Skip to main content

Abstract

A basic precept of Borrelia burgdorferi biology is that persistent infection is the rule, not the exception, in immunocompetent hosts. Persistence occurs in many reservoir and incidental hosts of B. burgdorferi, and has been unequivocally proven experimentally in Peromyscus leucopus mice (Schwan et al. 1988), laboratory mice (Barthold et al. 1993a), rats (Moody et al. 1990), hamsters (Goodman et al. 1991), gerbils (Preac-Mursic et al. 1990), guinea pigs (Sonnesyn et al. 1993), dogs (Straubinger et al. 1997), and nonhuman primates (Roberts et al. 1995a). There is no reason to believe that humans are different, and indeed there are a number of documented reports confirming persistent infection in humans by both culture (Asbrink and Hovmark 1985; Kuiper et al. 1994; Maraspin et al. 2011; Miklossy et al. 2004; Snydman et al. 1986; Stanek et al. 1990; Strle et al. 1995) and polymerase chain reaction (PCR) (Bradley et al. 1994; Frazer et al. 1992; Moter et al. 1994; Nocton et al. 1994a; von Stedingk et al. 1995). Borrelia burgdorferi has evolved to persist in its varied hosts as a survival strategy for maintaining its natural 2-year life cycle through its hosts and vector tick stages. That life cycle requires survival of B. burgdorferi in reservoir hosts over winter, since there is no transovarial transmission from female ticks to larvae. Uninfected eggs are laid in the spring, and larvae emerge during the summer, when they feed upon persistently infected reservoir hosts to acquire infection and subsequently pass infection through the life stages (transstadial transmission) to nymphs and adults (Anderson and Magnarelli 1993). Without the essential role of persistently infected reservoir hosts, the life cycle of B. burgdorferi would fail. Mechanisms of B. burgdorferi immune evasion, dormancy, and activation in hosts and vectors are among the least studied, but most critically needed areas for research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson JF, Magnarelli LA (1993) Epizootiology of Lyme disease-causing Borreliae. Clin Dermatol 11:339–351

    Article  PubMed  CAS  Google Scholar 

  • Asbrink E, Hovmark A (1985) Successful cultivation of spirochetes from skin lesions of patients with erythema chronica migrans afzelius and acrodermatitis chonica atrophicans. Acta Pathol Microbiol Immunol Scand 93:161–163

    CAS  Google Scholar 

  • Asch ES, Bujak DI, Weiss M, Peterson MG, Weinstein A (1994) Lyme disease: an infectious and postinfectious syndrome. J Rheumatol 21(3):454–461

    PubMed  CAS  Google Scholar 

  • Auwaerter P (2007) Point: antibiotic therapy is not the answer for patients with persisting symptoms attributable to Lyme disease. Clin Infect Dis 45(2):143–148

    Article  PubMed  CAS  Google Scholar 

  • Barthold SW (1995) Animal models for Lyme disease. Lab Invest 72(2):127–130

    PubMed  CAS  Google Scholar 

  • Barthold SW, Beck DS, Hansen GM, Terwilliger GA, Moody KD (1990) Lyme borreliosis in selected strains and ages of laboratory mice. J Infect Dis 162(1):133–138

    Article  PubMed  CAS  Google Scholar 

  • Barthold SW, de Souza MS, Janotka JL, Smith AL, Persing DH (1993a) Chronic Lyme borreliosis in the laboratory mouse. Am J Pathol 143(3):951–971

    Google Scholar 

  • Barthold SW, de Souza MS, Janotka JL, Smith AL, Persing DH (1993b) Chronic Lyme borreliosis in the laboratory mouse. Am J Pathol 143(3):959–971

    PubMed  CAS  Google Scholar 

  • Barthold SW, de Souza M, Feng S (1996) Serum-mediated resolution of Lyme arthritis in mice. Lab Invest 74:57–67

    PubMed  CAS  Google Scholar 

  • Barthold SW, Hodzic E, Tunev S, Feng S (2006) Antibody-mediated disease remission in the mouse model of Lyme borreliosis. Infect Immun 74:4817–4825

    Article  PubMed  CAS  Google Scholar 

  • Barthold SW, Hodzic E, Imai D, Feng S, Yang X, Luft BJ (2010) Ineffectiveness of tigecycline against persistent Borrelia burgdorferi. Antimicrob Agents Chemother 54:643–651

    Article  PubMed  CAS  Google Scholar 

  • Bockenstedt LK, Mao J, Hodzic E, Barthold SW, Fish D (2002) Detection of attenuated, non-infectious spirochetes after antibiotic treatment of Borrelia burgdorferi-infected mice. J Infect Dis 186:1430–1437

    Article  PubMed  Google Scholar 

  • Bolz DD, Weis JJ (2004) Molecular mimicry to Borrelia burgdorferi: pathway to autoimmunity? Autoimmunity 37(5):387–392

    Article  PubMed  CAS  Google Scholar 

  • Bradley JF, Johnson RC, Goodman JL (1994) The persistence of spirochetal nucleic acids in active Lyme arthritis. Ann Intern Med 120:487–489

    PubMed  CAS  Google Scholar 

  • Brissette CA, Verma A, Bowman A, Cooley AE, Stevenson B (2009) The Borrelia burgdorferi outer-surface protein ErpX binds mammalian laminin. Microbiology 155:863–872

    Article  PubMed  CAS  Google Scholar 

  • Cabello FC, Godfrey HP, Newman SA (2007) Hidden in plain sight: Borrelia burgdorferi and the extracellular matrix. Trends Microbiol 15:350–354

    Article  PubMed  CAS  Google Scholar 

  • Cadavid D, O’Neill T, Schaefer H, Pachner AR (2000) Localization of Borrelia burgdorferi in the nervous system and other organs in a nonhuman primate model of lyme disease. Lab Invest 80(7):1043–1054

    Article  PubMed  CAS  Google Scholar 

  • Cadavid D, Bai Y, Hodzic E, Narayan K, Barthold SW, Pachner AR (2004) Cardiac involvement in non-human primates infected with the Lyme disease spirochete Borrelia burgdorferi. Lab Invest 84(11):1439–1450

    Article  PubMed  Google Scholar 

  • Crowley H, Huber BT (2003) Host-adapted Borrelia burgdorferi in mice expresses OspA during inflammation. Infect Immun 71(7):4003–4010

    Article  PubMed  CAS  Google Scholar 

  • Embers ME, Wormser GP, Schwartz I, Martin DS, Philipp MT (2007) Borrelia burgdorferi spirochetes that harbor only a portion of the lp28-1 plasmid elicit antibody responses detectable with the C6 test for Lyme disease. CVI 14(1):90–93

    PubMed  CAS  Google Scholar 

  • Embers ME, Barthold SW, Borda JT, Bowers L, Doyle L, Hodzic E, Jacobs MB, Hasenkampf NR, Martin DS, Narasimhan S et al (2012) Persistence of Borrelia burgdorferi in Rhesus Macaques following Antibiotic Treatment of Disseminated Infection. PLoS One 7(1):e29914

    Article  PubMed  CAS  Google Scholar 

  • Feder HM Jr, Johnson BJ, O’Connell S, Shapiro ED, Steere AC, Wormser GP, Ad Hoc International Lyme Disease G (2007) A critical appraisal of “chronic Lyme disease”. N Engl J Med 357(14):1422–1430

    Article  PubMed  CAS  Google Scholar 

  • Fleming RV, Marques AR, Klempner MS, Schmid CH, Dally LG, Martin DS, Philipp MT (2004) Pre-treatment and post-treatment assessment of the C(6) test in patients with persistent symptoms and a history of Lyme borreliosis. Eur J Clin Microbiol Infect Dis 23(8):615–618

    Article  PubMed  CAS  Google Scholar 

  • Frazer DD, King LI, Miller FW (1992) Molecular detection of persistent Borrelia burgdorferi in a man with dermatomyositis. Clin Exp Rheumatol 10:387–390

    Google Scholar 

  • Goodman JL, Jurkovich P, Kodner C, Johnson RC (1991) Persistent cardiac and urinary tract infections with Borrelia burgdorferi in experimentally infected Syrian hamsters. J Clin Microbiol 29:894–896

    PubMed  CAS  Google Scholar 

  • Grab DJ, Givens C, Kennedy R (1998) Fibronectin-binding activity in Borrelia burgdorferi. Biochim Biophys Acta 1407:135–145

    Article  PubMed  CAS  Google Scholar 

  • Guo BP, Norris SJ, Rosenberg LC, Hook M (1995) Adherence of Borrelia burgdorferi to the proteoglycan decorin. Infect Immun 63:3467–3472

    PubMed  CAS  Google Scholar 

  • Hansen K, Hovmark A, Lebech A-M, Lebech K, Olsson I, Halkier-Sorenson L, Olsson E, Asbrink E (1992) Roxithromycin in Lyme borreliosis: discrepant results of an in vitro and in vivo animal susceptibility study and a clinical trial in patients with erythema migrans. Acta Derm Venereol 72:297–300

    PubMed  CAS  Google Scholar 

  • Hodzic E, Feng S, Holden K, Freet KJ, Barthold SW (2008) Persistence of Borrelia burgdorferi following antibiotic treatment in mice. Antimicrob Agents Chemother 52:1728–1736

    Article  PubMed  CAS  Google Scholar 

  • Johnson RC, Kodner C, Russell M (1987) In vitro and in vivo susceptibility of the Lyme disease spirochete, Borrelia burgdorferi, to four antimicrobial agents. Antimicrob Agents Chemother 31:164–167

    Article  PubMed  CAS  Google Scholar 

  • Johnson RC, Kodner C, Russell M, Girard D (1990) In vitro and in vivo susceptibility of Borrelia burgdorferi to azithromycin. J Antimicrob Chemother 25(suppl A):33–38

    Article  PubMed  CAS  Google Scholar 

  • Kalish RA, Leong JM, Steere AC (1993) Association of treatment-resistant chronic Lyme arthritis with HLA-DR4 and antibody reactivity to OspA and OspB of Borrelia burgdorferi. Infect Immun 61(7):2774–2779

    PubMed  CAS  Google Scholar 

  • Kazragis RJ, Dever LL, Jorgensen JH, Barbour AG (1996) In vivo activities of ceftriaxone and vancomycin against Borrelia spp. in the mouse brain and other sites. Antimicrob Agents Chemother 40:2632–2636

    PubMed  CAS  Google Scholar 

  • Klempner MS, Hu LT, Evans J, Schmid CH, Johnson GM, Trevino RP, Norton D, Levy L, Wall D, McCall J et al (2001) Two controlled trials of antibiotic treatment in patients with persistent symptoms and a history of Lyme disease. N Engl J Med 345(2):85–92

    Article  PubMed  CAS  Google Scholar 

  • Konishi T, Nakao M (1997) Antibiotic treatment in mice infected with Japanese Borrelia garinii: efficacy of ceftriaxone for eradicating the infection induced by Ixodes persulcatus ticks. Microbiol Immunol 41:165–168

    PubMed  CAS  Google Scholar 

  • Koomanachai P, Kim A, Nicolau DP (2009) Pharmacodynamic evaluation of tigecycline against Acinetobacter baumannii in a murine pneumonia model. J Antimicrob Chemother 63: 982–987

    Article  PubMed  CAS  Google Scholar 

  • Kuiper H, van Dam AP, Spanjaard L, de Jongh BM, Widjojokusumo A, Ramselaar TCP, Cairo I, Vos K, Dankert J (1994) Isolation of Borrelia burgdorferi from biopsy specimens taken from healthy-looking skin of patients with Lyme borreliosis. J Clin Microbiol 32:715–720

    PubMed  CAS  Google Scholar 

  • Labandeira-Rey M, Skare JT (2001) Decreased infectivity in Borrelia burgdorferi strain B31 is associated with loss of linear plasmid 25 or 28-1. Infect Immun 69(1):446–455

    Article  PubMed  CAS  Google Scholar 

  • Labandeira-Rey M, Seshu J, Skare JT (2003) The absence of linear plasmid 25 or 28-1 of Borrelia burgdorferi dramatically alters the kinetics of experimental infection via distinct mechanisms. Infect Immun 71(8):4608–4613

    Article  PubMed  CAS  Google Scholar 

  • Lewis K (2007) Persister cells, dormancy and infectious disease. Nat Rev Microbiol 5(1):48–56

    Article  PubMed  CAS  Google Scholar 

  • Lewis K (2010) Persister cells. Annu Rev Microbiol 64(1):357–372

    Article  PubMed  CAS  Google Scholar 

  • Liveris D, Varde S, Iyer R, Koenig S, Bittker S, Cooper D, McKenna D, Nowakowski J, Nadelman RB, Wormser GP et al (1999) Genetic diversity of Borrelia burgdorferi in lyme disease patients as determined by culture versus direct PCR with clinical specimens. J Clin Microbiol 37(3):565–569

    PubMed  CAS  Google Scholar 

  • Malawista SM, Barthold SW, Persing DH (1994) Fate of Borrelia burgdorferi DNA in tissues of infected mice after antibiotic treatment. J Infect Dis 170:1312–1316

    Article  PubMed  CAS  Google Scholar 

  • Maraspin V, Ogrinc K, Ruzic-Sabljic E, Lotric-Furlan S, Strle F (2011) Isolation of Borrelia burgdorferi sensu lato from blood of adult patients with borrelial lymphocytoma, Lyme neuroborreliosis, Lyme arthritis and acrodermatitis chronica atrophicans. Infection 39:35–40

    Article  PubMed  CAS  Google Scholar 

  • Mayer L, Merz S (2008) An appraisal of “chronic Lyme disease”. [comment]. N Engl J Med 358(4):428, author reply 430–421

    Article  PubMed  CAS  Google Scholar 

  • McKisic MD, Barthold SW (2000) T-cell-independent responses to Borrelia burgdorferi are critical for protective immunity and resolution of Lyme disease. Infect Immun 68:5190–5197

    Article  PubMed  CAS  Google Scholar 

  • Miklossy J, Khalli K, Gern L, Ericson RL, Darekar P, Bolle L, Hurlimann J, Paster BJ (2004) Borrelia burgdorferi pesists in the brain in chronic Lyme neuroborreliosis and may be associated with Alzheimer disease. J Alzheimers Dis 6:639–649

    PubMed  Google Scholar 

  • Moody KD, Barthold SW, Terwilliger GA, Beck DS, Hansen GM, Jacoby RO (1990) Experimental chronic Lyme borreliosis in Lewis rats. Am J Trop Med Hyg 42:65–74

    Google Scholar 

  • Moody KD, Adams RL, Barthold SW (1994) Effectiveness of antimicrobial treatment against Borrelia burgdorferi infection in mice. Antimicrob Agents Chemother 38:1567–1572

    Article  PubMed  CAS  Google Scholar 

  • Moter SE, Hofmann H, Wallich R, Simon MM, Kramer MD (1994) Detection of Borrelia burgdorferi sensu lato in lesional skin of patients with erythema migrans and acrodermatitits chronica atrophicans by ospA-specific PCR. J Clin Microbiol 32:2980–2988

    PubMed  CAS  Google Scholar 

  • Narasimhan S, Caimano MJ, Liang FT, Santiago F, Laskowski M, Philipp MT, Pachner AR, Radolf JD, Fikrig E (2003) Borrelia burgdorferi transcriptome in the central nervous system of non-human primates. [erratum appears in Proc Natl Acad Sci USA. 2004 Feb 3;101(5):1426 Note: Camaino MJ [corrected to Caimano MJ]]. Proc Natl Acad Sci USA 100(26):15953–15958

    Article  PubMed  CAS  Google Scholar 

  • Nocton JJ, Dressler F, Rutledge RJ, Rys PN, Persing DH, Steere AC (1994) Detection of Borrelia burgdorferi DNA by polymerase chain reaction in synovial fluid from patients with Lyme arthritis. N Engl J Med 330:229–234

    Article  PubMed  CAS  Google Scholar 

  • Nowakowski J, McKenna D, Nadelman RB, Bittker S, Cooper D, Pavia C, Holmgren D, Visintainer P, Wormser GP (2009) Blood cultures for patients with extracutaneous manifestations of Lyme disease in the United States. Clin Infect Dis 49(11):1733–1735

    Article  PubMed  Google Scholar 

  • Pachner AR, Delaney E, O’Neill T, Major E (1995) Inoculation of nonhuman primates with the N40 strain of Borrelia burgdorferi leads to a model of Lyme neuroborreliosis faithful to the human disease. Neurology 45(1):165–172

    Article  PubMed  CAS  Google Scholar 

  • Pachner AR, Zhang WF, Schaefer H, Schaefer S, O’Neill T (1998) Detection of active infection in nonhuman primates with Lyme neuroborreliosis: comparison of PCR, culture, and a bioassay. J Clin Microbiol 36(11):3243–3247

    PubMed  CAS  Google Scholar 

  • Pachner AR, Dail D, Li L, Gurey L, Feng S, Hodzic E, Barthold S (2002) Humoral immune response associated with lyme borreliosis in nonhuman primates: analysis by immunoblotting and enzyme-linked immunosorbent assay with sonicates or recombinant proteins. Clin Diagn Lab Immunol 9(6):1348–1355

    PubMed  CAS  Google Scholar 

  • Pahl A, Kuhlbrandt U, Brune K, Rollinghoff M, Gessner A (1999) Quantitative detection of Borrelia burgdorferi by real-time PCR. J Clin Microbiol 37:1958–1963

    PubMed  CAS  Google Scholar 

  • Patel IH, Kaplan SA (1984) Pharmacokinetics profile of ceftriaxone in man. Am J Med 77:17–25

    PubMed  CAS  Google Scholar 

  • Pavia C, Inchiosa MA, Wormser GP (2002) Efficacy of short-course ceftriaxone therapy for Borrelia burgdorferi infection in C3H mice. Antimicrob Agents Chemother 46:132–134

    Article  PubMed  CAS  Google Scholar 

  • Persing DH, Mathiesen D, Podzorski D, Barthold SW (1994) Genetic stability of Borrelia burgdorferi recovered from chronically infected immunocompetent mice. Infect Immun 62(8):3521–3527

    PubMed  CAS  Google Scholar 

  • Philipp MT, Johnson BJ (1994) Animal models of Lyme disease: pathogenesis and immunoprophylaxis. Trends Microbiol 2(11):431–437

    Article  PubMed  CAS  Google Scholar 

  • Philipp MT, Aydintug MK, Bohm RP Jr, Cogswell FB, Dennis VA, Lanners HN, Lowrie RC Jr, Roberts ED, Conway MD, Karacorlu M (1993) Early and early disseminated phases of Lyme disease in the rhesus monkey: a model for infection in humans. Infect Immun 61(7):3047–3059

    PubMed  CAS  Google Scholar 

  • Philipp MT, Bowers LC, Fawcett PT, Jacobs MB, Liang FT, Marques AR, Mitchell PD, Purcell JE, Ratterree MS, Straubinger RK (2001) Antibody response to IR6, a conserved immunodominant region of the VlsE lipoprotein, wanes rapidly after antibiotic treatment of Borrelia burgdorferi infection in experimental animals and humans. J Infect Dis 184:870–878

    Article  PubMed  CAS  Google Scholar 

  • Philipp MT, Wormser GP, Marques AR, Bittker S, Martin DS, Nowakowski J, Dally LG (2005) A decline in C6 antibody titer occurs in successfully treated patients with culture-confirmed early localized or early disseminated Lyme Borreliosis. Clin Diagn Lab Immunol 12(9):1069–1074

    PubMed  CAS  Google Scholar 

  • Preac-Mursic V, Wilske B, Schierz G, Holmburger M, Sub E (1987) In vitro and in vivo susceptibility of Borrelia burgdorferi. Eur J Clin Microbiol 6:424–426

    Article  Google Scholar 

  • Preac-Mursic V, Wilske B, Schierz G, Suss E, Gross B (1989) Comparative antimicrobial activity of the macrolides against Borrelia burgdorferi. Eur J Clin Microbiol Infect Dis 8:651–653

    Article  PubMed  CAS  Google Scholar 

  • Preac-Mursic V, Patsouris E, Wilske B, Reinhardt S, Gos B, Mehraein P (1990) Persistence of Borrelia burgdorferi and histopathological alterations in experimentally infected animals; comparison with histopathological findings in human Lyme disease. Infection 18:332–341

    Article  PubMed  CAS  Google Scholar 

  • Probert WS, Allsup KM, LeFebvre RB (1995) Identification and characterization of a surface-exposed, 66-kilodalton protein from Borrelia burgdorferi. Infect Immun 63:1933–1939

    PubMed  CAS  Google Scholar 

  • Roberts ED, BohmJr RP, Cogswell FB, Lanners HN, LowrieJr RC, Povinelli L, Piesman J, Philipp MT (1995a) Chronic Lyme disease in the rhesus monkey. Lab Invest 72:146–160

    PubMed  CAS  Google Scholar 

  • Roberts ED, Bohm RP Jr, Cogswell FB, Lanners HN, Lowrie RC Jr, Povinelli L, Piesman J, Philipp MT (1995b) Chronic lyme disease in the rhesus monkey.[comment]. Lab Invest 72(2):146–160

    PubMed  CAS  Google Scholar 

  • Roberts ED, Bohm RP Jr, Lowrie RC Jr, Habicht G, Katona L, Piesman J, Philipp MT (1998) Pathogenesis of Lyme neuroborreliosis in the rhesus monkey: the early disseminated and chronic phases of disease in the peripheral nervous system. J Infect Dis 178(3):722–732

    Article  PubMed  CAS  Google Scholar 

  • Sauve C, Azoulay-Dupuis E, Moine P, Darras-Joly C, Rieux V, Carbon C, Bedos JP (1996) Efficacies of cefotaxime and ceftriaxone in a mouse model of pneumonia induced by two penicillin- and cephalosponin-resistant strains of Streptococcus pneumoniae. Antimicrob Agents Chemother 40:2829–2834

    PubMed  CAS  Google Scholar 

  • Schwan TG, Burgdorfer W, Schrumpf ME, Karstens RH (1988) The urinary bladder: a consistent source of Borrelia burgdorferi in experimentally infected white-footed mice (Peromyscus leucopus). J Clin Microbiol 26:893–895

    PubMed  CAS  Google Scholar 

  • Shadick NA, Phillips CB, Logigian EL, Steere AC, Kaplan RF, Berardi VP, Duray PH, Larson MG, Wright EA, Ginsburg KS et al (1994) The long-term clinical outcomes of Lyme disease. A population-based retrospective cohort study. Ann Intern Med 121(8):560–567

    PubMed  CAS  Google Scholar 

  • Snydman DR, Schenkein DP, Berardi VP, Lastavica CC, Pariser KM (1986) Borrelia burgdorferi in joint fluid in chronic Lyme arthritis. Ann Intern Med 104:798–800

    PubMed  CAS  Google Scholar 

  • Sonnesyn SW, Manivel JC, Johnson RC, Goodman JL (1993) A guinea pig model for Lyme disease. Infect Immun 61:4777–4784

    PubMed  CAS  Google Scholar 

  • Stanek G, Klein J, Bittner R, Glogar D (1990) Isolation of Borrelia burgdorferi from the myocardium of a patient with longstanding cardiomyopathy. N Engl J Med 322:249–252

    Article  PubMed  CAS  Google Scholar 

  • Steere AC (2001) Lyme disease. N Engl J Med 345:115–125

    Article  PubMed  CAS  Google Scholar 

  • Steere AC, Sikand VK (2003) The presenting manifestations of Lyme disease and the outcomes of treatment. N Engl J Med 348(24):2472–2474

    Article  PubMed  Google Scholar 

  • Steere AC, Levin RE, Molloy PJ, Kalish RA, Abraham JH 3rd, Liu NY, Schmid CH (1994) Treatment of Lyme arthritis. Arthritis Rheum 37(6):878–888

    Article  PubMed  CAS  Google Scholar 

  • Straubinger RK (2000) PCR-based quantification of Borrelia burgdorferi organisms in canine tissue over a 500-day postinfection period. J Clin Microbiol 38:2191–2199

    PubMed  CAS  Google Scholar 

  • Straubinger RK, Summers BA, Chang YF, Appel MJG (1997) Persistence of Borrelia burgdorferi in experimentally infected dogs after antibiotic treatment. J Clin Microbiol 35:111–116

    PubMed  CAS  Google Scholar 

  • Straubinger RK, Straubinger AF, Summers BA, Jacobson RH (2000) Status of Borrelia burgdorferi infection after antibiotic treatment and the effects of corticosteroids: an experimental study. J Infect Dis 181:1069–1081

    Article  PubMed  CAS  Google Scholar 

  • Stricker R (2007) Counterpoint: long-term antibiotic therapy improves persistent symptoms associated with Lyme disease. Clin Infect Dis 45(2):149–157

    Article  PubMed  CAS  Google Scholar 

  • Strle F, Cheng Y, Cimperman J, Maraspin V, LotricFurlan S, Nelson JA, Picken MM, RuzicSabljic E, Picken RN (1995) Persistence of Borrelia burgdorferi sensu lato in resolved erythema migrans lesions. Clin Infect Dis 21:380–389

    Article  PubMed  CAS  Google Scholar 

  • Verma A, Brissette CA, Bowman A, Stevenson B (2009) Borrelia burgdorferi BmpA is a laminin-binding protein. Infect Immun 77:4940–4946

    Article  PubMed  CAS  Google Scholar 

  • von Stedingk LT, Olsson I, Hanson HS, Asbrink E, Hovmark A (1995) Polymerase chain reaction for detection of Borrelia burgdorferi DNA in skin lesions of early and late Lyme borreliosis. Eur J Clin Microbiol Infect Dis 14:1–5

    Article  Google Scholar 

  • Wang E, Bergeron Y, Bergeron MG (2005) Ceftriaxone pharmacokinetics in interleukin-10-treated murine pneumococcal pneumonia. J Antimicrob Chemother 55:721–726

    Article  PubMed  CAS  Google Scholar 

  • Wormser Gary P, Dattwyler Raymond J, ShapiroEugene D, Halperin John J, Steere A, Klempner Mark S, Krause P, Bakken J, Strle F, Stanek G et al (2006) The clinical assessment, treatment, and prevention of lyme disease, human granulocytic anaplasmosis, and babesiosis: clinical practice guidelines by the Infectious Diseases Society of America. Clin Infect Dis 43(9):1089–1134

    Article  PubMed  CAS  Google Scholar 

  • Wormser GP, Schwartz I (2009) Antibiotic treatment of animals infected with Borrelia burgdorferi. Clin Microbiol Rev 22:387–395

    Article  PubMed  CAS  Google Scholar 

  • Wormser GP, Dattwyler RJ, Shapiro ED, Halperin JJ, Steere AC, Klempner MS, Krause PJ, Bakken JS, Strle F, Stanek G et al (2006) The clinical assessment, treatment, and prevention of Lyme disease, human granulocytic anaplasmosis, and babesiosis: clinical practice guidelines by the Infectious Diseases Society of America. Erratum in: Clin Infect Dis 45:941, 2007. Clin Infect Dis 43:1089–1134

    Article  PubMed  Google Scholar 

  • Wormser GP, Brisson D, Liveris D, Hanincová K, Sandigursky S, Nowakowski J, Nadelman RB, Ludin S, Schwartz I (2008) Borrelia burgdorferi genotype predicts the capacity for hematogenous dissemination during early Lyme disease. J Infect Dis 198(9):1358–1364

    Article  PubMed  Google Scholar 

  • Yrianainen H, Hytonen J, Soderstrom KO, Oksi J, Hartiala K, Viljanen MK (2006) Persistent joint swelling and Borrelia-specific antibodies in Borrelia garinii-infected mice after eradication of vegetative spirochetes with antibiotic treatment. Microbes Infect 8:2044–2051

    Article  Google Scholar 

  • Yrjanainen H, Hyotenen J, Song SR, Oksi J, Hartiala K, Viljanen MK (2007) Anti-tumor necrosis factor-alpha treatment activates Borrelia burgdorferi spirochetes in 4 weeks after ceftriaxone treatment in C3H/He mice. J Infect Dis 195:1489–1496

    Article  PubMed  CAS  Google Scholar 

  • Yrjanainen H, Hytonen J, Hartiala P, Oksi J, Vijanen MK (2010) Persistence of borrelial DNA in the joints of Borrelia burgdorferi-infected mice after ceftriaxone treatment. APMIS 118(9): 665–673

    Google Scholar 

  • Zambrano MC, Beklemisheva AA, Bryksin AV, Newman SA, Cabello FC (2004) Borrelia burgdorferi binds to, invades, and colonizes native type I collagen lattices. Infect Immun 72: 3138–3146

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica E. Embers Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Embers, M.E., Barthold, S.W. (2012). Borrelia burgdorferi Persistence Post-antibiotic Treatment. In: Embers, M. (eds) The Pathogenic Spirochetes: strategies for evasion of host immunity and persistence. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-5404-5_12

Download citation

Publish with us

Policies and ethics