dx.doi.org/10.1137/S003614450342480

    Google Scholar 

  25. Qu, C., Nejdl, W., Kriesell, M.: Cayley DHTs — a group-theoretic framework for analyzing DHTs based on Cayley graphs. In: ISPA 2004: Proceedings of 2nd International Symposium on Parallel and Distributed Processing and Applications. Lecture Notes in Computer Science, vol. 3358, pp. 914–925. Springer, New York (2004)

    Google Scholar 

  26. Ratnasamy, S., Handley, M., Karp, R., Shenker, S.: Topologically-aware overlay construction and server selection. In: Proceedings of IEEE INFOCOM’02, pp. 1190–1199, vol. 3, IEEE (2002)

    Google Scholar 

  27. Ratti, S., Hariri, B., Shirmohammadi, S.: NL-DHT: A non-uniform locality sensitive DHT architecture for massively multi-user virtual environment applications. In: ICPADS ’08: Proceedings of 14th IEEE International Conference on Parallel and Distributed Systems, pp. 793–798. IEEE Computer Society (2008). doi: http://dx.doi.org/10.1109/ICPADS.2008.32

  28. Rostami, H., Habibi, J., Livani, E.: Semantic routing of search queries in P2P networks. J. Parallel Distrib. Comput. 68(12), 1590–1602 (2008). doi: http://dx.doi.org/10.1016/j.jpdc.2008.06.005

  29. Rostami, H., Habibi, J., Livani, E.: Semantic partitioning of peer-to-peer search space. Comput. Commun. 32(4), 619–633 (2009). doi: http://dx.doi.org/10.1016/j.comcom.2008.11.020

    Google Scholar 

  30. Rufino, J., Alves, A., Exposto, J., Pina, A.: A cluster oriented model for dynamically balanced DHTs. In: IPDPS’04: Proceedings of 18th International Symposium on Parallel and Distributed Processing. IEEE Computer Society (2004)

    Google Scholar 

  31. Rufino, J., Pina, A., Alves, A., Exposto, J.: Toward a dynamically balanced cluster oriented DHT. In: Proceedings of Parallel and Distributed Computing and Networks (PDCN 2004), pp. 48–55. ACTA Press (2004)

    Google Scholar 

  32. Sánchez-Artigas, M., García López, P.: Echo: A peer-to-peer clustering framework for improving communication in DHTs. J. Parallel Distrib. Comput. 70, 126–143 (2010). doi: http://dx.doi.org/10.1016/j.jpdc.2009.06.002

  33. Sharma, P., Xu, Z., Banerjee, S., Lee, S.J.: Estimating network proximity and latency. SIGCOMM Comput. Commun. Rev. 36, 39–50 (2006). doi: http://doi.acm.org/10.1145/1140086.1140092

  34. Shen, H., Xu, C.Z.: Hash-based proximity clustering for efficient load balancing in heterogeneous DHT networks. J. Parallel Distrib. Comput. 68(5), 686–702 (2008). doi: http://dx.doi.org/10.1016/j.jpdc.2007.10.005

  35. Sínchez-Artigas, M., García-López, P., Gómez-Skarmeta, A.F., Santa, J.: TR-clustering: alleviating the impact of false clustering on P2P overlay networks. Comput. Netw. 52, 3185–3204 (2008). doi:10.1016/j.comnet.2008.08.011

    Article  Google Scholar 

  36. Souza, D., Pires, C.E., Kedad, Z., Tedesco, P., Salgado, A.C.: A semantic-based approach for data management in a P2P system. In: Transactions on Large-Scale Data- and Knowledge-Centered Systems III, pp. 56–86. Springer, Berlin (2011)

    Google Scholar 

  37. Sripanidkulchai, K., Maggs, B., Zhang, H.: Efficient content location using interest-based locality in peer-to-peer systems. In: Proceedings of IEEE INFOCOM’03, vol. 3, pp. 2166–2176 (2003). doi: http://dx.doi.org/10.1109/INFCOM.2003.1209237

  38. Surana, S., Godfrey, B., Lakshminarayanan, K., Karp, R., Stoica, I.: Load balancing in dynamic structured peer-to-peer systems. Perform. Eval. 63(3), 217–240 (2006). doi: http://dx.doi.org/10.1016/j.peva.2005.01.003

  39. Tang, C., Xu, Z., Dwarkadas, S.: Peer-to-peer information retrieval using self-organizing semantic overlay networks. In: Proceedings of ACM SIGCOMM’03, pp. 175–186. ACM, New York (2003). doi: http://doi.acm.org/10.1145/863955.863976

  40. Tirado, J.M., Higuero, D., Isaila, F., Carretero, J., Iamnitchi, A.: Affinity P2P: A self-organizing content-based locality-aware collaborative peer-to-peer network. Comput. Netw. 54(12), 2056–2070 (2010). doi: http://dx.doi.org/10.1016/j.comnet.2010.04.016

  41. Triantafillou, P., Xiruhaki, C., Koubarakis, M., Ntarmos, N.: Towards high performance peer-to-peer content and resource sharing systems. In: Proceedings of 1st Biennial Conference Innovative Data Systems Research (CIDR 2003) (2003)

    Google Scholar 

  42. Wan, Y., Asaka, T., Takahashi, T.: A hybrid P2P overlay network for non-strictly hierarchically categorized contents. In: CCGRID ’08: Proceedings of 8th IEEE International Symposium on Cluster Computing and the Grid, pp. 41–48. IEEE Computer Society (2008). doi: http://dx.doi.org/10.1109/CCGRID.2008.10

  43. Xu, Z., Mahalingam, M., Karlsson, M.: Turning heterogeneity into an advantage in overlay routing. In: Proceedings of IEEE INFOCOM’03, pp. 1499–1509, IEEE (2003)

    Google Scholar 

  44. Yang, S.J.H., Zhang, J., Lin, L., Tsai, J.J.P.: Improving peer-to-peer search performance through intelligent social search. Expert Syst. Appl. 36(7), 10312–10324 (2009). doi: http://dx.doi.org/10.1016/j.eswa.2009.01.045

  45. Yu, Q., Xu, T., Ye, B., Lu, S., Chen, D.: SkipStream: A clustered skip graph based on-demand streaming scheme over ubiquitous environments. In: ICPP ’09: Proceedings of 2009 International Conference on Parallel Processing, pp. 269–276. IEEE Computer Society (2009). doi: http://dx.doi.org/10.1109/ICPP.2009.57

  46. Zhao, B.Y., Duan, Y., Huang, L., Joseph, A.D., Kubiatowicz, J.D.: Brocade: landmark routing on overlay networks. In: IPTPS ’02: Proceedings of 1st International Workshop on Peer-to-Peer Systems. Lecture Notes in Computer Science, vol. 2429, pp. 34–44. Springer, Berlin (2002)

    Google Scholar 

  47. Zhu, Y., Hu, Y.: Efficient semantic search on DHT overlays. J. Parallel Distrib. Comput. 67(5), 604–616 (2007). doi: http://dx.doi.org/10.1016/j.jpdc.2007.01.005

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Korzun, D., Gurtov, A. (2013). Clustering. In: Structured Peer-to-Peer Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5483-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5483-0_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5482-3

  • Online ISBN: 978-1-4614-5483-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics