Skip to main content

Sourdough: A Tool to Improve Bread Structure

  • Chapter
  • First Online:

Abstract

The quality of bread is characterized by its flavor, nutritional value, texture, and shelf life [1]. In the baking industry, these characteristics are improved by addition of bread improvers or enzymes. Alternatively, the addition of sourdough influences all aspects of bread quality and thus meets consumer demands for a reduced use of additives. Since sourdough is an intermediate but not an end product the microbiological activity has to be determined on the bases of their impact on bread quality. Biochemical changes during sourdough fermentation occur in protein and carbohydrate components of the flour. The rate and extent of these changes greatly influence the properties of the sourdough and consequently the quality of the bread dough and bread structure. The effects are associated with the metabolites produced by lactic acid bacteria (LAB) and yeast during fermentation, including organic acids, exopolysaccharides (EPS), enzymes, and CO2. The following chapter presents the impact of sourdough fermentation on structure-forming components of bread, and bread texture.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Arendt EK, Ryan LAM, Dal Bello F (2007) Impact of sourdough on the texture of bread. Food Microbiol 24:165–174

    Article  CAS  Google Scholar 

  2. Shewry PR, Halford NG, Tatham AS (1992) High molecular weight subunits of wheat glutenin. J Cereal Sci 15:105–120

    Article  CAS  Google Scholar 

  3. Belton PS (1999) On the elasticity of wheat gluten. J Cereal Sci 29:103–107

    Article  CAS  Google Scholar 

  4. Goesaert H, Slade H, Levine H, Delcour JA (2009) Amylases and bread firming – an integrated view. J Cereal Sci 50:345–352

    Article  CAS  Google Scholar 

  5. Gray JA, Bemiller JN (2003) Bread staling: molecular basis and control. Compr Rev Food Sci Food Safety 2:1–20

    Article  CAS  Google Scholar 

  6. Goesaert H, Brijs K, Veraverbeke WS, Courtin CM, Gebruers K, Delcour JA (2005) Wheat flour constituents: how they impact bread quality, and how to impact their functionality. Trends Food Sci Tech 16:12–30

    Article  CAS  Google Scholar 

  7. Brandt MJ (2006) Bedeutung von Sauerteig für die Brotqualität. In: Brandt MJ, Gänzle MG (eds) Handbuch Sauerteig. B. Behr’s Verlag, Hamburg, pp 21–40

    Google Scholar 

  8. Barber B, Ortolá C, Barber S, Fernández F (1992) Storage of packaged white bread. Z Lebensm Forsch 194:442–449

    Article  CAS  Google Scholar 

  9. Kaditzky S, Seitter M, Hertel C, Vogel RF (2008) Performance of Lactobacillus ­sanfranciscensis TMW 1.392 and its levansucrase deletion mutant in wheat dough and comparison of their impact on bread quality. Eur Food Res Tech 227:433–442

    Article  CAS  Google Scholar 

  10. Galle S (2011) Isolation, characterization and application of exopolysaccharides from lactic acid bacteria to improve the quality of wheat and gluten-free bread. Doctoral thesis, University College Cork, Ireland

    Google Scholar 

  11. Clarke CI, Schober TJ, Arendt EK (2002) The effect of single strain and traditional mixed strain starter cultures on rheological properties of wheat dough and bread quality. Cereal Chem 79:640–647

    Article  CAS  Google Scholar 

  12. Corsetti A, Gobbetti M, Balestrieri F, Paoletti F, Russi L, Rossi J (1998) Sourdough lactic acid bacteria effects on bread firmness and staling. J Food Sci 63:347–351

    Article  CAS  Google Scholar 

  13. Corsetti A, Gobbetti B, De Marco B, Balestrieri F, Paoletti F, Rossi J (2000) Combined effect of sourdough lactic acid bacteria and additives on bread firmness and staling. J Agric Food Chem 48:3044–3051

    Article  CAS  Google Scholar 

  14. Di Cagno R, De Angelis M, Limitone A, Minervini F, Carnevali P, Corsetti A, Gänzle M, Ciati R, Gobbetti M (2006) Glucan and fructan production by sourdough Weissella cibaria and Lactobacillus plantarum. J Agric Food Chem 54:9873–9881

    Article  Google Scholar 

  15. Katina K, Maina NH, Juvonen R, Flander L, Johansson L, Virkki L, Tenkanen M, Laitila A (2009) In situ production and analysis of Weissella confusa dextran in wheat sourdough. Food Microbiol 26:734–743

    Article  CAS  Google Scholar 

  16. Axford DWE, McDermott EE, Redman DG (1979) Note on the sodium dodecyl sulfate test of breadmaking quality: comparison with Pelshenke and Zeleny tests. Cereal Chem 56:582–583

    CAS  Google Scholar 

  17. Takeda K, Matsumura Y, Shimizu M (2001) Emulsifying and surface properties of wheat ­gluten under acidic conditions. J Food Sci 66:393–399

    Article  CAS  Google Scholar 

  18. Hoseney C (1994) Principles of cereals science and technology, 2nd edn. American Association of Cereal Chemists, St. Paul

    Google Scholar 

  19. Wehrle K, Grau H, Arendt EK (1997) Effects of lactic acid, acetic acid, and table salt on ­fundamental rheological properties of wheat dough. Cereal Chem 74:739–744

    Article  CAS  Google Scholar 

  20. Schober TJ, Dockery P, Arendt EK (2003) Model studies for wheat sourdough systems using gluten, lactate buffer and sodium chloride. Eur Food Res Tech 217:235–243

    Article  CAS  Google Scholar 

  21. Hammes WP, Ganzle MG (1998) Sourdough breads and related products. In: Woods BJB (ed) Microbiology of fermented foods, vol 1. Blackie Academic/Professional, London, pp 199–216

    Chapter  Google Scholar 

  22. Thiele C, Gänzle MG, Vogel RF (2002) Contribution of sourdough lactobacilli, yeast and cereal enzymes to the generation of amino acids in dough relevant for bread flavour. Cereal Chem 79:45–51

    Article  CAS  Google Scholar 

  23. Clarke C, Schober T, Dockery P, O’Sullican K, Arendt EK (2004) Wheat sourdough ­fermentation: effects of time and acidification on fundamental rheological properties. Cereal Chem 81:409–417

    Article  CAS  Google Scholar 

  24. Thiele C, Grassl S, Gänzle M (2004) Gluten hydrolysis and depolymerization during ­sourdough fermentation. J Agric Food Chem 52:1307–1314

    Article  CAS  Google Scholar 

  25. Gobbetti M, Corsetti A, Rossi J (1995) Interaction between lactic acid bacteria and yeasts in sour-dough using a rheofermentometer. World J Microbiol Biotech 11:625–630

    Article  CAS  Google Scholar 

  26. Kieffer R, Stein N (1999) Demixing in wheat doughs-its influence on dough and gluten ­rheology. Cereal Chem 76:688–693

    Article  CAS  Google Scholar 

  27. Crowley P, Schober T, Clarke C, Arendt E (2002) The effect of storage time on textural and crumb grain characteristics of sourdough wheat bread. Eur Food Res Tech 214:489–496

    Article  CAS  Google Scholar 

  28. Thiele C, Gänzle G, Vogel RF (2003) Fluorescence labeling of wheat proteins for determination of gluten hydrolysis and depolymerization during dough processing and sourdough fermentation. J Agri Food Chem 51:2745–2752

    Article  CAS  Google Scholar 

  29. Loponen J, Mikola M, Katina K, Sontag-Strohm T, Salovaara H (2004) Degradation of HMW glutenins during wheat sourdough fermentations. Cereal Chem 81:87–90

    Article  CAS  Google Scholar 

  30. Clarke CI, Schober TJ, Angst E, Arendt EK (2003) Use of response surface methodology to investigate the effects of processing conditions on sourdough wheat bread quality. Eur Food Res Tech 217:23–33

    Article  CAS  Google Scholar 

  31. Vinkx CJA, Delcour JA (1996) Rye (Secale cereale L.) arabinoxylans: a critical review. J Cereal Sci 24:1–14

    Article  CAS  Google Scholar 

  32. Boskov Hansen H, Andreasen M, Nielsen M, Larsen L, Knudsen BK, Meyer A, Christensen L, Hansen A (2002) Changes in dietary fibre, phenolic acids and activity of endogenous enzymes during rye bread-making. Eur Food Res Tech 214:33–42

    Article  Google Scholar 

  33. Brandt MJ (2006) Bedeutung von Rohwarenkompontenten. In: Brandt MJ, Gänzle MG (eds) Handbuch Sauerteig. B. Behr’s Verlag, Hamburg, pp 41–55

    Google Scholar 

  34. Courtin C, Delcour J (2002) Arabinoxylans and endoxylanases in wheat flour bread-making. J Cereal Sci 35:225.243

    Article  Google Scholar 

  35. Gänzle MG, Loponen J, Gobbetti M (2008) Proteolysis in sourdough fermentations: mechanisms and potential for improved bread quality. Trends Food Sci Tech 19:513–521

    Article  Google Scholar 

  36. Gobbetti M, Smacchi E, Fox P, Stepaniak L, Corsetti A (1996) The sourdough microflora. Cellular localisation and charcterization of proteolytic enzymes in lactic acid bacteria. Lebensm Wissensch Tech 29:561–569

    Article  CAS  Google Scholar 

  37. Di Cagno R, de Angelis M, Lavermicocca P, de Vincenzi M, GiovanniniC FM, Gobbetti M (2002) Proteolysis by sourdough lactic acid bacteria: effects on wheat flour protein fractions and gliadin peptides involved in human cereal intolerance. Appl Environ Microbiol 68:623–633

    Article  Google Scholar 

  38. Wieser H, Vermeulen N, Gaertner F, Vogel RF (2008) Effect of different Lactobacillus and Enterococcus strains and chemical acidification regarding degradation of gluten proteins during sourdough fermentation. Eur Food Res Tech 226:1495–1502

    Article  CAS  Google Scholar 

  39. Vermeulen N, Kretzer J, Machalitza H, Vogel RF, Gänzle MG (2006) Influence of redox-reactions catalysed by homo- and heterofermentative lactobacilli on gluten in wheat sourdoughs. J Cereal Sci 43:137–143

    Article  CAS  Google Scholar 

  40. Grosch W, Wieser H (1999) Redox reactions in wheat dough as affected by ascorbic acid. J Cereal Sci 29:1–16

    Article  CAS  Google Scholar 

  41. Korakli M, Rossmann A, Gänzle MG, Vogel RF (2001) Sucrose metabolism and ­exopolysaccharide production in wheat and rye sourdoughs by Lactobacillus sanfranciscensis. J Agri Food Chem 49:5194–5200

    Article  CAS  Google Scholar 

  42. Korakli M, Gänzle MG, Vogel RF (2002) Metabolism by bifidobacteria and lactic acid bacteria of polysaccharides from wheat and rye, and exopolysaccharides produced by Lactobacillus sanfranciscensis. J Appl Microbiol 92:958–965

    Article  CAS  Google Scholar 

  43. Tieking M, Gänzle MG (2005) Exopolysaccharides from cereal-associated lactobacilli. Trends Food Sci Tech 16:79–84

    Article  CAS  Google Scholar 

  44. Galle S, Schwab C, Arendt EK, Gänzle MG (2011) Structural and rheological characterisation of heteropolysaccharides produced by lactic acid bacteria in wheat and sorghum sourdough. Food Microbiol 26:547–553

    Article  Google Scholar 

  45. Bounaix MS, Robert H, Gabriel V, Morel S, Remaud-Simeon M, Gabriel B, Fontagne-Faucher C (2010) Characterization of dextran-producing Weissella strains isolated from sourdoughs and evidence of constitutive dextransucrase expression. FEMS Microbiol Lett 311:18–26

    Article  CAS  Google Scholar 

  46. Bounaix MS, Gabriel V, Morel S, Robert H, Rabier P, Remaud-Simeon M, Gabriel B, ­Fontagne-Faucher C (2009) Biodiversity of exopolysaccharides produced from sucrose by sourdough lactic acid bacteria. J Agri Food Chem 57:10889–10897

    Article  CAS  Google Scholar 

  47. Galle S, Schwab C, Arendt E, Gänzle MG (2010) Exopolysaccharide-forming Weissella strains as starter cultures for sorghum and wheat sourdoughs. J Agri Food Chem 58:5834–5841

    Article  CAS  Google Scholar 

  48. Schwab C, Mastrangelo M, Corsetti A, Gänzle MG (2008) Formation of oligosaccharides and polysaccharides by Lactobacillus reuteri LTH5448 and Weissella cibaria 10M in sorghum sourdoughs. Cereal Chem 85:679–684

    Article  CAS  Google Scholar 

  49. Tieking M, Korakli M, Ehrmann MA, Gänzle MG, Vogel RF (2003) In situ production of exopolysaccharides during sourdough fermentation by cereal and intestinal isolates of lactic acid bacteria. Appl Environ Microbiol 69:945–952

    Article  CAS  Google Scholar 

  50. Waldherr FW, Vogel RF (2009) Commercial exploitation of homo-exopolysaccharides in non-dairy food systems. In: Ullrich M (ed) Bacterial polysaccharides: Current innovations and future trends. Caister Academic Press, Norfolk, UK, pp 313–330

    Google Scholar 

  51. Lacaze G, Wick M, Cappelle S (2007) Emerging fermentation technologies: development of novel sourdoughs. Food Microbiol 24:155–160

    Article  CAS  Google Scholar 

  52. Brandt MJ, Roth K, Hammes WP (2003) Effect of an exopolysaccharide produced by Lactoabacillus sanfranciscensis LTH1729 on dough and bread quality. In: Vyust L, Vrije (eds) Sourdough from fundamentals to application, de Universiteit Brussels (VUB), Brussels, Hamburg, p 80

    Google Scholar 

  53. Kaditzky S, Vogel R (2008) Optimization of exopolysaccharide yields in sourdoughs fermented by lactobacilli. Eur Food Res Tech 228:291–299

    Article  CAS  Google Scholar 

  54. Decock P, Cappelle S (2005) Bread technology and sourdough technology. Trends Food Sci Tech 16:113–120

    Article  CAS  Google Scholar 

  55. Ross AS, McMaster GJ, David Tomlinson J, Cheetham NWH (1992) Effect of dextrans of differing molecular weights on the rheology of wheat flour doughs and the quality characteristics of pan and arabic breads. J Sci Food Agri 60:91–98

    Article  CAS  Google Scholar 

  56. Galle S, Schwab C, Dal Bello F, Coffey A, Gänzle MG, Arendt EK (2012) Influence of in-situ synthesized exopolysaccharides on the quality of gluten-free sorghum sourdough bread. Int J Food Microbiol (in press), Corrected proof

    Google Scholar 

  57. Martínez-Anaya MA (2003) Associations and interactions of micro-organisms in dough fermentations: effects on dough and bread characteristics. In: Kulp K, Lorenz K (eds) Handbook of dough fermentations. Marcel Dekker, New York, pp 63–195

    Google Scholar 

  58. Katina K, Salmenkallio-Marttila M, Partanen R, Forssell P, Autio K (2006) Effects of sourdough and enzymes on staling of high-fibre wheat bread. Food Sci Tech 39:479–491

    CAS  Google Scholar 

  59. Di Cagno R, De Angelis M, Corsetti A, Lavermicocca P, Arnault P, Tossut P, Gallo G, Gobbetti M (2003) Interactions between sourdough lactic acid bacteria and exogenous enzymes: effects on the microbial kinetics of acidification and dough textural properties. Food Microbiol 20:67–75

    Article  Google Scholar 

  60. Martínez-Anaya MA, Devesa A, Andreu P, Escrivá C, Collar C (1998) Effects of the combination of starters and enzymes in regulating bread quality and self-life. Food Sci Tech Int 4:425–435

    Article  Google Scholar 

  61. Minervini F, Pinto D, Di Cagno R, De Angelis M, Gobbetti M (2011) Scouting the application of sourdough to frozen dough bread technology. J Cereal Sci 54:296–304

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Galle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Galle, S. (2013). Sourdough: A Tool to Improve Bread Structure. In: Gobbetti, M., Gänzle, M. (eds) Handbook on Sourdough Biotechnology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5425-0_8

Download citation

Publish with us

Policies and ethics