Skip to main content

Antigenic Variation of VlsE in Borrelia burgdorferi

  • Chapter
  • First Online:

Abstract

The multisystem disease known as Lyme disease (or Lyme borreliosis) is the most prevalent vector-borne infection affecting humans in North America and Europe (Barbour 2001; Steere et al. 2004). Causative bacterial agents of the disease, the spirochetes Borrelia burgdorferi, Borrelia garinii, and Borrelia afzelii, are transmitted by hard-bodied ticks of the genus Ixodes. Infected ticks transmit Lyme disease Borreliae to humans during feeding, which can result in a localized infection (erythema migrans) at the site of the tick bite. Disseminated and chronic stages of infection follow; these are characterized by neurological, cardiac, and arthritic manifestations of disease. Infection with Lyme disease Borrelia can last from months to years due to avoidance of the host immune response, and key to its successful evasion tactics is recombination at the vls locus located at the telomeric end of a 28-kb linear plasmid (Norris 2006; Palmer et al. 2009; Zhang et al. 1997). Recombinational switching at the vls locus results in sequence variation of the surface protein, VlsE, thus altering its antigenic properties and allowing the spirochete to evade the host’s antibody-mediated response (Zhang et al. 1997; Zhang and Norris 1998a, b).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bacon RM, Biggerstaff BJ, Schriefer ME, Gilmore RD Jr, Philipp MT, Steere AC, Wormser GP, Marques AR, Johnson BJ (2003) Serodiagnosis of Lyme disease by kinetic enzyme-linked immunosorbent assay using recombinant VlsE1 or peptide antigens of Borrelia burgdorferi compared with 2-tiered testing using whole-cell lysates. J Infect Dis 187(8):1187–1199

    Article  PubMed  CAS  Google Scholar 

  • Bankhead T, Chaconas G (2007) The role of VlsE antigenic variation in the Lyme disease spirochete: persistence through a mechanism that differs from other pathogens. Mol Microbiol 65(6):1547–1558

    Article  PubMed  CAS  Google Scholar 

  • Barbour AG (2001) Borrelia: a diverse and ubiquitous genus of tick-borne pathogens. In: Scheld MW, Craig WA, Hughes JM (eds) Emerging Infections 5. American Society for Microbiology, Washington, D.C, pp 153–173

    Google Scholar 

  • Barry JD, Ginger ML, Burton P, McCulloch R (2003) Why are parasite contingency genes often associated with telomeres? Int J Parasitol 33(1):29–45

    Article  PubMed  CAS  Google Scholar 

  • Beaurepaire C, Chaconas G (2005) Mapping of essential replication functions of the linear plasmid lp17 of B. burgdorferi by targeted deletion walking. Mol Microbiol 57(1):132–142

    Article  PubMed  CAS  Google Scholar 

  • Bunikis J, Barbour AG (1999) Access of antibody or trypsin to an integral outer membrane protein (P66) of Borrelia burgdorferi is hindered by Osp lipoproteins. Infect Immun 67(6):2874–2883

    PubMed  CAS  Google Scholar 

  • Casjens S, Palmer N, Van Vugt R, Huang WH, Stevenson B, Rosa P, Lathigra R, Sutton G, Peterson J, Dodson RJ et al (2000) A bacterial genome in flux: the twelve linear and nine circular extrachromosomal DNAs in an infectious isolate of the Lyme disease spirochete Borrelia burgdorferi. Mol Microbiol 35(3):490–516

    Article  PubMed  CAS  Google Scholar 

  • Chaconas G (2005) Hairpin telomere and genome plasticity in Borrelia: all mixed up in the end. Mol Microbiol 58:625–635

    Article  PubMed  CAS  Google Scholar 

  • Coutte L, Botkin DJ, Gao L, Norris SJ (2009) Detailed analysis of sequence changes occurring during vlsE antigenic variation in the mouse model of Borrelia burgdorferi infection. PLoS Pathog 5(2):e1000293

    Article  PubMed  Google Scholar 

  • Crother TR, Champion CI, Wu XY, Blanco DR, Miller JN, Lovett MA (2003) Antigenic composition of Borrelia burgdorferi during infection of SCID mice. Infect Immun 71(6):3419–3428

    Article  PubMed  CAS  Google Scholar 

  • Dresser AR, Hardy PO, Chaconas G (2009) Investigation of the genes involved in antigenic switching at the vlsE locus in Borrelia burgdorferi: an essential role for the RuvAB branch migrase. PLoS Pathog 5(12):e1000680

    Article  PubMed  Google Scholar 

  • Dzikowski R, Templeton TJ, Deitsch K (2006) Variant antigen gene expression in malaria. Cell Microbiol 8(9):1371–1381

    Article  PubMed  CAS  Google Scholar 

  • Eicken C, Sharma V, Klabunde T, Lawrenz MB, Hardham JM, Norris SJ, Sacchettini JC (2002) Crystal structure of Lyme disease variable surface antigen VlsE of Borrelia burgdorferi. J Biol Chem 277(24):21691–21696

    Article  PubMed  CAS  Google Scholar 

  • Embers ME, Jacobs MB, Johnson BJ, Philipp MT (2007a) Dominant epitopes of the C6 diagnostic peptide of Borrelia burgdorferi are largely inaccessible to antibody on the parent VlsE molecule. Clin Vaccine Immunol 14(8):931–936

    Article  PubMed  CAS  Google Scholar 

  • Embers ME, Wormser GP, Schwartz I, Martin DS, Philipp MT (2007b) Borrelia burgdorferi spirochetes that harbor only a portion of the lp28-1 plasmid elicit antibody responses detectable with the C6 test for Lyme disease. Clin Vaccine Immunol 14(1):90–93

    Article  PubMed  CAS  Google Scholar 

  • Embers ME, Alvarez X, Ooms T, Philipp MT (2008) The failure of immune response evasion by linear plasmid 28-1-deficient Borrelia burgdorferi is attributable to persistent expression of an outer surface protein. Infect Immun 76(9):3984–3991

    Article  PubMed  CAS  Google Scholar 

  • Fung BP, McHugh GL, Leong JM, Steere AC (1994) Humoral immune response to outer surface protein C of Borrelia burgdorferi in Lyme disease: role of the immunoglobulin M response in the serodiagnosis of early infection. Infect Immun 62(8):3213–3221

    PubMed  CAS  Google Scholar 

  • Hudson CR, Frye JG, Quinn FD, Gherardini FC (2001) Increased expression of Borrelia burgdorferi vlsE in response to human endothelial cell membranes. Mol Microbiol 41(1):229–239

    Article  PubMed  CAS  Google Scholar 

  • Indest KJ, Howell JK, Jacobs MB, Scholl-Meeker D, Norris SJ, Philipp MT (2001) Analysis of Borrelia burgdorferi vlsE gene expression and recombination in the tick vector. Infect Immun 69(11):7083–7090

    Article  PubMed  CAS  Google Scholar 

  • Kobryn K, Chaconas G (2002) ResT, a telomere resolvase encoded by the Lyme disease spirochete. Mol Cell 9(1):195–201

    Article  PubMed  CAS  Google Scholar 

  • Koomey M, Gotschlich EC, Robbins K, Bergstrom S, Swanson J (1987) Effects of recA mutations on pilus antigenic variation and phase transitions in Neisseria gonorrhoeae. Genetics 117(3):391–398

    PubMed  CAS  Google Scholar 

  • Kraemer SM, Smith JD (2006) A family affair: var genes, PfEMP1 binding, and malaria disease. Curr Opin Microbiol 9(4):374–380

    Article  PubMed  CAS  Google Scholar 

  • Labandeira-Rey M, Skare JT (2001) Decreased infectivity in Borrelia burgdorferi strain B31 is associated with loss of linear plasmid 25 or 28–1. Infect Immun 69(1):446–455

    Article  PubMed  CAS  Google Scholar 

  • Labandeira-Rey M, Seshu J, Skare JT (2003) The Absence of Linear Plasmid 25 or 28–1 of Borrelia burgdorferi Dramatically Alters the Kinetics of Experimental Infection via Distinct Mechanisms. Infect Immun 71(8):4608–4613

    Article  PubMed  CAS  Google Scholar 

  • Lawrenz MB, Wooten RM, Norris SJ (2004) Effects of vlsE complementation on the infectivity of Borrelia burgdorferi lacking the linear plasmid lp28-1. Infect Immun 72(11):6577–6585

    Article  PubMed  CAS  Google Scholar 

  • Liang FT, Steere AC, Marques AR, Johnson BJ, Miller JN, Philipp MT (1999) Sensitive and specific serodiagnosis of Lyme disease by enzyme-linked immunosorbent assay with a peptide based on an immunodominant conserved region of Borrelia burgdorferi vlsE. J Clin Microbiol 37(12):3990–3996

    PubMed  CAS  Google Scholar 

  • Liang FT, Jacobs MB, Bowers LC, Philipp MT (2002) An immune evasion mechanism for spirochetal persistence in Lyme borreliosis. J Exp Med 195(4):415–422

    Article  PubMed  CAS  Google Scholar 

  • Liang FT, Brown EL, Wang T, Iozzo RV, Fikrig E (2004a) Protective niche for Borrelia burgdorferi to evade humoral immunity. Am J Pathol 165(3):977–985

    Article  PubMed  Google Scholar 

  • Liang FT, Yan J, Mbow ML, Sviat SL, Gilmore RD, Mamula M, Fikrig E (2004b) Borrelia burgdorferi changes its surface antigenic expression in response to host immune responses. Infect Immun 72(10):5759–5767

    Article  PubMed  CAS  Google Scholar 

  • Lin T, Gao L, Edmondson DG, Jacobs MB, Philipp MT, Norris SJ (2009) Central role of the holliday junction helicase RuvAB in vlsE recombination and infectivity of Borrelia burgdorferi. PLoS Pathog 5(12):e1000679

    Article  PubMed  Google Scholar 

  • Liveris D, Mulay V, Sandigursky S, Schwartz I (2008) Borrelia burgdorferi vlsE antigenic variation is not mediated by RecA. Infect Immun 76(9):4009–4018

    Article  PubMed  CAS  Google Scholar 

  • McDowell JV, Sung SY, Hu LT, Marconi RT (2002) Evidence That the Variable Regions of the Central Domain of VlsE Are Antigenic during Infection with Lyme Disease Spirochetes. Infect Immun 70(8):4196–4203

    Article  PubMed  CAS  Google Scholar 

  • Norris SJ (2006) Antigenic variation with a twist - the Borrelia story. Mol Microbiol 60(6): 1319–1322

    Article  PubMed  CAS  Google Scholar 

  • Palmer GH, Bankhead T, Lukehart SA (2009) ‘Nothing is permanent but change’- antigenic variation in persistent bacterial pathogens. Cell Microbiol 11(12):1697–1705

    Article  PubMed  CAS  Google Scholar 

  • Philipp MT, Bowers LC, Fawcett PT, Jacobs MB, Liang FT, Marques AR, Mitchell PD, Purcell JE, Ratterree MS, Straubinger RK (2001) Antibody response to IR6, a conserved immunodominant region of the VlsE lipoprotein, wanes rapidly after antibiotic treatment of Borrelia ­burgdorferi infection in experimental animals and in humans. J Infect Dis 184(7):870–878

    Article  PubMed  CAS  Google Scholar 

  • Purser JE, Norris SJ (2000) Correlation between plasmid content and infectivity in Borrelia ­burgdorferi. Proc Natl Acad Sci USA 97(25):13865–13870

    Article  PubMed  CAS  Google Scholar 

  • Purser JE, Lawrenz MB, Caimano MJ, Howell JK, Radolf JD, Norris SJ (2003) A plasmid-encoded nicotinamidase (PncA) is essential for infectivity of Borrelia burgdorferi in a ­mammalian host. Mol Microbiol 48(3):753–764

    Article  PubMed  CAS  Google Scholar 

  • Schulte-Spechtel U, Lehnert G, Liegl G, Fingerle V, Heimerl C, Johnson BJ, Wilske B (2003) Significant improvement of the recombinant Borrelia-specific immunoglobulin G immunoblot test by addition of VlsE and a DbpA homologue derived from Borrelia garinii for diagnosis of early neuroborreliosis. J Clin Microbiol 41(3):1299–1303

    Article  PubMed  CAS  Google Scholar 

  • Steere AC, Coburn J, Glickstein L (2004) The emergence of Lyme disease. J Clin Invest 113(8):1093–1101

    PubMed  CAS  Google Scholar 

  • Taylor JE, Rudenko G (2006) Switching trypanosome coats: what’s in the wardrobe? Trends Genet 22(11):614–620

    Article  PubMed  CAS  Google Scholar 

  • Wang D, Botkin DJ, Norris SJ (2003) Characterization of the vls antigenic variation loci of the Lyme disease spirochaetes Borrelia garinii Ip90 and Borrelia afzelii ACAI. Mol Microbiol 47(5):1407–1417

    Article  PubMed  CAS  Google Scholar 

  • Xu Q, Seemanapalli SV, McShan K, Liang FT (2006) Constitutive expression of outer surface protein C diminishes the ability of Borrelia burgdorferi to evade specific humoral immunity. Infect Immun 74(9):5177–5184

    Article  PubMed  CAS  Google Scholar 

  • Zhang JR, Norris SJ (1998a) Genetic variation of the Borrelia burgdorferi gene vlsE involves cassette-specific, segmental gene conversion. Infect Immun 66(8):3698–3704

    PubMed  CAS  Google Scholar 

  • Zhang JR, Norris SJ (1998b) Kinetics and in vivo induction of genetic variation of vlsE in Borrelia burgdorferi. Infect Immun 66(8):3689–3697

    PubMed  CAS  Google Scholar 

  • Zhang JR, Hardham JM, Barbour AG, Norris SJ (1997) Antigenic variation in Lyme disease borreliae by promiscuous recombination of VMP-like sequence cassettes. Cell 89(2):275–285

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Troy Bankhead Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bankhead, T. (2012). Antigenic Variation of VlsE in Borrelia burgdorferi . In: Embers, M. (eds) The Pathogenic Spirochetes: strategies for evasion of host immunity and persistence. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-5404-5_6

Download citation

Publish with us

Policies and ethics