Skip to main content

A Molecular Basis for Intrinsic Muscle Properties: Implications for Motor Control

  • Conference paper
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((volume 782))

Abstract

Motor control comprises not only descending input from the nervous system and proprioceptive feedback, but also muscle viscoelastic properties, body dynamics, and interactions with the environment. Proprioceptive sense organs and spinal reflexes regulate muscle stiffness dynamically during perturbations. In addition to these slower acting reflexes, the nonlinear, viscoelastic behavior of muscles also provides instantaneous dynamic tuning of stiffness during load perturbations. Despite recognition of the contribution of these muscle properties to motor control, a theoretical framework that accounts for them has remained largely undeveloped. We recently proposed a novel molecular mechanism, the “winding filament” hypothesis, which accounts for the viscoelastic properties of active muscle. This hypothesis proposes that the giant, elastic titin protein is first engaged mechanically during Ca2+ activation in skeletal muscle, and the cross-bridges then wind titin on the thin filaments, storing elastic potential energy during force development. Mechanical engagement of the titin spring upon Ca2+ activation provides a mechanism by which nearly invariant contractile and viscoelastic properties can be produced regardless of the initial sarcomere length at which the muscles are activated. Winding of titin on the thin filaments with force development changes a muscle’s equilibrium position and stiffness as a function of muscle recruitment. These changes, in turn, produce forces that move the limbs to their final position regardless of unexpected perturbations. By adjusting their stiffness instantaneously to changes in load, muscles themselves control interactions between body and environment, and manage interactions between antagonistic muscles, which interact via their loads. By providing a biological mechanism for muscle intrinsic properties, the winding filament hypothesis provides inspiration for the design of a new generation of actuators and prostheses that, like muscles, will exhibit self-stabilization based on variable, nonlinear compliance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbott BC, Aubert XM (1952) The force exerted by active striated muscle during and after change of length. J Physiol 117(1):77–86

    PubMed  CAS  Google Scholar 

  • Ajemian R, Hogan N (2010) Experimenting with theoretical motor neuroscience. J Motor Behav 42:333–342

    Article  Google Scholar 

  • Asatryan DG, Feldman AG (1965) Functional tuning of nervous system with control of movement or maintenance of a steady posture—I. Mechanographic analysis of the work of the joint on execution of a postural task. Biofizika 10:837–846

    Google Scholar 

  • Bagni MA, Cecchi G, Colombini B, Colomo F (2002) A non-cross-bridge stiffness in activated frog muscle fibers. Biophys J 82:3118–3127

    Article  PubMed  CAS  Google Scholar 

  • Bagni MA, Colombini B, Geiger P, Berlinguer Palmini R, Cecchi G (2004) Non-crossbridge calcium-dependent stiffness in frog muscle fibers. Am J Physiol Cell Physiol 286:C1353–1357

    Article  PubMed  CAS  Google Scholar 

  • Bianco P, Nagy A, Kengyel A, Szatmari D, Martonfalvi Z, Huber T, Kellermayer MS (2007) Interaction forces between F-actin and titin PEVK domain measured with optical tweezers. Biophys J 93:2102–2109

    Article  PubMed  CAS  Google Scholar 

  • Campbell KS, Moss RL (2002) History-dependent mechanical properties of permeabilized rat soleus muscle fibers. Biophys J 82:929–943

    Article  PubMed  CAS  Google Scholar 

  • Cheng EJ, Brown IE, Loeb GE (2000) Virtual muscle: a computational approach to understanding the effects of muscle properties on motor control. J Neurosci Meth 101:117–130

    Article  CAS  Google Scholar 

  • Chiel HJ, Beer RD (1997) The brain has a body: adaptive behavior emerges from interactions of nervous system, body and environment. TINS 20:553–557

    PubMed  CAS  Google Scholar 

  • Daley MA, Biewener AA (2006) Running over rough terrain reveals limb control for intrinsic stability. Proc Nat Acad Sci 103:15681–15686

    Article  PubMed  CAS  Google Scholar 

  • Daley MA, Voloshina A, Biewener AA (2009) The role of intrinsic muscle mechanics in the neuromuscular control of stable running in the guinea fowl. J Physiol 587:2693–2707

    Article  PubMed  CAS  Google Scholar 

  • Dickinson MH, Farley CT, Full RJ, Koehl MAR, Kram R, Lehman S (2000) How animals move: an integrative view. Science 288:100–106

    Article  PubMed  CAS  Google Scholar 

  • Edman KA (1979) The velocity of unloaded shortening and its relation to sarcomere length and isometric force in vertebrate muscle fibres. J Physiol 291:143–159

    PubMed  CAS  Google Scholar 

  • Edman KA, Elzinga G, Noble MI (1982) Residual force enhancement after stretch of contracting frog single muscle fibers. J Gen Physiol 80:769–784

    Article  PubMed  CAS  Google Scholar 

  • Feldman AG, Levin MF (2009) The equilibrium-point hypothesis—past, present and future. Adv Exp Med Biol 629:699–726

    Article  PubMed  Google Scholar 

  • Flanders M, Tillery SIH, Soechting JF (1992) Early stages in a sensorimotor transformation. Behav Brain Sci 15:309–362

    Article  Google Scholar 

  • Forcinito M, Epstein M, Herzog W (1998) Can a rheological muscle model predict force depression/enhancement? J Biomech 31:1093–1099

    Article  PubMed  CAS  Google Scholar 

  • Full RJ, Koditschek DE,(1999) Templates and anchors—neuromechanical hypotheses of legged locomotion on land. J Exp Biol 202:3325–3332

    PubMed  CAS  Google Scholar 

  • Funatsu T, Kono E, Higuchi H, Kimura S, Ishiwata S, Yoshioka T, Maruyam K, Tsukita S (1993) Elastic filaments in situ in cardiac muscle: deep-etch replica analysis in combination with selective removal of actin and myosin filaments. J Cell Biol 120:711–724.

    Article  PubMed  CAS  Google Scholar 

  • Georgopoulos AP (1986) On reaching. Ann Rev Neurosci 9:147–170

    Article  PubMed  CAS  Google Scholar 

  • Gordon AM, Huxley AF, Julian FJ (1966) The variation in isometric tension with sarcomere length in vertebrate muscle fibers. J Physiol (Lond) 184:170–192

    CAS  Google Scholar 

  • Gregorio CC, Granzier H, Sorimachi H, Labeit S (1999) Muscle assembly: a titanic achievement? Curr Opin Cell Biol 1:18–25

    Article  Google Scholar 

  • Haftel VK, Bichler EK, Nichols TR, Pinter MJ, Cope TC (2004) Movement reduces the dynamic response of muscle spindle afferents and motor neuron synaptic potentials in rat. J Neurophysiol 91:2164–2171

    Article  PubMed  Google Scholar 

  • Herzog W (1998) History dependence of force production in skeletal muscle: a proposal for mechanisms. J Electromyogr Kinesiol 8:111–117

    Article  PubMed  CAS  Google Scholar 

  • Herzog W, Leonard TR, Joumaa V, Mehta A (2008) Mysteries of muscle contraction. J Appl Biomech 24:1–13

    PubMed  Google Scholar 

  • Hogan N (1985) The mechanics of multi-joint posture and movement control. Biol Cybern 52:315–331

    Article  PubMed  CAS  Google Scholar 

  • Huxley HE (2004) Recent X-ray diffraction studies of muscle contraction and their implications. Phil Trans Roy Soc Lond B. Bio 359:1879–1882

    CAS  Google Scholar 

  • Huxley H, Hanson J (1954) Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature 173:973–976

    Article  PubMed  CAS  Google Scholar 

  • Huyghues-Despointes CM, Cope TC, Nichols TR (2003a) Intrinsic properties and reflex compensation in reinnervated triceps surae muscles of the cat: effect of activation level. J Neurophysiol 90:1537–1546

    Article  Google Scholar 

  • Huyghues-Despointes CM, Cope TC, Nichols TR (2003b) Intrinsic properties and reflex compensation in reinnervated triceps surae muscles of the cat: effect movement history. J Neurophysiol 90:1547–1555

    Article  Google Scholar 

  • Joumaa V, Leonard TR, Herzog W (2008) Residual force enhancement in myofibrils and sarcomeres. Proc Biol Sci 275:1411–1419

    Article  PubMed  CAS  Google Scholar 

  • Koditschek DE, Full RJ, Buehler M (2004) Mechanical aspects of legged locomotion control. Arthropod Struct Dev 33:251–272

    Article  PubMed  Google Scholar 

  • Krüger M, Linke WA (2011) The giant protein titin: a regulatory node that integrates myocyte signaling pathways. J Biol Chem 286:9905–9912

    Article  PubMed  Google Scholar 

  • Labeit D, Watanabe K, Witt C, Fijita H, Wu Y, Lahmers S, Funck T, Labeit S, Granzier H (2003) Calcium-dependent molecular spring elements in the giant protein titin. Proc Natl Acad Sci U S A 100:13716–13721

    Article  PubMed  CAS  Google Scholar 

  • Lappin AK, Monroy JA, Pilarski JQ, Zepnewski ED, Pierotti DJ, Nishikawa KC (2006) Storage and recovery of elastic potential energy powers ballistic prey capture in toads. J Exp Biol 209:2535–2553

    Article  PubMed  Google Scholar 

  • Leonard TR, Herzog W (2010) Regulation of muscle force in the absence of actin-myosin-based cross-bridge interaction. Am J Physiol Cell Physiol 299:C14–20

    Article  PubMed  CAS  Google Scholar 

  • Lin CCK, Crago PE (2002) Neural and mechanical contributions to the stretch reflex: a model synthesis. Ann Biomed Eng 30:54–67

    Article  PubMed  Google Scholar 

  • Linke WA, Ivemeyer M, Mundel P, Stockmeier MR, Kolmerer B (1998) Nature of PEVK-titin elasticity in skeletal muscle. Proc Natl Acad Sci U S A 95:8052–8057

    Article  PubMed  CAS  Google Scholar 

  • Loeb GE, Brown IE, Cheng EJ (1999) A hierarchical foundation for models of sensorimotor control. Exp Brain Res 126:1–18

    Article  PubMed  CAS  Google Scholar 

  • Maruyama K, Natori R, Nonomura Y (1976) New elastic protein from muscle. Nature 262:58–60

    Article  PubMed  CAS  Google Scholar 

  • Matthews PBC (1959) The dependence of tension upon extension in the stretch reflex of the soleus muscle of the decerebrate cat. J Physiol 147:521–546

    PubMed  CAS  Google Scholar 

  • Monroy JA, Lappin AK, Nishikawa KC (2007) Elastic properties of active muscle—on the rebound? Exerc Sport Sci Rev 35:174–179

    Article  PubMed  Google Scholar 

  • Morgan RS (1977) Actin rotates as myosin translates. J Theor Biol 67:769–771

    Article  PubMed  CAS  Google Scholar 

  • Nichols TR Houk JC (1976) Improvement in linearity and regulation of stiffness that results from actions of stretch reflex. J Neurophysiol 39:119–42

    PubMed  CAS  Google Scholar 

  • Nichols TR Cope TC (2004) Cross-bridge mechanisms underlying the history-dependent properties of muscle spindles and stretch reflexes. Can J Physiol Pharmacol 82:569–576

    Article  PubMed  CAS  Google Scholar 

  • Nichols TR, Lin DC, Huyghues-Despointes CM (1999) The role of musculoskeletal mechanics in motor coordination. Prog Brain Res 123:369–378

    Article  PubMed  CAS  Google Scholar 

  • Nishikawa KC, Monroy JA, Uyeno TE, Yeo SH, Pai DK, Lindstedt SL (2011) Is titin a ‘winding filament’? A new twist on muscle contraction. Proc Roy Soc Lond B 279:981–990

    Article  Google Scholar 

  • Rack PMH, Westbury DR (1974) The short-range stiffness of active mammalian muscle and its effect on mechanical properties. J Physiol 240:331–350

    PubMed  CAS  Google Scholar 

  • Raptis H, Burtet L, Forget R, Feldman AG (2010) Control of wrist position and muscle relaxation by shifting spatial frames of reference for motoneuronal recruitment: possible involvement of corticospinal pathways. J. Physiol 88:1551–1570

    Article  Google Scholar 

  • Rassier DE, Herzog W (2004) Considerations on the history dependence of muscle contraction. J Appl Physiol 96:419–427

    Article  PubMed  Google Scholar 

  • Reich TE, Lindstedt SL, LaStayo PC, Pierotti DJ (2000) Is the spring quality of muscle plastic? Am J Physiol Regul Integr Comp Physiol 278:R1661–1666

    PubMed  CAS  Google Scholar 

  • Richardson AG, Slotine JE, Bizzi E, Tresch MC (2005) Intrinsic musculoskeletal properties stabilize wiping movements in the spinalized frog. J Neurosci 25:3181–3191

    Article  PubMed  CAS  Google Scholar 

  • Roberts TJ, Azizi E (2011) Flexible mechanisms: the diverse roles of biological springs in vertebrate movement. J Exp Biol 214:353–361

    Article  PubMed  Google Scholar 

  • Sangani SG, Raptis HA, Feldman AG (2011) Subthreshold corticospinal control of anticipatory actions in humans. Behav Brain Res 224:145–154

    Article  PubMed  Google Scholar 

  • Sandercock TG, Heckman CJ (1997) Force from cat soleus muscle during imposed locomotor-like movements: experimental data versus Hill-type muscle predictions. J Neurophysiol 77:1538–1552

    PubMed  CAS  Google Scholar 

  • Slager GEC, Otten E, Nagashima T, Van WIlligen JD (1998) The riddle of the large loss in bite force after fast jaw-closing movements. J Dent Res 77:1684–1693

    Article  PubMed  CAS  Google Scholar 

  • Todorov E (2000) Direct cortical control of muscle activation in voluntary arm movements: a model. Nat Neurosci 3:391–398

    Article  PubMed  CAS  Google Scholar 

  • Wagner H, Blickhan R (1999) Stabilizing function of skeletal muscles: an analytical investigation. J Theor Biol 199:163–179

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Michael Richardson, Michael Riley, and Kevin Shockley for inviting us to participate in the symposium and for editing this book. T. Richard Nichols and Cinnamon Pace provided helpful comments on the manuscript. Our research was supported by grants IOS-0732949, IIS-0827688, and IOS-1025806 from the National Science Foundation, and by TRIF Growing Biotechnology grants from Northern Arizona University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiisa C. Nishikawa Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this paper

Cite this paper

Nishikawa, K.C., Monroy, J.A., Powers, K.L., Gilmore, L.A., Uyeno, T.A., Lindstedt, S.L. (2013). A Molecular Basis for Intrinsic Muscle Properties: Implications for Motor Control. In: Richardson, M., Riley, M., Shockley, K. (eds) Progress in Motor Control. Advances in Experimental Medicine and Biology, vol 782. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5465-6_6

Download citation

Publish with us

Policies and ethics