Skip to main content

Treponema pallidum Dissemination; Facilitating Immune Evasion and Bacterial Persistence

  • Chapter
  • First Online:
  • 932 Accesses

Abstract

Syphilis is a chronic multistage disease, usually transmitted sexually or in utero, which affects more than 12 million people globally each year and is caused by the bacterium T. pallidum subsp. pallidum. Although developing nations account for the majority of new syphilis infections (Gerbase et al. 1998), rapidly increasing syphilis infection rates have also been observed in Europe (Righarts et al. 2004), Australia (Jin et al. 2005), and North America (Kent and Romanelli 2008) over the course of the past decade. Two additional ways in which syphilis infections impact health are congenital syphilis, which remains a major health concern in developing nations and results in spontaneous abortion, stillbirth, postpartum death or significant newborn malformations (Walker and Walker 2007), and the well-documented capacity of T. pallidum infection to significantly increase the risk of HIV transmission and acquisition (Nusbaum et al. 2004).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Akins DR, Purcell BK, Mitra MM, Norgard MV, Radolf JD (1993) Lipid modification of the 17-kilodalton membrane immunogen of Treponema pallidum determines macrophage activation as well as amphiphilicity. Infect Immun 61:1202–1210

    PubMed  CAS  Google Scholar 

  • Baker-Zander SA, Lukehart SA (1992) Macrophage-mediated killing of opsonized Treponema pallidum. J Infect Dis 165:69–74

    PubMed  CAS  Google Scholar 

  • Baker-Zander SA, Shaffer JM, Lukehart SA (1993) Characterization of the serum requirement for macrophage-mediated killing of Treponema pallidum ssp. pallidum: relationship to the development of opsonizing antibodies. FEMS Immunol Med Microbiol 6:273–279

    PubMed  CAS  Google Scholar 

  • Bansal RC, Cohn H, Fani K, Lynfield YL (1978) Nephrotic syndrome and granulomatous hepatitis in secondary syphilis. Arch Dermatol 114:1228–1229

    PubMed  CAS  Google Scholar 

  • Baseman JB, Hayes EC (1980) Molecular characterization of receptor binding proteins and immunogens of virulent Treponema pallidum. J Exp Med 151:573–586

    PubMed  CAS  Google Scholar 

  • Baughn RE, Musher DM (2005) Secondary syphilitic lesions. Clin Microbiol Rev 18:205–216

    PubMed  Google Scholar 

  • Belisle JT, Brandt ME, Radolf JD, Norgard MV (1994) Fatty acids of Treponema pallidum and Borrelia burgdorferi lipoproteins. J Bacteriol 176:2151–2157

    PubMed  CAS  Google Scholar 

  • Berg HC, Turner L (1979) Movement of microorganisms in viscous environments. Nature 278:349–351

    PubMed  CAS  Google Scholar 

  • Blanco DR, Walker EM, Haake DA, Champion CI, Miller JN, Lovett MA (1990) Complement activation limits the rate of in vitro treponemicidal activity and correlates with antibody-mediated aggregation of Treponema pallidum rare outer membrane protein. J Immunol 144:1914–1921

    PubMed  CAS  Google Scholar 

  • Brinkman MB, McGill MA, Pettersson J, Rogers A, Matejkova P, Smajs D, Weinstock GM, Norris SJ, Palzkill T (2008) A novel Treponema pallidum antigen, TP0136, is an outer membrane protein that binds human fibronectin. Infect Immun 76:1848–1857

    PubMed  CAS  Google Scholar 

  • Burstain JM, Grimprel E, Lukehart SA, Norgard MV, Radolf JD (1991) Sensitive detection of Treponema pallidum by using the polymerase chain reaction. J Clin Microbiol 29:62–69

    PubMed  CAS  Google Scholar 

  • Cameron CE (2003) Identification of a Treponema pallidum laminin-binding protein. Infect Immun 71:2525–2533

    PubMed  CAS  Google Scholar 

  • Cameron CE (2005) T. pallidum outer membrane and outer membrane proteins. In: Radolf JD, Lukehart SA (eds) Pathogenic Treponema. Molecular and cellular biology. Caister Academic Press, Norfolk, England, pp 237–266

    Google Scholar 

  • Cameron CE, Brown EL, Kuroiwa JMY, Schnapp LM, Brouwer NL (2004) Treponema pallidum fibronectin-binding proteins. J Bacteriol 186:7019–7022

    PubMed  CAS  Google Scholar 

  • Cameron CE, Brouwer NL, Tisch LM, Kuroiwa JMY (2005) Defining the interaction of the Treponema pallidum adhesin Tp0751 with laminin. Infect Immun 73:7485–7494

    PubMed  CAS  Google Scholar 

  • Cameron CE, Kuroiwa JM, Yamada M, Francescutti T, Chi B, Kuramitsu HK (2008) Heterologous expression of the Treponema pallidum laminin-binding adhesin Tp0751 in the culturable spirochete Treponema phagedenis. J Bacteriol 190:2565–2571

    PubMed  CAS  Google Scholar 

  • Carbonell WS, Ansorge O, Sibson N, Muschel R (2009) The vascular basement membrane as “soil” in brain metastasis. PLoS One 4:e5857

    PubMed  Google Scholar 

  • Centurion-Lara A, Castro C, Barrett L, Cameron C, Mostowfi M, Van Voorhis WC, Lukehart SA (1999a) Treponema pallidum major sheath protein homologue Tpr K is a target of opsonic antibody and the protective immune response. J Exp Med 189:647–656

    PubMed  CAS  Google Scholar 

  • Centurion-Lara A, Gordones C, Castro C, Van Voorhis WC, Lukehart SA (1999b) The tprK gene is heterogeneous among Treponema pallidum strains and has multiple alleles. Infect Immun 68:824–831

    Google Scholar 

  • Centurion-Lara A, LaFond RE, Hevner K, Godornes C, Molini BJ, Van Voorhis WC, Lukehart SA (2004) Gene conversion: a mechanism for generation of heterogeneity in the tprK gene of Treponema pallidum during infection. Mol Microbiol 52:1579–1596

    PubMed  CAS  Google Scholar 

  • Chang AK, Kim HY, Park JE, Acharya P, Park IS, Yoon SM, You HJ, Hahm KS, Park JK, Lee JS (2005) Vibrio vulnificus secretes a broad-specificity metalloprotease capable of interfering with blood homeostasis through prothrombin activation and fibrinolysis. J Bacteriol 187:6909–6916

    PubMed  CAS  Google Scholar 

  • Chapel TA (1980) The signs and symptoms of secondary syphilis. Sex Transm Dis 7:161–164

    PubMed  CAS  Google Scholar 

  • Charon NW, Goldstein SF (2002) Genetics of motility and chemotaxis of a fascinating group of bacteria: the spirochetes. Annu Rev Genet 36:47–73

    PubMed  CAS  Google Scholar 

  • Chung KY, Kim KS, Lee MG, Chang NS, Lee JB (2002) Treponema pallidum induces up-regulation of interstitial collagenase in human dermal fibroblasts. Acta Derm Venereol 82:174–178

    PubMed  CAS  Google Scholar 

  • Cockayne A, Bailey MJ, Penn CW (1987) Analysis of sheath and core structures of the axial filament of Treponema pallidum. J Gen Microbiol 133:1397–1407

    PubMed  CAS  Google Scholar 

  • Collart P, Franceschini P, Durel P (1971) Experimental rabbit syphilis. Br J Vener Dis 47:389–400

    PubMed  CAS  Google Scholar 

  • Cox DL, Chang P, McDowall AW, Radolf JD (1992) The outer membrane, not a coat of host proteins, limits antigenicity of virulent Treponema pallidum. Infect Immun 60:1076–1083

    PubMed  CAS  Google Scholar 

  • Cox DL, Luthra A, Dunham-Ems S, Desrosiers DC, Salazar JC, Caimano MJ, Radolf JD (2010) Surface immunolabeling and consensus computational framework to identify candidate rare outer membrane proteins of Treponema pallidum. Infect Immun 78:5178–5194

    PubMed  CAS  Google Scholar 

  • Cullen PA, Cameron CE (2006) Progress towards an effective syphilis vaccine: the past, present and future. Expert Rev Vaccines 5:67–80

    PubMed  CAS  Google Scholar 

  • Cumberland MC, Turner TB (1949) Rate of multiplication of Treponema pallidum in normal and immune rabbits. Am J Syph Gonorrhea Vener Dis 33:201–212

    PubMed  CAS  Google Scholar 

  • Ferguson TA, Green DR, Griffith TS (2002) Cell death and immune privilege. Int Rev Immunol 21:153–172

    PubMed  Google Scholar 

  • Fitzgerald TJ, Repesh LA (1985) Interactions of fibronectin with Treponema pallidum. Genitourin Med 61:147–155

    PubMed  CAS  Google Scholar 

  • Fitzgerald TJ, Miller JN, Sykes JA (1975) Treponema pallidum (Nichols strain) in tissue cultures: cellular attachment, entry, and survival. Infect Immun 11:1133–1140

    PubMed  CAS  Google Scholar 

  • Fitzgerald TJ, Johnson RC, Miller JN, Sykes JA (1977) Characterization of the attachment of Treponema pallidum (Nichols strain) to cultured mammalian cells and the potential relationship of attachment to pathogenicity. Infect Immun 18:467–478

    PubMed  CAS  Google Scholar 

  • Fitzgerald TJ, Repesh LA, Blanco DR, Miller JN (1984) Attachment of Treponema pallidum to fibronectin, laminin, collagen IV, and collagen I, and blockage of attachment by immune rabbit IgG. Br J Vener Dis 60:357–363

    PubMed  CAS  Google Scholar 

  • Fraser CM, Norris SJ, Weinstock GM, White O, Sutton GG, Dodson R, Gwinn M, Hickey EK, Clayton R, Ketchum KA, Sodergren E, Hardham JM, McLeod MP, Salzberg S, Peterson J, Khalak H, Richardson D, Howell JK, Chidambaram M, Utterback T, McDonald L, Artiach P, Bowman C, Cotton MD, Fujii C, Garland S, Hatch B, Horst K, Watthey L, Weidman J, Smith HO, Venter JC (1998) Complete genome sequence of Treponema pallidum, the syphilis spirochete. Science 281:375–388

    PubMed  CAS  Google Scholar 

  • Gerbase AC, Rowley JT, Heymann DH, Berkley SF, Piot P (1998) Global prevalence and incidence estimates of selected curable STDs. Sex Transm Infect 74(Suppl 1):S12–S16

    PubMed  Google Scholar 

  • Giacani L, Lukehart S, Centurion-Lara A (2007) Length of guanosine homopolymeric repeats modulates promoter activity of subfamily II tpr genes of Treponema pallidum ssp. pallidum. FEMS Immunol Med Microbiol 51:289–301

    PubMed  CAS  Google Scholar 

  • Giacani L, Godornes C, Puray-Chavez M, Guerra-Giraldez C, Tompa M, Lukehart SA, Centurion-Lara A (2009) TP0262 is a modulator of promoter activity of tpr subfamily II genes of Treponema pallidum ssp. pallidum. Mol Microbiol 72:1087–1099

    PubMed  CAS  Google Scholar 

  • Greene SR, Stamm LV, Hardham JM, Young NR, Frye JG (1997) Identification, sequences, and expression of Treponema pallidum chemotaxis genes. DNA Seq 7:267–284

    PubMed  CAS  Google Scholar 

  • Greenstein DB, Wilcox CM, Schwartz DA (1994) Gastric syphilis. Report of seven cases and review of the literature. J Clin Gastroenterol 18:4–9

    PubMed  CAS  Google Scholar 

  • Haake DA (2000) Spirochaetal lipoproteins and pathogenesis. Microbiology 146(Pt 7):1491–1504

    PubMed  CAS  Google Scholar 

  • Haake DA, Matsunaga J (2010) Leptospira: a spirochaete with a hybrid outer membrane. Mol Microbiol 77:805–814

    CAS  Google Scholar 

  • Hagman KE, Porcella SF, Popova TG, Norgard MV (1997) Evidence for a methyl-accepting chemotaxis protein gene (mcp1) that encodes a putative sensory transducer in virulent Treponema pallidum. Infect Immun 65:1701–1709

    PubMed  CAS  Google Scholar 

  • Handsfield HH, Lukehart SA, Sell S, Norris SJ, Holmes KK (1983) Demonstration of Treponema pallidum in a cutaneous gumma by indirect immunofluorescence. Arch Dermatol 119:677–680

    PubMed  CAS  Google Scholar 

  • Hardy PH Jr, Levin J (1983) Lack of endotoxin in Borrelia hispanica and Treponema pallidum. Proc Soc Exp Biol Med 174:47–52

    PubMed  CAS  Google Scholar 

  • Hay PE, Clarke JR, Strugnell RA, Taylor-Robinson D, Goldmeier D (1990) Use of the polymerase chain reaction to detect DNA sequences specific to pathogenic treponemes in cerebrospinal fluid. FEMS Microbiol Lett 56:233–238

    PubMed  CAS  Google Scholar 

  • Hayes NS, Muse KE, Collier AM, Baseman JB (1977) Parasitism by virulent Treponema pallidum of host cell surfaces. Infect Immun 17:174–186

    PubMed  CAS  Google Scholar 

  • Hira SK, Patel JS, Bhat SG, Chilikima K, Mooney N (1987) Clinical manifestations of secondary syphilis. Int J Dermatol 26:103–107

    PubMed  CAS  Google Scholar 

  • Houston S, Hof R, Francescutti T, Hawkes A, Boulanger MJ, Cameron CE (2010) Bifunctional role of the Treponema pallidum extracellular matrix binding adhesin Tp0751. Infect Immun 79:1386–1398

    PubMed  Google Scholar 

  • Izard J, Renken C, Hsieh CE, Desrosiers DC, Dunham-Ems S, La VC, Gebhardt LL, Limberger RJ, Cox DL, Marko M, Radolf JD (2009) Cryo-electron tomography elucidates the molecular architecture of Treponema pallidum, the syphilis spirochete. J Bacteriol 191:7566–7580

    PubMed  CAS  Google Scholar 

  • Jin F, Prestage GP, Kippax SC, Pell CM, Donovan BJ, Kaldor JM, Grulich AE (2005) Epidemic syphilis among homosexually active men in Sydney. Med J Aust 183:179–183

    PubMed  Google Scholar 

  • Kent ME, Romanelli F (2008) Reexamining syphilis: an update on epidemiology, clinical manifestations, and management. Ann Pharmacother 42:226–236

    PubMed  CAS  Google Scholar 

  • LaFond RE, Lukehart SA (2006) Biological basis for syphilis. Clin Microbiol Rev 19:29–49

    PubMed  CAS  Google Scholar 

  • LaFond RE, Centurion-Lara A, Godornes C, Rompalo AM, Van Voorhis WC, Lukehart SA (2003) Sequence diversity of Treponema pallidum subsp. pallidum tprK in human syphilis lesions and rabbit-propagated isolates. J Bacteriol 185:6262–6268

    PubMed  CAS  Google Scholar 

  • LaFond RE, Centurion-Lara A, Godornes C, Van Voorhis WC, Lukehart SA (2006) TprK sequence diversity accumulates during infection of rabbits with Treponema pallidum subsp. pallidum Nichols strain. Infect Immun 74:1896–1906

    PubMed  CAS  Google Scholar 

  • Leader BT, Hevner K, Molini BJ, Barrett LK, Van Voorhis WC, Lukehart SA (2003) Antibody responses elicited against the Treponema pallidum repeat proteins differ during infection with different isolates of Treponema pallidum subsp. pallidum. Infect Immun 71:6054–6057

    PubMed  CAS  Google Scholar 

  • Lee RV, Thornton GF, Conn HO (1971) Liver disease associated with secondary syphilis. N Engl J Med 284:1423–1425

    PubMed  CAS  Google Scholar 

  • Levi M, van der Poll T, Buller HR (2004) Bidirectional relation between inflammation and coagulation. Circulation 109:2698–2704

    PubMed  Google Scholar 

  • Liu CZ, Huang TF, Tsai PJ, Tsai PJ, Chang LY, Chang MC (2007) A segment of Staphylococcus aureus clumping factor A with fibrinogen-binding activity (ClfA221-550) inhibits platelet-plug formation in mice. Thromb Res 121:183–191

    PubMed  CAS  Google Scholar 

  • Liu J, Lin T, Botkin DJ, McCrum E, Winkler H, Norris SJ (2009) Intact flagellar motor of Borrelia burgdorferi revealed by cryo-electron tomography: evidence for stator ring curvature and rotor/C-ring assembly flexion. J Bacteriol 191:5026–5036

    PubMed  CAS  Google Scholar 

  • Liu J, Howell JK, Bradley SD, Zheng Y, Zhou ZH, Norris SJ (2010) Cellular architecture of Treponema pallidum: novel flagellum, periplasmic cone, and cell envelope as revealed by cryo electron tomography. J Mol Biol 403:546–561

    PubMed  CAS  Google Scholar 

  • Lukehart SA, Miller JN (1978) Demonstration of the in vitro phagocytosis of Treponema pallidum by rabbit peritoneal macrophages. J Immunol 121:2014–2024

    PubMed  CAS  Google Scholar 

  • Lukehart SA, Hook EW, Baker-Zander SA, Collier AC, Critchlow CW, Handsfield HH (1988) Invasion of the central nervous system by Treponema pallidum: implications for diagnosis and treatment. Ann Intern Med 109:855–862

    PubMed  CAS  Google Scholar 

  • Mahoney JF, Bryant KK (1934) Time element in penetration of genital mucosa by Treponema pallidum. J Vener Dis Inf 15:1–5

    Google Scholar 

  • Marra C, Baker-Zander SA, Hook EWd, Lukehart SA (1991) An experimental model of early central nervous system syphilis. J Infect Dis 163:825–829

    PubMed  CAS  Google Scholar 

  • Marra CM, Gary DW, Kuypers J, Jacobson MA (1996) Diagnosis of neurosyphilis in patients infected with human immunodeficiency virus type 1. J Infect Dis 174:219–221

    PubMed  CAS  Google Scholar 

  • Marra CM, Maxwell CL, Smith SL, Lukehart SA, Rompalo AM, Eaton M, Stoner BP, Augenbraun M, Barker DE, Corbett JJ, Zajackowski M, Raines C, Nerad J, Kee R, Barnett SH (2004) Cerebrospinal fluid abnormalities in patients with syphilis: association with clinical and laboratory features. J Infect Dis 189:369–376

    PubMed  Google Scholar 

  • Matejkova P, Strouhal M, Smajs D, Norris SJ, Palzkill T, Petrosino JF, Sodergren E, Norton JE, Singh J, Richmond TA, Molla MN, Albert TJ, Weinstock GM (2008) Complete genome sequence of Treponema pallidum ssp. pallidum strain SS14 determined with oligonucleotide arrays. BMC Microbiol 8:76

    PubMed  Google Scholar 

  • McGill MA, Edmondson DG, Carroll JA, Cook RG, Orkiszewski RS, Norris SJ (2010) Characterization and serologic analysis of the Treponema pallidum proteome. Infect Immun 78:2631–2643

    PubMed  CAS  Google Scholar 

  • Mindel A, Tovey SJ, Timmins DJ, Williams P (1989) Primary and secondary syphilis, 20 years’ experience. 2. Clinical features. Genitourin Med 65:1–3

    PubMed  CAS  Google Scholar 

  • Morgan CA, Molini BJ, Lukehart SA, Van Voorhis WC (2002) Segregation of B and T cell epitopes of Treponema pallidum repeat protein K to variable and conserved regions during experimental syphilis infection. J Immunol 169:952–957

    PubMed  CAS  Google Scholar 

  • Muller M, Ewert I, Hansmann F, Tiemann C, Hagedorn HJ, Solbach W, Roider J, Nolle B, Laqua H, Hoerauf H (2007) Detection of Treponema pallidum in the vitreous by PCR. Br J Ophthalmol 91:592–595

    PubMed  CAS  Google Scholar 

  • Noordhoek GT, Wolters EC, de Jonge ME, van Embden JD (1991) Detection by polymerase chain reaction of Treponema pallidum DNA in cerebrospinal fluid from neurosyphilis patients before and after antibiotic treatment. J Clin Microbiol 29:1976–1984

    PubMed  CAS  Google Scholar 

  • Norris SJ (1993) Polypeptides of Treponema pallidum: progress toward understanding their structural, functional, and immunologic roles. Microbiol Rev 57:750–779

    PubMed  CAS  Google Scholar 

  • Norris SJ, Charon NW, Cook RG, Fuentes MD, Limberger RJ (1988) Antigenic relatedness and N-terminal sequence homology define two classes of periplasmic flagellar proteins of Treponema pallidum subsp. pallidum and Treponema phagedenis. J Bacteriol 170:4072–4082

    PubMed  CAS  Google Scholar 

  • Nusbaum MR, Wallace RR, Slatt LM, Kondrad EC (2004) Sexually transmitted infections and increased risk of co-infection with human immunodeficiency virus. J Am Osteopath Assoc 104:527–535

    PubMed  Google Scholar 

  • O’Regan AW, Castro C, Lukehart SA, Kasznica JM, Rice PA, Joyce-Brady MF (2002) Barking up the wrong tree? Use of polymerase chain reaction to diagnose syphilitic aortitis. Thorax 57:917–918

    PubMed  Google Scholar 

  • Ottemann KM, Miller JF (1997) Roles for motility in bacterial-host interactions. Mol Microbiol 24:1109–1117

    PubMed  CAS  Google Scholar 

  • Radolf JD (1995) Treponema pallidum and the quest for outer membrane proteins. Mol Microbiol 16:1067–1073

    PubMed  CAS  Google Scholar 

  • Radolf JD, Blanco DR, Miller JN, Lovett MA (1986) Antigenic interrelationship between endoflagella of Treponema phagedenis biotype Reiter and Treponema pallidum (Nichols): molecular characterization of endoflagellar proteins. Infect Immun 54:626–634

    PubMed  CAS  Google Scholar 

  • Radolf JD, Norgard MV, Schulz WW (1989) Outer membrane ultrastructure explains the limited antigenicity of virulent Treponema pallidum. Proc Natl Acad Sci USA86:2051–2055

    PubMed  CAS  Google Scholar 

  • Radolf JD, Arndt LL, Akins DR, Curetty LL, Levi ME, Shen Y, Davis LS, Norgard MV (1995) Treponema pallidum and Borrelia burgdorferi lipoproteins and synthetic lipopeptides activate monocytes/macrophages. J Immunol 154:2866–2877

    PubMed  CAS  Google Scholar 

  • Raiziss GW, Severac M (1937) Rapidity with which Spirochaeta pallida invades the bloodstream. Arch Dermatol Syph 35:1101–1109

    Google Scholar 

  • Rajan MS, Pantelidis P, Tong CY, French GL, Graham EM, Stanford MR (2006) Diagnosis of Treponema pallidum in vitreous samples using real time polymerase chain reaction. Br J Ophthalmol 90:647–648

    PubMed  CAS  Google Scholar 

  • Righarts AA, Simms I, Wallace L, Solomou M, Fenton KA (2004) Syphilis surveillance and ­epidemiology in the United Kingdom. Euro Surveill 9:21–25

    PubMed  CAS  Google Scholar 

  • Rivera J, Vannakambadi G, Hook M, Speziale P (2007) Fibrinogen-binding proteins of ­Gram-positive bacteria. Thromb Haemost 98:503–511

    PubMed  CAS  Google Scholar 

  • Riviere GR, Thomas DD, Cobb CM (1989) In vitro model of Treponema pallidum invasiveness. Infect Immun 57:2267–2271

    PubMed  CAS  Google Scholar 

  • Rolfs RT, Joesoef MR, Hendershot EF, Rompalo AM, Augenbraun MH, Chiu M, Bolan G, Johnson SC, French P, Steen E, Radolf JD, Larsen S (1997) A randomized trial of enhanced therapy for early syphilis in patients with and without human immunodeficiency virus infection. N Engl J Med 337:307–314

    PubMed  CAS  Google Scholar 

  • Rosahn PD, Gueft B, Rowe CL (1948) Experimental mouse syphilis; organ distribution of the infectious agent. Am J Syph Gonorrhea Vener Dis 32:327–336

    PubMed  CAS  Google Scholar 

  • Salazar JC, Hazlett KR, Radolf JD (2002) The immune response to infection with Treponema pallidum, the stealth pathogen. Microbes Infect 4:1133–1140

    PubMed  CAS  Google Scholar 

  • Sell S, Gamboa D, Baker-Zander SA, Lukehart SA, Miller JN (1980) Host response to Treponema pallidum in intradermally-infected rabbits: evidence for persistence of infection at local and distant sites. J Invest Dermatol 75:470–475

    PubMed  CAS  Google Scholar 

  • Sell S, Baker-Zander S, Powell HC (1982) Experimental syphilitic orchitis in rabbits: ultrastructural appearance of Treponema pallidum during phagocytosis and dissolution by macrophages in vivo. Lab Invest 46:355–364

    PubMed  CAS  Google Scholar 

  • Setubal JC, Reis M, Matsunaga J, Haake DA (2006) Lipoprotein computational prediction in spirochaetal genomes. Microbiology 152:113–121

    PubMed  CAS  Google Scholar 

  • Singh AE, Romanowski B (1999) Syphilis: review with emphasis on clinical, epidemiologic, and some biologic features. Clin Microbiol Rev 12:187–209

    PubMed  CAS  Google Scholar 

  • Sun ES, Molini BJ, Barrett LK, Centurion-Lara A, Lukehart SA, Van Voorhis WC (2004) Subfamily I Treponema pallidum repeat protein family: sequence variation and immunity. Microbes Infect 6:725–737

    PubMed  CAS  Google Scholar 

  • Thomas DD, Baseman JB, Alderete JF (1985) Fibronectin mediates Treponema pallidum ­cytadherence through recognition of fibronectin cell-binding domain. J Exp Med 161:514–525

    PubMed  CAS  Google Scholar 

  • Thomas DD, Navab M, Haake DA, Fogelman AM, Miller JN, Lovett MA (1988) Treponema pallidum invades intercellular junctions of endothelial cell monolayers. Proc Natl Acad Sci USA85:3608–3612

    PubMed  CAS  Google Scholar 

  • Thomas DD, Fogelman AM, Miller JN, Lovett MA (1989) Interactions of Treponema pallidum with endothelial cell monolayers. Eur J Epidemiol 5:15–21

    PubMed  CAS  Google Scholar 

  • Tourville DR, Byrd LH, Kim DU, Zajd D, Lee I, Reichman LB, Baskin S (1976) Treponemal antigen in immunopathogenesis of syphilitic glomerulonephritis. Am J Pathol 82:479–492

    PubMed  CAS  Google Scholar 

  • Ulevitch RJ, Tobias PS (1999) Recognition of Gram-negative bacteria and endotoxin by the innate immune system. Curr Opin Immunol 11:19–22

    PubMed  CAS  Google Scholar 

  • Walker GJ, Walker DG (2007) Congenital syphilis: a continuing but neglected problem. Semin Fetal Neonatal Med 12:198–206

    PubMed  Google Scholar 

  • Walker EM, Zampighi GA, Blanco DR, Miller JN, Lovett MA (1989) Demonstration of rare protein in the outer membrane of Treponema pallidum subsp. pallidum by freeze-fracture analysis. J Bacteriol 171:5005–5011

    PubMed  CAS  Google Scholar 

  • Zoechling N, Schluepen EM, Soyer HP, Kerl H, Volkenandt M (1997) Molecular detection of Treponema pallidum in secondary and tertiary syphilis. Br J Dermatol 136:683–686

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline E. Cameron Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Houston, S., Cameron, C.E. (2012). Treponema pallidum Dissemination; Facilitating Immune Evasion and Bacterial Persistence. In: Embers, M. (eds) The Pathogenic Spirochetes: strategies for evasion of host immunity and persistence. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-5404-5_1

Download citation

Publish with us

Policies and ethics