Skip to main content

Design, Synthesis and Application of Metal Oxide-Based Sensing Elements: A Chemical Principles Approach

  • Chapter
  • First Online:
Book cover Metal Oxide Nanomaterials for Chemical Sensors

Part of the book series: Integrated Analytical Systems ((ANASYS))

Abstract

The chemical approaches to improvement of selectivity of semiconductor metal oxide gas sensors are the main subject of this chapter. Current concepts of interrelationships between metal oxide chemical composition, crystal and surface structure and its activity in the reaction with gas phase components are considered. Application of such concepts to the design of sensor materials based on nanocrystalline SnO2 is discussed thoroughly. Experimental data concerning chemical composition, solid–gas chemical interaction activity and sensor properties is given and critically analysed. The possibility of utilization of solid–gas chemical reaction activity concepts for directed synthesis of new metal oxide semiconductor sensor materials with selective response to given gases is highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Takahata K (1988) Tin oxide sensors—development and applications, highly sensitive SnO2 gas sensors for volatile sulfides. In: Seiyama T (ed) Chemical sensor technology. Elsevier, Amsterdam, pp 39–55

    Google Scholar 

  2. Souteyrand E (1997) Transduction electrique pour la detection de gaz. Les capteurs chimiques, CMC2, Lyon, pp 15–35

    Google Scholar 

  3. Gouma PI (2003) Nanostructured polymorphic oxides for advanced chemosensors. Rev Adv Mater Sci 5:147–154

    CAS  Google Scholar 

  4. Norris JOW (1987) The role of precious metal catalysts in solid state gas sensorsgas sensors. In: Mosely PT, Tofield BC (eds) Alam higher. Bristol and Philadelphia, pp 124–138

    Google Scholar 

  5. Idriss H, Barteau MA (2000) Active sites on oxides: from single crystalsingle crystals to catalysts. Adv Catal 45:261–331

    Article  CAS  Google Scholar 

  6. Vol’kenstein FF (1963) The electronic theory of catalysis on semiconductors. Pergamon, Oxford

    Google Scholar 

  7. Calatayud M, Markovits A, Menetrey M, Mguig B, Minot C (2003) Adsorption on perfect and reduced surfaces of metal oxides. Catal Today 85:125–143

    Article  CAS  Google Scholar 

  8. Busca G (1999) The surface acidity of solid oxides and its characterization by IR spectroscopic methods. An attempt at systematization. Phys Chem 1:723–736

    Article  CAS  Google Scholar 

  9. Barthomeuf D (1984) Conjugate acid-base pairs in zeolites. J Phys Chem 88:42–45

    Article  CAS  Google Scholar 

  10. Niwa M, Habuta Y, Okumura K, Katada N (2003) Solid acidity of metal oxide monolayer and its role in catalytic reactions. Catal Today 87:213–218

    Article  CAS  Google Scholar 

  11. Auroux A, Gervasini A (1990) Microcalorimetric study of the acidity and basicity of metal oxide surfaces. J Phys Chem 94:6371–6379

    Article  CAS  Google Scholar 

  12. Duffy A, Ingram MD (1971) Establishment of an optical scale for Lewis basicity in inorganic oxyacids, molten salts, and glasses. J Am Chem Soc 93:6448–6454

    Article  CAS  Google Scholar 

  13. Duffy A (1993) A review of optical basicity and its applications to oxidic systems. Geochim Cosmochim Acta 57:3961–3970

    Article  CAS  Google Scholar 

  14. Duffy JA (1986) Chemical bonding in the oxides of elements: a new appraisal. J Solid State Chem 62:145–157

    Article  CAS  Google Scholar 

  15. Tessman JR, Kahn AH, Shockley W (1953) Electronic polarizabilities of ions in crystals. Phys Rev 92:890–895

    Article  CAS  Google Scholar 

  16. Zhang Y (1982) Electronegativities of elements in valence states and their applications. 1 Electronegativities of elements in valence states. Inorg Chem 21:3886–3889

    Article  CAS  Google Scholar 

  17. Zhang Y (1982) Electronegativities of elements in valence states and their applications. 2 A scale fro strength of Lewis acids. Inorg Chem 21:3889–3893

    Article  CAS  Google Scholar 

  18. Portier J, Campet G, Etourneau J, Tanguy B (1994) A simple model for the estimation of electronegativities of cations in different electronic states and coordinations. J Alloys Compd 209:285–289

    Article  CAS  Google Scholar 

  19. Portier J, Campet G, Etorneau J, Shastry MCR, Tanguy B (1994) A simple approach to materials design: role played by an ionic-covalent parameter based on polarizing power and electronegativity. J Alloys Compd 209:59–64

    Article  CAS  Google Scholar 

  20. Moriceau P, Lebouteller A, Bodres E, Courtine P (1999) A new concept related to selectivity in mild oxidation catalysis of hydrocarbons: the optical basicity of catalyst oxygen. Phys Chem 1:5735–5744

    Article  CAS  Google Scholar 

  21. Sanderson RT (1951) An interpretation of bond lengths and a classification of bonds. Science 114:670–672

    Article  CAS  Google Scholar 

  22. Sanderson RT (1975) The interrelationship of bond dissociation energies and contributing bond energies. J Am Chem Soc 97:1367–1372

    Google Scholar 

  23. Jeong NCh, Lee JS, Tae EL, Lee YoJ, Yoon KB (2008) Acidity scale for metal oxides metal oxides and sanderson’s electronegativities of Lanthanide Elements. Angew Chem Int Ed 120:10282–10286

    Article  Google Scholar 

  24. Henry M (1994) Partial charges distributions in crystalline materials through electronegativity equalization. Mater Sci Forum (152–153), pp 355–358

    Google Scholar 

  25. Nortier P, Borosy AP, Allavena M (1997) ab initio Hartree-Fock study of bronsted acidity at the surface of oxides. J Phys Chem B 101:1347–1354

    Article  CAS  Google Scholar 

  26. Berholic J, Horsley JA, Murrel LL, Sherman LG, Soled S (1987) Bronsted acid sites in transition metal transition metal oxide catalysts: modeling of structure, acid strengths and support effects. J Phys Chem 91:1526–1530

    Article  Google Scholar 

  27. Shiga A, Katada N, Niva M (2006) A theoretical study on bronsted acidity of WO3 clusters supported on metal oxide supports by “paired interacting orbitals” (PIO) analysis. Catal Today 111:333–337

    Article  CAS  Google Scholar 

  28. Mars P, van Krevelen DW (1954) Oxidations carried out by means of vanadium oxide catalysts. Chem Eng Sci (Spec Suppl) 3:41–59

    Google Scholar 

  29. Ali AM, Emanuelsson EAC, Patterson DA (2010) Photocatalysis with nanostructured zinc oxide thin films: the relationship between morphology and photocatalytic activity under oxygen limited and oxygen rich conditions and evidence for a Mars—Van Krevelen mechanism. Appl Catal B(97):168–181

    Google Scholar 

  30. Finocchio E, Busca G, Lorenzelli V,Willey RJ (1994) FTIR Studies on the selective oxidation and combustion of light hydrocarbons at metal oxide surfaces. J Chem Soc Faraday Trans 90:3347–3356

    Google Scholar 

  31. Over H, Kim YD, Seitsonen AP, Wendt S, Lundgren E, Schmid M, Varga P, Morgante A, Ertl G (2000) Atomic-scale structure and catalytic reactivity of the RuO2(110) surface. Science 287:1474–1476

    Google Scholar 

  32. Han W-P, AI M (1982) The φ-classification of metal oxides for heterogeneous oxidation catalysts. J Catal 78:281–288

    Article  CAS  Google Scholar 

  33. Bielański A, Haber J (1979) Oxygen in catalysis on transition metal oxides. Cat Rev—Sci Eng 19:1–41

    Article  Google Scholar 

  34. Catlow CRA, Jackson RA, Thoma JM (1990) Computational studies of solid oxidation catalystst. J Phys Chem 94:7889–7893

    Article  CAS  Google Scholar 

  35. Reddy BM (2006) Redox properties of metal oxides. In: Fierro JLG (ed) Metal oxides: chemistry and applications. CRC Press, Taylor & Francis Group, Boca Raton, pp 215–246

    Google Scholar 

  36. Busca G, Finocchio E, Ramis G, Ricchiardi G (1996) On the role of acidity in catalytic oxidation. Catal Today 32:133–143

    Article  CAS  Google Scholar 

  37. Panov GI, Dubkov KA, Starokon EV (2006) Active oxygen in selective oxidation catalysis. Catal Today 117:148–155

    Article  CAS  Google Scholar 

  38. Liu H-F, Liu R-S, Liew KY, Johnson RE, Lunsford JH (1984) Partial oxidation of methane by nitrous oxide over molybdenum on silica. J Am Chem Soc 106:4117–4121

    Article  CAS  Google Scholar 

  39. Schlogl R (2001) Theory in heterogenous catalysis. Cattech 5:146–170

    Article  CAS  Google Scholar 

  40. Grzybowska-Swierkosz B (2002) Effect of additives on the physicochemical and catalytic properties of oxide catalysts in selective oxidation reactions. Top Catal 21:35–46

    Article  CAS  Google Scholar 

  41. Rumyantseva MN, Gaskov AM (2008) Chemical modification of nanocrystalline metal oxides: effect of the real structure and surface chemistry on the sensor properties. Russ Chem Bull 57:1106–1125

    Article  CAS  Google Scholar 

  42. Yushchenko VV (1997) Calculation of the acidity spectra of catalysts from temperature-programmed ammonia desorption data. Russian J Phys Chem 71:547–550

    Google Scholar 

  43. Burmistrov VA (1986) Hydrated oxides of IV and V groups (in Russian). Nauka, Moscow, p 160

    Google Scholar 

  44. Abee MW, Cox DF (2002) NH3 chemisorption on stoichiometric and oxygen-deficient SnO2 (110) surfaces. Surf Sci 520:65–77

    Article  CAS  Google Scholar 

  45. York SC, Abee MW, Cox DF (1999) α-Cr2O3 (#): surface characterizationcharacterization and oxygen adsorption. Surf Sci 437:386–396

    Article  CAS  Google Scholar 

  46. Abee MW, Cox DF (2001) BF3 adsorptionadsorption on r-Cr2O3 (#): probing the lewis basicity of surface oxygen anions. J Phys Chem B 105:8375–8380

    Article  CAS  Google Scholar 

  47. Maier J, Göpel W (1988) Investigations of the bulk defect chemistry of polycrystalline Tin(IV) oxide. Thin Solid Films 72:293–302

    Google Scholar 

  48. De Wit JHW, Van Unen G, Lahey M (1977) Electron concentration and mobility in In2O3. J Phys Chem Solids 38:819–824

    Article  Google Scholar 

  49. Barŝan N, Weimar U (2001) Conduction model of metal oxide gas sensors. J Electroceram 7:143–167

    Article  Google Scholar 

  50. Morrison SR (1977) The chemical physics of surfaces. Plenum, New York

    Book  Google Scholar 

  51. Rumyantseva MN, Makeeva EA, Badalyan SM, Zhukova AA, Gaskov AM (2009) Nanocrystalline SnO2 and In2O3 as materials for gas sensors: the relationship between microstructure and oxygen chemisorption. Thin Solid Films 518:1283–1288

    Google Scholar 

  52. Descorme C, Duprez D (2000) Oxygen surface mobility and isotopic exchange on oxides: role of the nature and the structure of metal particles. Appl Catal A 202:231–241

    Article  CAS  Google Scholar 

  53. Martin D, Duprez D (1996) Mobility of surface species on oxides. 1 Isotopic exchange of 18O2 with 16O of SiO2, Al2O3, ZrO2, MgO, CeO2, and CeO2-Al2O3. Activation by noble metals. Correlation with oxide basicity. J Phys Chem 100:9429–9438

    Article  CAS  Google Scholar 

  54. Haruta M (2004) Nanoparticulate goldgold catalysts for low-temperature CO oxidation. J New Mat Electrochem Systems 7:163–172

    Google Scholar 

  55. Montmeat P, Marchand J-C, Lalauze R, Viricelle J-P, Tournier G, Pijolat C (2003) Physico-chemical contribution of goldgold metallic particles to the action of oxygen on tin dioxide sensors. Sens Act B 95:83–89

    Google Scholar 

  56. Conner WC, Falconer JL (1995) Spillover in heterogeneous catalysis. Chem Rev 95:759–788

    Article  CAS  Google Scholar 

  57. Aksel S, Eder D (2010) Catalytic effect of metal oxides on the oxidation resistance in carbon nanotube-inoragnic hybrids. J Mater Chem 20:9149–9154

    Article  CAS  Google Scholar 

  58. http://webbook.nist.gov

  59. Davydov AA (2003) Molecular spectroscopy of oxide catalyst surfaces. Wiley, Chichester, p 641

    Book  Google Scholar 

  60. Zhou Z, Gao H, Liu R, Du B (2001) Study of structure and property for the electron transfer system. Theochem 545:179–186

    Article  CAS  Google Scholar 

  61. Šulka M, Pitoňák M, Neogrády P, Urban M (2008) Electron affinity of the O2 molecule: CCSD(T) calculations using the optimized virtual orbitals space approach. Int J Quantum Chem 108:2159–2171

    Article  Google Scholar 

  62. Sergent N, Epifani M, Comini E, Faglia G, Pagnier T (2007) Interactions of nanocrystalline tin oxide powder with NO2: a Raman spectroscopic study. Sens Act B 126:1–5

    Article  Google Scholar 

  63. Prades JD, Cirera A, Morante JR, Pruned JM, Ordejón P (2007) Ab initio study of NOx compounds adsorption on SnO2 surface. Sens Act B 126:62–67

    Article  Google Scholar 

  64. Leblanc E, Perier-Camby L, Thomas G, Giber G, Primet RM, Gelin P (2000) NOx adsorption onto dehydroxylated or hydroxylated tin oxide surface. Application to SnO2-based gas sensorsgas sensors. Sens Act B 62:67–72

    Google Scholar 

  65. Golodets GI, Borovik VV, Vorotyntsev VM (1986) Mechanism and kinetics of selective catalytic oxidation of acetone. Theor Exper Chem 22:235–237

    Article  Google Scholar 

  66. Harrison PG, Thornton EW (1976) Tin oxide surfaces. Part 7—an infrared study of the chemisorption and oxidation of organic Lewis base molecules on tin (IV) oxide. J Chem Soc Faraday Trans I(72):2484–2491

    Google Scholar 

  67. Pierce KG, Barteau MA (1995) Ketone coupling on reduced TiO2 (001) surfaces: evidence of pinacol formation. J Org Chem 60:2405–2410

    Article  CAS  Google Scholar 

  68. Barŝan N, Koziej D, Weimar U (2007) Metal oxide-based gas sensor research: How to? Sens Act B 121:18–35

    Article  Google Scholar 

  69. Hirvi JT, Kinnunen T-JJ, Suvanto M, Pakkanen TA, Nørskov JK (2010) CO oxidation on PdO surfaces. J Chem Phys 133:084704

    Article  Google Scholar 

  70. Šljivančanin Ž, Hammer B (2010) CO oxidation on fully oxygen covered Ru (0001): role of step edges. Phys Rev B 81:121413 R

    Google Scholar 

  71. Seitsonen AP, Over H (2009) Intimate interplay of theory and experiments in model catalysiscatalysis. Surf Sci 603:1717–1723

    Article  CAS  Google Scholar 

  72. Wang S, Wang Y, Jiang J, Liu R, Li M, Wang Y, Su Y, Zhu B, Zhang S, Huang W, Wu S (2009) A DRIFTS study of low-temperature CO oxidation over AuAu/SnO2 catalyst prepared by co-precipitation method. Catal Commun 10:640–644

    Article  CAS  Google Scholar 

  73. Hakkinen H, Abbet S, Sanchez A, Heiz U, Landman U (2003) Structural, electronic and impurity-doping effects in nanoscale chemistry: supported goldgold nanoclusters. Angew Chem Int Ed 42:1297–1300

    Article  CAS  Google Scholar 

  74. Rout CS, Hegde M, Rao CNR (2007) Ammonia sensors based on metal oxide nanostructures. Nanotechnology 18:205504

    Article  Google Scholar 

  75. Mortensen H, Diekhoner L, Baurichter A, Jensen E, Luntz AC (2000) Dynamics of ammonia decomposition on Ru (0001). J Chem Phys 113:6882–6887

    Article  CAS  Google Scholar 

  76. Marikutsa AV, Rumyantseva MN, Gaskov AM, Konstantinova EA, Grishina DA, Deygen DM (2011) CO and NH3 sensor properties and paramagnetic centers of nanocrystalline SnO2 modified by Pd and Ru. Thin Solid Films. Accepted for publication

    Google Scholar 

  77. Ganley JC, Thomas FS, Seebauer EG, Masel RI (2004) A priori catalytic activity correlations: the difficult case of hydrogen production from ammonia. Catal Lett 96:117–122

    Article  CAS  Google Scholar 

  78. Hansgen DA, Vlachos G, Chen JG (2010) Using first principles to predict bimetallic catalysts fort he ammonia decomposition reaction. Nat Chem 2:484–489

    Article  CAS  Google Scholar 

  79. Boccuzzi F, Guglielminotti E (1994) IR study of TiO2-based gas-sensor materials: effect of ruthenium on the oxidation of NH3, (CH3)3N and NO. Sens Act B 21:27–31

    Article  CAS  Google Scholar 

  80. Pagnier T, Boulova M, Galerie A, Gaskov A, Lucazeau G (2000) Reactivity of SnO2–CuO nanocrystalline materials with H2S: a coupled electrical and Raman spectroscopic study. Sens Act B 71:134–139

    Google Scholar 

  81. Jeon H, Jeon M, Kang M, Lee S, Lee Y, Hong Y, Choi B (2005) Synthesis and characterization of antimony doped tin oxide (ATO) with nanometer-sized particles and their conductivities. Mater Lett 59:1801–1810

    Article  CAS  Google Scholar 

  82. Rumyantseva MN, Gaskov AM, Rosman N, Pagnier T, Morante JR (2005) Raman surface vibration modes in nanocrystalline SnO2 prepared by wet chemical methods: correlations with the gas sensors performances. Chem Mater 17:893–901

    Article  CAS  Google Scholar 

  83. Kaur J, Vankar VD, Bhatnagar MC (2008) Effect of MoO3 addition on the NO2 sensing properties of SnO2 thin films. Sens Act B 133:650–655

    Article  Google Scholar 

  84. Ivanovskaya M, Lutynskaya E, Bogdanov P (1998) The influence of molybdenum on the properties of SnO2 ceramic Sensors. Sens Act B 48:387–391

    Article  Google Scholar 

  85. Chiorino A, Ghiotti G, Prinetto F, Carotta MC, Gallana M, Martinelli G (1999) Characterization of materials for gas sensors: surface chemistry of SnO2 and MoOx–SnO2 nano-sized powders and electrical responses of the related thick films. Sens Act B 59:203–209

    Article  Google Scholar 

  86. Yamazoe N, Shimanoe K (2008) Theory of power laws for semiconductor gas sensors. Sens Act B 128:566–573

    Article  Google Scholar 

  87. Gellings PJ, Bouwmeester HJM (2000) Solid state aspects of oxidation catalysis. Catal Today 58:1–53

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Gaskov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Krivetskiy, V., Rumyantseva, M., Gaskov, A. (2013). Design, Synthesis and Application of Metal Oxide-Based Sensing Elements: A Chemical Principles Approach. In: Carpenter, M., Mathur, S., Kolmakov, A. (eds) Metal Oxide Nanomaterials for Chemical Sensors. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5395-6_3

Download citation

Publish with us

Policies and ethics