Skip to main content

Asymptotic Convergence

  • Chapter
  • First Online:
  • 4270 Accesses

Part of the book series: Springer Series in Statistics ((SSS,volume 297))

Abstract

In this chapter, we develop an asymptotic theory concerning the rates of convergence of penalized likelihood estimates to the target functions as the sample size goes to infinity. The rates are calculated in terms of problem-specific loss functions derived from the respective stochastic settings.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abramowitz M, Stegun IA (1964) Handbook of mathematical functions with formulas, graphs, and mathematical tables. National Bureau of Standards, Washington, DC.

    Google Scholar 

  • Akhiezer NI, Glazman IM (1961) Theory of linear operators in Hilbert space. Ulgar, New York.

    Google Scholar 

  • Anderson JA (1972) Separate sampling logistic regression. Biometrika 59:19–35.

    Google Scholar 

  • Anderson JA, Blair V (1982) Penalized maximum likelihood estimation in logistic regression and discrimination. Biometrika 69:123–136.

    Google Scholar 

  • Anderson JA, Senthilselvan A (1980) Smooth estimates for the hazard function. J R Stat Soc Ser B 42:322–327.

    Google Scholar 

  • Ansley CF, Kohn R, Wong C-M (1993) Nonparametric spline regression with prior information. Biometrika 80:75–88.

    Google Scholar 

  • Antoniadis A (1989) A penalty method for nonparametric estimation of the intensity function of a counting process. Ann Inst Stat Math 41:781–807.

    Google Scholar 

  • Aronszajn N (1950) Theory of reproducing kernels. Trans Am Math Soc 68:337–404.

    Google Scholar 

  • Azzalini A, Bowman AW (1990) A look at some data on the Old Faithful geyser. Appl Stat 39:357–365.

    Google Scholar 

  • Barry D (1986) Nonparametric Bayesian regression. Ann Stat 14:934–953.

    Google Scholar 

  • Bartoszyński R, Brown BW, McBride CM, Thompson JR (1981) Some nonparametric techniques for estimating the intensity function of a cancer related nonstationary Poisson process. Ann Stat 9:1050–1060.

    Google Scholar 

  • Bates DM, Lindstrom M, Wahba G, Yandell B (1987) GCVPACK – routines for generalized cross validation. Commun Stat Simul Comput 16:263–297.

    Google Scholar 

  • Becker RA, Chambers JM, Wilks AR (1988) The new S language. Wadsworth & Brooks/Cole, Pacific Grove.

    Google Scholar 

  • Berger JO (1985) Statistical decision theory and Bayesian analysis, 2nd edn. Springer, New York.

    Google Scholar 

  • Box GEP, Jenkins GM, Reinsel GC (1994) Time series analysis, 3rd edn. Prentice Hall, Englewood Cliffs.

    Google Scholar 

  • Breiman L (1991) The ∏ method for estimating multivariate functions from noisy data. Technometrics 33:125–160 (with discussions).

    Google Scholar 

  • Breiman L, Friedman JH (1985) Estimating optimal transformations for multiple regression and correlation. J Am Stat Assoc 80:580–598 (with discussions).

    Google Scholar 

  • Breslow NE, Clayton DG (1993) Approximate inference in generalized linear mixed models. J Am Stat Assoc 88:9–25.

    Google Scholar 

  • Brinkman ND (1981) Ethanol fuel – a single-cylinder engine study of efficiency and exhaust emissions. SAE Trans 90:1410–1424.

    Google Scholar 

  • Brockwell PJ, Davis RA (1991) Time series: theory and methods, 2nd edn. Springer, New York.

    Google Scholar 

  • Buja A, Hastie TJ, Tibshirani RJ (1989) Linear smoothers and additive models. Ann Stat 17:453–555 (with discussions).

    Google Scholar 

  • Byerly WE (1959) An elementary treatise on Fourier’s series and spherical, cylindrical, and ellipsoidal harmonics. Dover, New York. Reprint of the 1893 original.

    Google Scholar 

  • Chambers JM, Hastie TJ (eds) (1992) Statistical models in S. Chapman & Hall, New York.

    Google Scholar 

  • Chen Z (1991) Interaction spline models and their convergence rates. Ann Stat 19:1855–1868.

    Google Scholar 

  • Chhikara RS, Folks JL (1989) The inverse Gaussian distribution: theory, methodology, and applications. Marcel Dekker, New York.

    Google Scholar 

  • Cleveland WS (1979) Robust locally weighted regression and smoothing scatterplots. J Am Stat Assoc 83:829–836.

    Google Scholar 

  • Cleveland WS, Devlin SJ (1988) Locally weighted regression: an approach to regression analysis by local fitting. J Am Stat Assoc 83:596–610.

    Google Scholar 

  • Cogburn R, Davis HT (1974) Periodic splines and spectral estimation. Ann Stat 2:1108–1126.

    Google Scholar 

  • Cole TJ (1988) Fitting smoothed centile curves to reference data. J R Stat Soc Ser A 151:385–418 (with discussions).

    Google Scholar 

  • Cole TJ, Green PJ (1992) Smoothing reference centile curves: the LMS method and penalized likelihood. Stat Med 11:1305–1319.

    Google Scholar 

  • Cosslett SR (1981) Maximum likelihood estimator for choice-based samples. Econometrika 49:1289–1316.

    Google Scholar 

  • Cox DR (1969) Some sampling problems in technology. In: Johnson NL, Smith Jr H (eds) New developments in survey sampling. Wiley, New York, pp 506–527.

    Google Scholar 

  • Cox DR (1972) Regression models and life tables. J R Stat Soc Ser B 34:187–220 (with discussions).

    Google Scholar 

  • Cox DD (1984) Multivariate smoothing spline functions. SIAM J Numer Anal 21:789–813.

    Google Scholar 

  • Cox DD (1988) Approximation of method of regularization estimators. Ann Stat 16:694–712.

    Google Scholar 

  • Cox DD, Chang Y (1990) Iterated state space algorithms and cross validation for generalized smoothing splines. Technical Report 49, Department of Statistics, University of Illinois, Champion.

    Google Scholar 

  • Cox DD, O’Sullivan F (1990) Asymptotic analysis of penalized likelihood and related estimators. Ann Stat 18:124–145.

    Google Scholar 

  • Craven P, Wahba G (1979) Smoothing noisy data with spline functions: estimating the correct degree of smoothing by the method of generalized cross-validation. Numer Math 31:377–403.

    Google Scholar 

  • Crowley J, Hu M (1977) Covariance analysis of heart transplant survival data. J Am Stat Assoc 72:27–36.

    Google Scholar 

  • Dalzell CJ, Ramsay JO (1993) Computing reproducing kernels with arbitrary boundary constraints. SIAM J Sci Comput 14:511–518.

    Google Scholar 

  • de Boor C (1978) A practical guide to splines. Springer, New York.

    Google Scholar 

  • de Boor C, Lynch R (1966) On splines and their minimum properties. J Math Mach 15:953–969.

    Google Scholar 

  • Dennis JE, Schnabel RB (1996) Numerical methods for unconstrained optimization and nonlinear equations. SIAM, Philadelphia. Corrected reprint of the 1983 original.

    Google Scholar 

  • Dongarra JJ, Moler CB, Bunch JR, Stewart GW (1979) LINPACK user’s guide. SIAM, Philadelphia.

    Google Scholar 

  • Douglas A, Delampady M (1990) Eastern lake survey – phase I: documentation for the data base and the derived data sets. Technical Report 160 (SIMS), Department of Statistics, University of British Columbia, Vancouver.

    Google Scholar 

  • Du P, Gu C (2006) Penalized likelihood hazard estimation: efficient approximation and bayesian confidence intervals. Stat Probab Lett 76:244–254.

    Google Scholar 

  • Du P, Gu C (2009) Penalized pseudo-likelihood hazard estimation: a fast alternative to penalized likelihood. J Stat Plan Inference 139:891–899.

    Google Scholar 

  • Du P, Ma S (2010) Frailty model with spline estimated nonparametric hazard function. Stat Sin 20:561–580.

    Google Scholar 

  • Duchon J (1977) Splines minimizing rotation-invariant semi-norms in sobolev spaces. In: Schemp W, Zeller K (eds) Constructive theory of functions of several variables. Springer, Berlin, pp 85–100.

    Google Scholar 

  • Elden L (1984) A note on the computation of the generalized cross validation function for ill-conditioned least square problems. BIT 24:467–472.

    Google Scholar 

  • Fan J, Gijbels I (1996) Local polynomial modelling and its applications. Chapman & Hall, London.

    Google Scholar 

  • Fleming TR, Harrington DP (1991) Counting processes and survival analysis. Wiley, New York.

    Google Scholar 

  • Gao F (1999) Penalized multivariate logistic regression with a large data set. Ph.D. thesis, University of Wisconsin, Madison.

    Google Scholar 

  • Gao F, Wahba G, Klein R, Klein BEK (2001) Smoothing spline ANOVA for multivariate Bernoulli observations, with application to ophthalmology data. J Am Stat Assoc 96:127–160 (with discussions).

    Google Scholar 

  • Gill RD (1984) Understanding Cox’s regression model: a martingale approach. J Am Stat Assoc 79:441–447.

    Google Scholar 

  • Gill PE, Murray W, Wright MH (1981) Practical optimization. Academic, New York.

    Google Scholar 

  • Gill RD, Vardi Y, Wellner JA (1988) Large sample theory of empirical distributions in biased sampling models. Ann Stat 16:1069–1112.

    Google Scholar 

  • Girard DA (1989) A fast “Monte-Carlo cross validation” procedure for large least squares problems with noisy data. Numer Math 56:1–23.

    Google Scholar 

  • Girard DA (1991) Asymptotic optimality of the fast randomized versions of GCV and C L in ridge regression and regularization. Ann Stat 19:1950–1963.

    Google Scholar 

  • Golub G, Van Loan C (1989) Matrix computations, 2nd edn. The Johns Hopkins University Press, Baltimore.

    Google Scholar 

  • Good IJ, Gaskins RA (1971) Nonparametric roughness penalties for probability densities. Biometrika 58:255–277.

    Google Scholar 

  • Gray RJ (1992) Flexible methods for analyzing survival data using splines, with applications to breast cancer prognosis. J Am Stat Assoc 87:942–951.

    Google Scholar 

  • Green PJ, Yandell B (1985) Semi-parametric generalized linear models. In: Gilchrist R, Francis B, Whittaker J (eds) Proceedings of the GLIM85 conference. Springer, Berlin, pp 44–55.

    Google Scholar 

  • Green PJ, Silverman BW (1994) Nonparametric regression and generalized linear models. Chapman & Hall, London.

    Google Scholar 

  • Gu C (1989) RKPACK and its applications: fitting smoothing spline models. In: ASA proceedings of statistical computing section. ASA, Alexandria pp 42–51.

    Google Scholar 

  • Gu C (1990) Adaptive spline smoothing in non Gaussian regression models. J Am Stat Assoc 85:801–807.

    Google Scholar 

  • Gu C (1992a) Cross-validating non-Gaussian data. J Comput Graph Stat 1:169–179.

    Google Scholar 

  • Gu C (1992b) Diagnostics for nonparametric regression models with additive term. J Am Stat Assoc 87:1051–1058.

    Google Scholar 

  • Gu C (1992c) Penalized likelihood regression: a Bayesian analysis. Stat Sin 2:255–264.

    Google Scholar 

  • Gu C (1992d) Smoothing spline density estimation: biased sampling and random truncation. Technical Report 92–03, Department of Statistics, Purdue University, West Lafayette.

    Google Scholar 

  • Gu C (1993a) Interaction splines with regular data: automatically smoothing digital images. SIAM J Sci Comput 14:218–230.

    Google Scholar 

  • Gu C (1993b) Smoothing spline density estimation: a dimensionless automatic algorithm. J Am Stat Assoc 88:495–504.

    Google Scholar 

  • Gu C (1994) Penalized likelihood hazard estimation: algorithm and examples. In: Berger JO, Gupta SS (eds) Statistical decision theory and related topics, V. Springer, New York, pp 61–72.

    Google Scholar 

  • Gu C (1995a) Smoothing spline density estimation: conditional distribution. Stat Sin 5:709–726.

    Google Scholar 

  • Gu C (1995b) Smoothing spline density estimation: response-based sampling. Technical Report 267, Department of Statistics, University of Michigan, Ann Arbor.

    Google Scholar 

  • Gu C (1996) Penalized likelihood hazard estimation: a general procedure. Stat Sin 6:861–876.

    Google Scholar 

  • Gu C (1998a) Model indexing and smoothing parameter selection in nonparametric function estimation. Stat Sin 8:607–646 (with discussions).

    Google Scholar 

  • Gu C (1998b) Penalized likelihood estimation: convergence under incorrect model. Stat Probab Lett 36:359–364.

    Google Scholar 

  • Gu C (1998c) Structural multivariate function estimation: some automatic density and hazard estimates. Stat Sin 8:317–335.

    Google Scholar 

  • Gu C (2004) Model diagnostics for smoothing spline ANOVA models. Can J Stat 32:347–358.

    Google Scholar 

  • Gu C (2011) Practical nonparametric conditional density estimation. Preprint.

    Google Scholar 

  • Gu C, Kim Y-J (2002) Penalized likelihood regression: general formulation and efficient approximation. Can J Stat 30:619–628.

    Google Scholar 

  • Gu C, Ma P (2005a) Generalized nonparametric mixed-effect models: computation and smoothing parameter selection. J Comput Graph Stat 14:485–504.

    Google Scholar 

  • Gu C, Ma P (2005b) Optimal smoothing in nonparametric mixed-effect models. Ann Stat 33:1357–1379.

    Google Scholar 

  • Gu C, Ma P (2011) Nonparametric regression with cross-classified responses. Can J Stat 39:591–609.

    Google Scholar 

  • Gu C, Qiu C (1993) Smoothing spline density estimation: theory. Ann Stat 21:217–234.

    Google Scholar 

  • Gu C, Qiu C (1994) Penalized likelihood regression: a simple asymptotic analysis. Stat Sin 4:297–304.

    Google Scholar 

  • Gu C, Wahba G (1991a) Discussion of “multivariate adaptive regression splines” by J. Friedman. Ann Stat 19:115–123.

    Google Scholar 

  • Gu C, Wahba G (1991b) Minimizing GCV/GML scores with multiple smoothing parameters via the Newton method. SIAM J Sci Stat Comput 12:383–398.

    Google Scholar 

  • Gu C, Wahba G (1993a) Semiparametric analysis of variance with tensor product thin plate splines. J R Stat Soc Ser B 55:353–368.

    Google Scholar 

  • Gu C, Wahba G (1993b) Smoothing spline ANOVA with component-wise Bayesian “confidence intervals”. J Comput Graph Stat 2:97–117.

    Google Scholar 

  • Gu C, Wang J (2003) Penalized likelihood density estimation: direct cross-validation and scalable approximation. Stat Sin 13:811–826.

    Google Scholar 

  • Gu C, Xiang D (2001) Cross-validating non-Gaussian data: generalized approximate cross-validation revisited. J Comput Graph Stat 10:581–591.

    Google Scholar 

  • Gu C, Bates DM, Chen Z, Wahba G (1989) The computation of GCV functions through Householder tridiagonalization with application to the fitting of interaction spline models. SIAM J Matrix Anal Appl 10:457–480.

    Google Scholar 

  • Gu C, Heckman N, Wahba G (1992) A note on generalized cross-validation with replicates. Stat Probab Lett 14:283–287.

    Google Scholar 

  • Gu C, Jeon Y, Lin Y (2013) Nonparametric density estimation in high dimensions. Stat Sin 23:000-000.

    Google Scholar 

  • Hall P, Johnstone I (1992) Empirical functionals and efficient smoothing parameter selection. J R Stat Soc Ser B 54:475–530 (with discussions).

    Google Scholar 

  • Hall P, Marron JS (1991) Lower bounds for bandwidth selection in density estimation. Probab Theory Relat Fields 90:149–173.

    Google Scholar 

  • Han C, Gu C (2008) Optimal smoothing with correlated data. Sankhya 70-A:38–72.

    Google Scholar 

  • Härdle W (1991) Smoothing techniques with implementation in S. Springer, New York.

    Google Scholar 

  • Harville DA (1977) Maximum likelihood approaches to variance component estimation and to related problems. J Am Stat Assoc 72:320–340 (with discussions).

    Google Scholar 

  • Hastie TJ, Tibshirani RJ (1986) Generalized additive models. Stat Sci 1:297–318 (with discussions).

    Google Scholar 

  • Hastie TJ, Tibshirani RJ (1990) Generalized additive models. Chapman & Hall, London.

    Google Scholar 

  • Heckman NE, Ramsay JO (2000) Penalized regression with model-based penalties. Can J Stat 28:241–258.

    Google Scholar 

  • Hornik K (2010) The R FAQ. ISBN 3-900051-08-9.

    Google Scholar 

  • Hutchinson MF (1989) A stochastic estimator of the trace of the influence matrix for Laplacian smoothing splines. Commun Stat Simul Comput 18:1059–1076.

    Google Scholar 

  • Hutchinson MF, de Hoog FR (1985) Smoothing noisy data with spline functions. Numer Math 47:99–106.

    Google Scholar 

  • Ihaka R, Gentleman R (1996) R: a language for data analysis and graphics. J Comput Graph Stat 5:299–314.

    Google Scholar 

  • Jeon Y, Lin Y (2006) An effective method for high dimensional log-density ANOVA estimation, with application to nonparametric graphical model building. Stat Sin 16:353–374.

    Google Scholar 

  • Joe H (1997) Multivariate models and dependence concepts. Chapman & Hall, London.

    Google Scholar 

  • Johnson RA, Wichern DW (1992) Applied multivariate statistical analysis, 3rd edn. Prentice Hall, Englewood Cliffs.

    Google Scholar 

  • Jones RH (1980) Maximum likelihood fitting of ARMA models to time series with missing observations. Technometrics 20:389–395.

    Google Scholar 

  • Jones MC (1991) Kernel density estimation for length biased data. Biometrika 78:511–520.

    Google Scholar 

  • Kalbfleisch JD, Lawless JF (1989) Inference based on retrospective ascertainment: an analysis of the data on transfusion-related AIDS. J Am Stat Assoc 84:360–372.

    Google Scholar 

  • Kalbfleisch JD, Prentice RL (1980) The statistical analysis of failure time data. Wiley, New York.

    Google Scholar 

  • Kaplan EL, Meier P (1958) Nonparametric estimator from incomplete observations. J Am Stat Assoc 53:457–481.

    Google Scholar 

  • Karcher P, Wang Y (2001) Generalized nonparametric mixed effects models. J Comput Graph Stat 10:641–655.

    Google Scholar 

  • Karlin S, Studden WJ (1966) Tchebycheff systems: with applications in analysis and statistics. Wiley, New York/London/Sydney.

    Google Scholar 

  • Keiding N, Gill RD (1990) Random truncation models and markov processes. Ann Stat 18:582–602.

    Google Scholar 

  • Kernighan BW (1975) Ratfor – a preprocessor for a rational Fortran. In: UNIX programmer’s manual. Bell Laboratories, Murray Hill.

    Google Scholar 

  • Kim Y-J (2003) Smoothing spline regression: scalable computation and cross-validation. Ph.D. thesis, Purdue University, West Lafayette.

    Google Scholar 

  • Kim Y-J, Gu C (2004) Smoothing spline Gaussian regression: more scalable computation via efficient approximation. J R Stat Soc Ser B 66:337–356.

    Google Scholar 

  • Kimeldorf G, Wahba G (1970a) A correspondence between Bayesian estimation of stochastic processes and smoothing by splines. Ann Math Stat 41:495–502.

    Google Scholar 

  • Kimeldorf G, Wahba G (1970b) Spline functions and stochastic processes. Sankhya Ser A 32:173–180.

    Google Scholar 

  • Kimeldorf G, Wahba G (1971) Some results on Tchebycheffian spline functions. J Math Anal Appl 33:82–85.

    Google Scholar 

  • Klein R, Klein BEK, Moss SE, Davis MD, DeMets DL (1988) Glycosylated hemoglobin predicts the incidence and progression of diabetic retinopathy. J Am Med Assoc 260:2864–2871.

    Google Scholar 

  • Klein R, Klein BEK, Moss SE, Davis MD, DeMets DL (1989) The Wisconsin epidemiologic study of diabetic retinopathy. X. Four incidence and progression of diabetic retinopathy when age at diagnosis is 30 or more years. Arch Ophthalmol 107:244–249.

    Google Scholar 

  • Koenker R, Ng P, Portnoy S (1994) Quantile smoothing splines. Biometrika 81:673–680.

    Google Scholar 

  • Kooperberg C, Bose S, Stone CJ (1997) Polychotomous regression. J Am Stat Assoc 92:117–127.

    Google Scholar 

  • Lauritzen SL (1996) Graphical models. Oxford University Press, New York.

    Google Scholar 

  • Lee Y, Nelder JA (1996) Hierarchical generalized linear models. J R Stat Soc Ser B 58:619–678 (with discussions).

    Google Scholar 

  • Lehmann EL, Casella G (1998) Theory of point estimation, 2nd edn. Springer, New York.

    Google Scholar 

  • Leonard T (1978) Density estimation, stochastic processes and prior information. J R Stat Soc Ser B 40:113–146 (with discussions).

    Google Scholar 

  • Leonard T, Hsu JSJ, Tsui K-W (1989) Bayesian marginal inference. J Am Stat Assoc 84:1051–1058.

    Google Scholar 

  • Li K-C (1986) Asymptotic optimality of C L and generalized cross-validation in the ridge regression with application to spline smoothing. Ann Stat 14:1101–1112.

    Google Scholar 

  • Lin X (1998) Smoothing spline analysis of variance for polychotomous response data. Ph.D. thesis, University of Wisconsin, Madison.

    Google Scholar 

  • Lin Y (2000) Tensor product space ANOVA models. Ann Stat 28:734–755.

    Google Scholar 

  • Lin X, Zhang D (1999) Inference in generalized additive mixed models by using smoothing splines. J R Stat Soc Ser B 61:381–400.

    Google Scholar 

  • Lindsey JK (1997) Applying generalized linear models. Springer, New York.

    Google Scholar 

  • Mallows CL (1973) Some comments on C P . Technometrics 15:661–675.

    Google Scholar 

  • Manski CF (1995) Identification problems in the social sciences. Harvard University Press, Cambridge.

    Google Scholar 

  • McCullagh P, Nelder JA (1989) Generalized linear models, 2nd edn. Chapman & Hall, London.

    Google Scholar 

  • McCulloch CE (1997) Maximum likelihood algorithms for generalized linear mixed models. J Am Stat Assoc 92:162–170.

    Google Scholar 

  • Meinguet J (1979) Multivariate interpolation at arbitrary points made simple. J Appl Math Phys (ZAMP) 30:292–304.

    Google Scholar 

  • Miller RG (1976) Least squares regression with censored data. Biometrika 63:449–464.

    Google Scholar 

  • Miller RG, Halpern J (1982) Regression with censored data. Biometrika 69:521–531.

    Google Scholar 

  • Moreau T, O’Quigley J, Mesbah M (1985) A global goodness-of-fit statistic for the proportional hazards model. Appl Stat 34:212–218.

    Google Scholar 

  • Morgenthaler S, Vardi Y (1986) Choice-based samples: a non-parametric approach. J. Econom 32:109–125.

    Google Scholar 

  • Novak E, Ritter K (1996) High dimensional integration of smooth functions over cubes. Numer Math 75:79–97.

    Google Scholar 

  • Nychka D (1988) Bayesian confidence intervals for smoothing splines. J Am Stat Assoc 83:1134–1143.

    Google Scholar 

  • O’Sullivan F (1985) Discussion of “Some aspects of the spline smoothing approach to nonparametric regression curve fitting” by B. Silverman J R Stat Soc Ser B 47:39–40.

    Google Scholar 

  • O’Sullivan F (1988a) Fast computation of fully automated log-density and log-hazard estimators. SIAM J Sci Stat Comput 9:363–379.

    Google Scholar 

  • O’Sullivan F (1988b) Nonparametric estimation of relative risk using splines and cross-validation. SIAM J Sci Stat Comput 9:531–542.

    Google Scholar 

  • O’Sullivan F, Yandell B, Raynor W (1986) Automatic smoothing of regression functions in generalized linear models. J Am Stat Assoc 81:96–103.

    Google Scholar 

  • Ouyang Z, Zhou Q, Wong WH (2009) ChIP-Seq of transcription factors predicts absolute and differential gene expression in embryonic stem cells. Proc Natl Acad Sci USA 106:21521–21526. doi:10.1073/pnas.0904863106.

    Google Scholar 

  • Parzen E (1979) Nonparametric statistical data modeling. J Am Stat Assoc 74:105–131 (with discussions).

    Google Scholar 

  • Pawitan Y, O’Sullivan F (1994) Nonparametric spectral density estimation using penalized Whittle likelihood. J Am Stat Assoc 89:600–610.

    Google Scholar 

  • Petras K (2001) Asymptotically minimal smolyak cubature. Preprint.

    Google Scholar 

  • Prentice RL, Pyke R (1978) Logistic disease incidence models and case-control studies. Biometrika 66:403–411.

    Google Scholar 

  • Priestley MB (1981) Spectral analysis and times series. Academic, London.

    Google Scholar 

  • Ramsay JO, Dalzell CJ (1991) Some tools for functional data analysis. J R Stat Soc Ser B 53:539–572 (with discussions).

    Google Scholar 

  • Rao CR (1973) Linear statistical inference and its applications. Wiley, New York.

    Google Scholar 

  • Robinson GK (1991) That BLUP is a good thing: the estimation of the random effects. Stat Sci 6:15–51 (with discussions).

    Google Scholar 

  • Scheffe H (1959) The analysis of variance. Wiley, New York.

    Google Scholar 

  • Schoenberg IJ (1964) Spline functions and the problem of graduation. Proc Natl Acad Sci USA 52:947–950.

    Google Scholar 

  • Schumaker L (1981) Spline functions: basic theory. Wiley, New York.

    Google Scholar 

  • Scott DW (1985) Averaged shifted histograms: effective nonparametric density estimators in several dimensions. Ann Stat 13:1024–1040.

    Google Scholar 

  • Scott DW (1992) Multivariate density estimation: theory, practice and visualization. Wiley, New York.

    Google Scholar 

  • Scott DW, Terrell GR (1987) Biased and unbiased cross-validation in density estimation. J Am Stat Assoc 82:1131–1146.

    Google Scholar 

  • Scott AJ, Wild CJ (1986) Fitting logistic models under case-control and choice-based sampling. J R Stat Soc Ser B 48:170–182.

    Google Scholar 

  • Seber GAF (1977) Linear regression analysis. Wiley, New York.

    Google Scholar 

  • Silverman BW (1978) Density ratios, empirical likelihood and cot death. Appl Stat 27:26–33.

    Google Scholar 

  • Silverman BW (1982) On the estimation of a probability density function by the maximum penalized likelihood method. Ann Stat 10:795–810.

    Google Scholar 

  • Snyder DL (1975) Random point processes. Wiley, New York.

    Google Scholar 

  • Stein ML (1993) Spline smoothing with an estimated order parameter. Ann Stat 21:1522–1544.

    Google Scholar 

  • Stewart GW (1987) Collinearity and least square regression. Stat Sci 2:68–100 (with discussions).

    Google Scholar 

  • Stone CJ (1985) Additive regression and other nonparametric models. Ann Stat 13:689–705.

    Google Scholar 

  • Stone CJ, Hansen MH, Kooperberg C, Truong YK (1997) Polynomial splines and their tensor products in extended linear modeling. Ann Stat 25:1371–1470 (with discussions).

    Google Scholar 

  • Tapia RA, Thompson JR (1978) Nonparametric probability density estimation. Johns Hopkins University Press, Baltimore.

    Google Scholar 

  • Tierney L, Kadane JB (1986) Accurate approximations for posterior moments and marginal densities. J Am Stat Assoc 81:82–86.

    Google Scholar 

  • Tong H (1990) Nonlinear time series. Oxford University Press, New York.

    Google Scholar 

  • Turnbull BW, Brown BW, Hu M (1974) Survivorship analysis of heart transplant data. J Am Stat Assoc 69:74–80.

    Google Scholar 

  • Utreras F (1981) Optimal smoothing of noisy data using spline functions. SIAM J Sci Stat Comput 2:349–362.

    Google Scholar 

  • Utreras F (1983) Natural spline functions: their associated eigenvalue problem. Numer Math 42:107–117.

    Google Scholar 

  • Utreras F (1988) Convergence rates for multivariate smoothing spline functions. J Approx Theory 52:1–27.

    Google Scholar 

  • Vardi Y (1982) Nonparametric estimation in the presence of length bias. Ann Stat 10:616–620.

    Google Scholar 

  • Vardi Y (1985) Empirical distributions in selection bias models. Ann Stat 13:178–203.

    Google Scholar 

  • Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New York.

    Google Scholar 

  • Wahba G (1978) Improper priors, spline smoothing and the problem of guarding against model errors in regression. J R Stat Soc Ser B 40:364–372.

    Google Scholar 

  • Wahba G (1980) Automatic smoothing of the log periodogram. J Am Stat Assoc 75:122–132.

    Google Scholar 

  • Wahba G (1981) Spline interpolation and smoothing on the sphere. SIAM J Sci Stat Comput 2:5–16.

    Google Scholar 

  • Wahba G (1982) Erratum: spline interpolation and smoothing on the sphere. SIAM J Sci Stat Comput 3:385–386.

    Google Scholar 

  • Wahba G (1983) Bayesian “confidence intervals” for the cross-validated smoothing spline. J R Stat Soc Ser B 45:133–150.

    Google Scholar 

  • Wahba G (1985) A comparison of GCV and GML for choosing the smoothing parameter in the generalized spline smoothing problem. Ann Stat 13:1378–1402.

    Google Scholar 

  • Wahba G (1986) Partial and interaction spline models for the semiparametric estimation of functions of several variables. In: Computer science and statistics: proceedings of the 18th symposium on the interface. ASA, Washington, DC, pp 75–80.

    Google Scholar 

  • Wahba G (1990) Spline models for observational data. CBMS-NSF regional conference series in applied mathematics, vol 59. SIAM, Philadelphia.

    Google Scholar 

  • Wahba G, Wendelberger J (1980) Some new mathematical methods for variational objective analysis using splines and cross validation. Mon Weather Rev 108:1122–1145.

    Google Scholar 

  • Wahba G, Wang Y, Gu C, Klein R, Klein BEK (1995) Smoothing spline ANOVA for exponential families, with application to the Wisconsin epidemiological study of diabetic retinopathy. Ann Stat 23:1865–1895.

    Google Scholar 

  • Wang M-C (1989) A semiparametric model for randomly truncated data. J Am Stat Assoc 84:742–748.

    Google Scholar 

  • Wang Y (1997) GRKPACK: fitting smoothing spline ANOVA models for exponential families. Commun Stat Simul Comput 26:765–782.

    Google Scholar 

  • Wang Y (1998a) Mixed-effects smoothing spline ANOVA. J R Stat Soc Ser B 60:159–174.

    Google Scholar 

  • Wang Y (1998b) Smoothing spline models with correlated random errors. J Am Stat Assoc 93:341–348.

    Google Scholar 

  • Wang Y, Brown MB (1996) A flexible model for human circadian rhythms. Biometrics 52:588–596.

    Google Scholar 

  • Wang M-C, Jewell NP, Tsay W-Y (1986) Asymptotic properties of the product limit estimate under random truncation. Ann Stat 14:1597–1605.

    Google Scholar 

  • Weinberger HF (1974) Variational methods for eigenvalue approximation. CBMS-NSF regional conference series in applied mathematics, vol 15. SIAM, Philadelphia.

    Google Scholar 

  • Whittaker ET (1923) On a new method of graduation. Proc Edinb Math Soc 41:63–75.

    Google Scholar 

  • Whittaker J (1990) Graphical models in applied multivariate statistics. Wiley, Chichester.

    Google Scholar 

  • Williamson B (1899) An elementary treatise on the differential calculus. Longman, Green, London.

    Google Scholar 

  • Woodroofe M (1985) Estimating a distribution function with truncated data. Ann Stat 13:163–177.

    Google Scholar 

  • Xiang D, Wahba G (1996) A generalized approximate cross validation for smoothing splines with non-Gaussian data. Stat Sin 6:675–692.

    Google Scholar 

  • Zeger SL, Karim MR (1991) Generalized linear models with random effects: a Gibbs sampling approach. J Am Stat Assoc 86:79–86.

    Google Scholar 

  • Zhang T, Lin G (2009) Cluster detection based on spatial associations and iterated residuals in generalized linear mixed models. Biometrics 65:353–360.

    Google Scholar 

  • Zucker DM, Karr AF (1990) Nonparametric survival analysis with time-dependent covariate effects: a penalized partial likelihood approach. Ann Stat 18:329–353.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gu, C. (2013). Asymptotic Convergence. In: Smoothing Spline ANOVA Models. Springer Series in Statistics, vol 297. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5369-7_9

Download citation

Publish with us

Policies and ethics