Skip to main content

Mitigating the Risk of Immunogenicity in the Pursuit of Induced Pluripotency

  • Chapter
  • First Online:
The Immunological Barriers to Regenerative Medicine

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 1062 Accesses

Abstract

The advent of induced pluripotent stem (iPS) cells represents a significant milestone in the field of regenerative medicine. While the first derivation of human embryonic stem (hES) cells 8 years earlier, had made pluripotency accessible in vitro for the first time, iPS cells offered the elixir of personalised pluripotency by facilitating the generation of autologous lines, tailored to the needs of the individual. Importantly, an autologous source of iPS cells promised to circumvent the immunological barriers that have threatened to undermine the translation of cell therapies to the clinic. Nevertheless, quite apart from the practical and economic constraints of personalised medicines that may prohibit their widespread implementation, recent studies have questioned whether tissues derived from iPS cells in an autologous fashion will be ignored by the immune system of the recipient. Indeed, the up-regulation of developmental antigens upon reprogramming and their persistent expression during differentiation may render such tissues vulnerable to rejection. Here, we assess the likely impact that such findings will have on the clinical application of induced pluripotency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thomson JA, Itskovitz-Eldor J, Shapiro SS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    Article  PubMed  CAS  Google Scholar 

  2. Robertson NJ, Brook F, Gardner RL, Cobbold SP, Waldmann H, Fairchild PJ (2007) Embryonic stem cell-derived tissues are immunogenic but their innate immune privilege promotes the induction of tolerance. Proc Natl Acad Sci U S A 104:20920–20925

    Article  PubMed  CAS  Google Scholar 

  3. Swijnenburg R-J, Schrepfer S, Govaert JA et al (2008) Immunosuppressive therapy mitigates immunological rejection of human embryonic stem cell xenografts. Proc Natl Acad Sci U S A 105:12991–12996

    Article  PubMed  CAS  Google Scholar 

  4. Wakayama T, Tabar V, Rodriguez I, Perry ACF, Studer L, Mombaerts P (2001) Differentiation of embryonic stem cell lines generated from adult somatic cells by nuclear transfer. Science 292:740–743

    Article  PubMed  CAS  Google Scholar 

  5. Colman A, Kind A (2000) Therapeutic cloning: concepts and practicalities. Trends Biotechnol 18:192–196

    Article  PubMed  CAS  Google Scholar 

  6. Cibelli J (2007) Is therapeutic cloning dead? Science 318:1879–1880

    Article  PubMed  CAS  Google Scholar 

  7. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse fibroblasts and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  PubMed  CAS  Google Scholar 

  8. Zhao X, Li W, Zhuo L et al (2009) iPS cells produce viable mice through tetraploid complementation. Nature 461:86–90

    Article  PubMed  CAS  Google Scholar 

  9. Boland MJ, Hazen JL, Nazor KL et al (2009) Adult mice generated from induced pluripotent stem cells. Nature 461:91–94

    Article  PubMed  CAS  Google Scholar 

  10. Liao J, Cui C, Chen S et al (2009) Generation of induced pluripotent stem cell lines from adult rat cells. Cell Stem Cell 4:11–15

    Article  PubMed  CAS  Google Scholar 

  11. Liu H, Zhu F, Yong J et al (2008) Generation of induced pluripotent stem cells from adult rhesus monkey fibroblasts. Cell Stem Cell 3:587–590

    Article  PubMed  CAS  Google Scholar 

  12. Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  PubMed  CAS  Google Scholar 

  13. Park I-H, Zhao R, West JA et al (2007) Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451:141–146

    Article  PubMed  Google Scholar 

  14. Yu J, Vodyanik MA, Smuga-Otto K et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920

    Article  PubMed  CAS  Google Scholar 

  15. Ben-Nun IF, Montague SC, Houck ML et al (2011) Induced pluripotent stem cells from highly endangered species. Nat Methods 8:829–831

    Article  PubMed  Google Scholar 

  16. Stadtfeld M, Nagaya M, Utikal J et al (2008) Induced pluripotent stem cells generated without viral integration. Science 322:945–949

    Article  PubMed  CAS  Google Scholar 

  17. Miyoshi N, Ishii H, Nagano H et al (2011) Reprogramming of mouse and human cells to pluripotency using mature microRNAs. Cell Stem Cell 8:633–638

    Article  PubMed  CAS  Google Scholar 

  18. Zhou H, Wu S, Joo JY et al (2009) Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 4:381–384

    Article  PubMed  CAS  Google Scholar 

  19. Kim D, Kim CM, Moon JI et al (2009) Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4:472–476

    Article  PubMed  CAS  Google Scholar 

  20. Ichida JK, Blanchard J, Lam K et al (2009) A small molecule inhibitor of Tgf-β signalling replaces Sox2 in reprogramming by inducing Nanog. Cell Stem Cell 5:491–503

    Article  PubMed  CAS  Google Scholar 

  21. Feng B, Ng J-H, Heng J-CD, Ng H–H (2009) Molecules that promote or enhance reprogramming of somatic cells to induced pluripotent stem cells. Cell Stem Cell 4:301–312

    Article  PubMed  CAS  Google Scholar 

  22. Wu SM, Hochedlinger K (2011) Harnessing the potential of induced pluripotent stem cells for regenerative medicine. Nature Cell Biol 13:497–505

    Article  PubMed  CAS  Google Scholar 

  23. Park I-H, Arora N, Huo H et al (2008) Disease-specific induced pluipotent stem cells. Cell 134:877–886

    Article  PubMed  CAS  Google Scholar 

  24. Brennand KJ, Simone A, Jou J et al (2011) Modelling schizophrenia using human induced pluripotent stem cells. Nature 473:221–225

    Article  PubMed  CAS  Google Scholar 

  25. Dimos JT, Rodolfa KT, Niakan KK et al (2008) Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 321:1218–1220

    Article  PubMed  CAS  Google Scholar 

  26. Hanna J, Wernig M, Markoulaki S et al (2007) Treatment of sickle cell anemia mouse model with iPSC generated from autologous skin. Science 318:1920–1923

    Article  PubMed  CAS  Google Scholar 

  27. Raya A, Rodriguez-Piza I, Guenechea G et al (2009) Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature 460:53–59

    Article  PubMed  CAS  Google Scholar 

  28. An MC, Zhang N, Scott G et al (2012) Genetic correction of Huntington’s disease phenotypes in induced pluripotent stem cells. Cell Stem Cell 11:1–11

    Article  Google Scholar 

  29. Kirouac DC, Zandstra PW (2008) The systematic production of cells for cell therapies. Cell Stem Cell 3:369–381

    Article  PubMed  CAS  Google Scholar 

  30. Gore A, Li Z, Fung H-L et al (2011) Somatic coding mutations in human induced pluripotent stem cells. Nature 471:63–67

    Article  PubMed  CAS  Google Scholar 

  31. Miura K, Okada Y, Aoi T et al (2009) Variation in the safety of induced pluripotent stem cell lines. Nat Biotechnol 27:743–745

    Article  PubMed  CAS  Google Scholar 

  32. Ben-David U, Benvenisty N (2011) The tumorigenicity of human embryonic and induced pluripotent stem cells. Nat Rev Cancer 11:268–277

    Article  PubMed  CAS  Google Scholar 

  33. Nakatsuji N, Nakajima F, Tokunaga K (2008) HLA-haplotype banking and iPS cells. Nat Biotechnol 26:739–740

    Article  PubMed  CAS  Google Scholar 

  34. Petersdorf EW (2008) Optimal HLA matching in hematopoietic cell transplantation. Curr Opin Immunol 20:588–593

    Article  PubMed  CAS  Google Scholar 

  35. Navarro V, Herrine S, Katopes C, Colombe B, Spain CV (2006) The effect of HLA class I (A and B) and class II (DR) compatibility on liver transplantation outcomes: an analysis of the OPTN database. Liver Transpl 12:652–658

    Article  PubMed  Google Scholar 

  36. Fairchild PJ, Cartland S, Nolan KF, Waldmann H (2004) Embryonic stem cells and the challenge of transplantation tolerance. Trends Immunol 25:465–470

    Article  PubMed  CAS  Google Scholar 

  37. Drukker M, Katz G, Urbach A et al (2002) Characterisation of the expression of MHC proteins in human embryonic stem cells. Proc Natl Acad Sci U S A 99:9864–9869

    Article  PubMed  CAS  Google Scholar 

  38. Lui KO, Boyd AS, Cobbold SP, Waldmann H, Fairchild PJ (2010) A role for regulatory T cells in acceptance of embryonic stem cell-derived tissues transplanted across an MHC barrier. Stem Cells 28:1905–1914

    Article  PubMed  CAS  Google Scholar 

  39. Fairchild PJ (2010) The challenge of immunogenicity in the quest for induced pluripotency. Nat Rev Immunol 10:868–875

    Article  PubMed  CAS  Google Scholar 

  40. Staerk J, Dawlaty MM, Gao Q et al (2010) Reprogramming of human peripheral blood cells to induced pluripotent stem cells. Cell Stem Cell 7:20–24

    Article  PubMed  CAS  Google Scholar 

  41. Aasen T, Raya A, Barrero MJ et al (2008) Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol 26:1276–1284

    Article  PubMed  CAS  Google Scholar 

  42. Zhou T, Benda C, Duzinger S et al (2011) Generation of induced pluripotent stem cells from urine. J Am Soc Nephrol 22:1221–1228

    Article  PubMed  Google Scholar 

  43. Taylor CJ, Bolton EM, Pocock S, Sharples LD, Pedersen RA, Bradley JA (2005) Banking on human embryonic stem cells: estimating the number of donor cell lines needed for HLA matching. Lancet 366:2019–2025

    Article  PubMed  Google Scholar 

  44. Lin G, Xie Y, Ouyang Q et al (2009) HLA-matching potential of an established human embryonic stem cell bank in China. Cell Stem Cell 5:461–465

    Article  PubMed  CAS  Google Scholar 

  45. Fluri DA, Tonge PD, Song H et al (2012) Derivation, expansion and differentiation of induced pluripotent stem cells in continuous suspension cultures. Nat Methods 9:509–516

    Article  PubMed  CAS  Google Scholar 

  46. Zhao T, Zhang Z-N, Rong Z, Xu Y (2011) Immunogenicity of induced pluripotent stem cells. Nature 474:212–215

    Article  PubMed  CAS  Google Scholar 

  47. Chen Y-T, Venditti CA, Theiler G et al (2005) Identification of CT46/HORMAD1, an immunogenic cancer/testis antigen encoding a putative meiosis-related protein. Cancer Immunity 5:1–8

    CAS  Google Scholar 

  48. Apostolou E, Hochedlinger K (2011) iPS cells under attack. Nature 474:165–166

    Article  PubMed  CAS  Google Scholar 

  49. Okita K, Nagata N, Yamanaka S (2011) Immunogenicity of induced pluripotent stem cells. Circ Res 109:720–721

    Article  PubMed  CAS  Google Scholar 

  50. Dhodapkar KM, Feldman D, Matthews P et al (2010) Natural immunity to pluripotency antigen OCT4 in humans. Proc Natl Acad Sci U S A 107:8718–8723

    Article  PubMed  CAS  Google Scholar 

  51. Dhodapkar MV (2010) Immunity to stemness genes in human cancer. Curr Opin Immunol 22:245–250

    Article  PubMed  CAS  Google Scholar 

  52. Spisek R, Kukreja A, Chen LC et al (2007) Frequent and specific immunity to the embryonal stem cell-associated antigen SOX2 in patients with monoclonal gammopathy. J Exp Med 204:831–840

    Article  PubMed  CAS  Google Scholar 

  53. Vierbuchen T, Wernig M (2011) Direct lineage conversions: unnatural but useful? Nature Biotechnol 29:892–907

    Article  CAS  Google Scholar 

  54. Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Sudhof TC, Wernig M (2010) Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463:1035–1041

    Article  PubMed  CAS  Google Scholar 

  55. Caiazzo M, Dell’Anno MT, Dvoretskova E et al (2011) Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature 476:224–227

    Article  PubMed  CAS  Google Scholar 

  56. Szabo E, Rampalli S, Risueno RM et al (2010) Direct conversion of human fibroblasts to multiline age blood progenitors. Nature 468:521–526

    Article  PubMed  CAS  Google Scholar 

  57. Ieda M, Fu J-D, Delgado-Olguin P et al (2010) Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142:375–386

    Article  PubMed  CAS  Google Scholar 

  58. Qian L, Huang Y, Spencer CI et al (2012) In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature 485:593–598

    Article  PubMed  CAS  Google Scholar 

  59. Kazuki Y, Hiratsuka M, Takiguchi M et al (2010) Complete genetic correction of iPS cells from Duchenne muscular dystrophy. Mol Therapy 18:386–393

    Article  CAS  Google Scholar 

  60. Meng X-L, Shen J-S, Kawagoe S, Ohashi T, Brady RO, Eto Y (2010) Induced pluripotent stem cells derived from mouse models of lysosomal storage disorders. Proc Natl Acad Sci U S A 107:7886–7891

    Article  PubMed  CAS  Google Scholar 

  61. Huang H-P, Chen P-H, Hwu W-L et al (2011) Human Pompe disease-induced pluripotent stem cells for pathogenesis modelling, drug testing and disease marker identification. Hum Mol Genet 20:4851–4864

    Article  PubMed  CAS  Google Scholar 

  62. Ponder K (2008) Immune response hinders therapy for lysosomal storage diseases. J Clin Invest 118:2686–2689

    PubMed  CAS  Google Scholar 

  63. Dickson P, Peinovich M, McEntee M et al (2008) Immune tolerance improves the efficacy of enzyme replacement therapy in canine mucopolysaccharidosis I. J Clin Invest 118:2868–2876

    PubMed  CAS  Google Scholar 

  64. Wang J, Lozier J, Johnson G et al (2008) Neutralizing antibodies to therapeutic enzymes: considerations for testing, prevention and treatment. Nat Biotechnol 26:901–908

    Article  PubMed  CAS  Google Scholar 

  65. Chen T-C, Waldmann H, Fairchild PJ (2004) Induction of dominant transplantation tolerance by an altered peptide ligand of the male antigen, Dby. J Clin Invest 113:1754–1762

    PubMed  CAS  Google Scholar 

  66. Scott D, Addey C, Ellis P et al (2000) Dendritic cells permit identification of genes encoding MHC class II-restricted epitopes of transplantation antigens. Immunity 12:711–720

    Article  PubMed  CAS  Google Scholar 

  67. Gluckman E, Rocha V (2009) Cord blood transplantation: state of the art. Haematologica 94:451–454

    Article  PubMed  Google Scholar 

  68. Giorgetti A, Montserrat N, Rodriguez-Piza I, Azqueta C, Veiga A, Izpisúa-Belmonte JC (2009) Generation of induced pluripotent stem cells from human cord blood using OCT4 and SOX2. Cell Stem Cell 5:353–357

    Article  PubMed  CAS  Google Scholar 

  69. Broxmeyer HE, Lee MR, Hangoc G et al (2011) Hematopoietic stem/progenitor cells, generation of induced pluripotent stem cells, and isolation of endothelial progenitors from 21- to 23.5-year cryopreserved cord blood. Blood 117:4773–4777

    Article  PubMed  CAS  Google Scholar 

  70. Qin S, Cobbold SP, Pope H et al (1993) ‘Infectious’ transplantation tolerance. Science 259:974–977

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Tim Davies, Simon Hackett, Alison Leishman and Patty Sachamitr for helpful discussions. Work in the authors’ laboratory on the immunology of stem cell transplantation has been supported by Grant G0802538 from the Medical Research Council (UK) and seed funding from the Oxford Stem Cell Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul J. Fairchild .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fairchild, P.J., Ichiryu, N. (2013). Mitigating the Risk of Immunogenicity in the Pursuit of Induced Pluripotency . In: Fairchild, P. (eds) The Immunological Barriers to Regenerative Medicine. Stem Cell Biology and Regenerative Medicine. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-5480-9_5

Download citation

Publish with us

Policies and ethics