Skip to main content

Introduction to Yeast and Fungal Prions

  • Chapter
  • First Online:
  • 1604 Accesses

Abstract

Prions are infectious proteins, not requiring an accompanying nucleic acid for the transmission to a new individual. In 1994, we found that the long-known cytoplasmic genes [URE3] and [PSI+] were actually prions of Ure2p and Sup35p, respectively. These, and a variety of yeast and fungal prions found since then are based on self-propagating amyloids, but one prion based on a protease that self-activates shows that not all infectious proteins need be amyloids. The importance of chaperones in prion propagation, the involvement of many other cellular systems, and development of anti-prion measures—some potentially active against mammalian prions, have enriched the prion field. The in-register parallel architecture of yeast prion amyloids can explain how a single protein can faithfully propagate any of several structurally different prion variants/strains. Discovery of an array of new prions, and interesting new variants of old prions continues to expand our understanding of this phenomenon.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aigle M, Lacroute F (1975) Genetical aspects of [URE3], a non-Mendelian, cytoplasmically inherited mutation in yeast. Mol Gen Genet 136:327–335

    Article  PubMed  CAS  Google Scholar 

  • Balguerie A, Dos Reis S, Ritter C, Chaignepain S, Coulary-Salin B, Forge V, Bathany K, Lascu I, Schmitter J-M, Riek R, Saupe S (2003) Domain organization and structure–function relationship of the HET-s prion protein of Podospora anserina. EMBO J 22:2071–2081

    Article  PubMed  CAS  Google Scholar 

  • Brachmann A, Baxa U, Wickner RB (2005) Prion generation in vitro: amyloid of Ure2p is infectious. EMBO J 24:3082–3092

    Article  PubMed  CAS  Google Scholar 

  • Bradley ME, Edskes HK, Hong JY, Wickner RB, Liebman SW (2002) Interactions among prions and prion “strains” in yeast. Proc Natl Acad Sci USA 99:16392–16399

    Article  PubMed  CAS  Google Scholar 

  • Bruce ME (1993) Scrapie strain variation and mutation. Br Med Bull 49:822–838

    PubMed  CAS  Google Scholar 

  • Chernoff YO, Ono B-I (1992) Dosage-dependent modifiers of PSI-dependent omnipotent suppression in yeast. In: Tuite MF, Brown AJP, McCarthy JEG (eds) Protein synthesis and targeting in yeast. Springer, Berlin, pp 101–107

    Google Scholar 

  • Chernoff YO, Derkach IL, Inge-Vechtomov SG (1993) Multicopy SUP35 gene induces de novo appearance of psi-like factors in the yeast Saccharomyces cerevisiae. Curr Genet 24:268–270

    Article  PubMed  CAS  Google Scholar 

  • Chernoff YO, Lindquist SL, Ono B-I, Inge-Vechtomov SG, Liebman SW (1995) Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [psi+]. Science 268:880–884

    Article  PubMed  CAS  Google Scholar 

  • Chernoff YO, Newnam GP, Kumar J, Allen K, Zink AD (1999) Evidence for a protein mutator in yeast: role of the Hsp70-related chaperone Ssb in formation, stability and toxicity of the [PSI+] prion. Mol Cell Biol 19:8103–8112

    PubMed  CAS  Google Scholar 

  • Coustou V, Deleu C, Saupe S, Begueret J (1997) The protein product of the het-s heterokaryon incompatibility gene of the fungus Podospora anserina behaves as a prion analog. Proc Natl Acad Sci USA 94:9773–9778

    Article  PubMed  CAS  Google Scholar 

  • Cox BS (1965) PSI, a cytoplasmic suppressor of super-suppressor in yeast. Heredity 20:505–521

    Article  Google Scholar 

  • Cox BS (1971) A recessive lethal super-suppressor mutation in yeast and other PSI phenomena. Heredity 26:211–232

    Article  PubMed  CAS  Google Scholar 

  • Cox BS (1993) Psi phenomena in yeast. In: Hall MN, Linder P (eds) The early days of yeast genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 219–239

    Google Scholar 

  • Cox BS, Tuite MF, McLaughlin CS (1988) The Psi factor of yeast: a problem in inheritance. Yeast 4:159–179

    Article  PubMed  CAS  Google Scholar 

  • Derkatch IL, Chernoff YO, Kushnirov VV, Inge-Vechtomov SG, Liebman SW (1996) Genesis and variability of [PSI] prion factors in Saccharomyces cerevisiae. Genetics 144:1375–1386

    PubMed  CAS  Google Scholar 

  • Derkatch IL, Bradley ME, Zhou P, Chernoff YO, Liebman SW (1997) Genetic and environmental factors affecting the de novo appearance of the [PSI+] prion in Saccharomyces cerevisiae. Genetics 147:507–519

    PubMed  CAS  Google Scholar 

  • Derkatch IL, Bradley ME, Hong JY, Liebman SW (2001) Prions affect the appearance of other prions: the story of [PIN]. Cell 106:171–182

    Article  PubMed  CAS  Google Scholar 

  • Doel SM, McCready SJ, Nierras CR, Cox BS (1994) The dominant PNM2 - mutation which eliminates the [PSI] factor of Saccharomyces cerevisiae is the result of a missense mutation in the SUP35 gene. Genetics 137:659–670

    PubMed  CAS  Google Scholar 

  • Drillien R, Aigle M, Lacroute F (1973) Yeast mutants pleiotropically impaired in the regulation of the two glutamate dehydrogenases. Biochem Biophys Res Commun 53:367–372

    Article  PubMed  CAS  Google Scholar 

  • Du Z, Park K-W, Yu H, Fan Q, Li L (2008) Newly identified prion linked to the chromatin-remodeling factor Swi1 in Saccharomyces cerevisiae. Nat Genet 40:460–465

    Article  PubMed  CAS  Google Scholar 

  • Edskes HK, McCann LM, Hebert AM, Wickner RB (2009) Prion variants and species barriers among Saccharomyces Ure2 proteins. Genetics 181:1159–1167

    Article  PubMed  CAS  Google Scholar 

  • Fingerman I, Nagaraj V, Norris D, Vershon AK (2003) Spf1 plays a key role in yeast ribosome biogenesis. Eukaryot Cell 2:1061–1068

    Article  PubMed  CAS  Google Scholar 

  • Glover JR, Lindquist S (1998) Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 94:73–82

    Article  PubMed  CAS  Google Scholar 

  • Glover JR, Kowal AS, Shirmer EC, Patino MM, Liu J-J, Lindquist S (1997) Self-seeded fibers formed by Sup35, the protein determinant of [PSI+], a heritable prion-like factor of S. cerevisiae. Cell 89:811–819

    Article  PubMed  CAS  Google Scholar 

  • Jones EW (1991) Three proteolytic systems in the yeast Saccharomyces cerevisiae. J Biol Chem 266:7963–7966

    PubMed  CAS  Google Scholar 

  • Jung G, Jones G, Wegrzyn RD, Masison DC (2000) A role for cytosolic Hsp70 in yeast [PSI+] prion propagation and [PSI+] as a cellular stress. Genetics 156:559–570

    PubMed  CAS  Google Scholar 

  • King CY (2001) Supporting the structural basis of prion strains: induction and identification of [PSI] variants. J Mol Biol 307:1247–1260

    Article  PubMed  CAS  Google Scholar 

  • King CY, Diaz-Avalos R (2004) Protein-only transmission of three yeast prion strains. Nature 428:319–323

    Article  PubMed  CAS  Google Scholar 

  • King C-Y, Tittmann P, Gross H, Gebert R, Aebi M, Wuthrich K (1997) Prion-inducing domain 2–114 of yeast Sup35 protein transforms in vitro into amyloid-like filaments. Proc Natl Acad Sci USA 94:6618–6622

    Article  PubMed  CAS  Google Scholar 

  • Kryndushkin DS, Alexandrov IM, Ter-Avanesyan MD, Kushnirov VV (2003) Yeast [PSI +] prion aggregates are formed by small Sup35 polymers fragmented by Hsp104. J Biol Chem 278:49636–49643

    Article  PubMed  CAS  Google Scholar 

  • Kryndushkin D, Shewmaker F, Wickner RB (2008) Curing of the [URE3] prion by Btn2p, a Batten disease-related protein. EMBO J 27:2725–2735

    Article  PubMed  CAS  Google Scholar 

  • Kushnirov VV, Kryndushkin D, Boguta M, Smirnov VN, Ter-Avanesyan MD (2000) Chaperones that cure yeast artificial [PSI +] and their prion-specific effects. Curr Biol 10:1443–1446

    Article  PubMed  CAS  Google Scholar 

  • Lacroute F (1971) Non-Mendelian mutation allowing ureidosuccinic acid uptake in yeast. J Bacteriol 106:519–522

    PubMed  CAS  Google Scholar 

  • Liebman SW, Stewart JW, Sherman F (1975) Serine substitutions caused by an ochre suppressor in yeast. J Mol Biol 94:595–610

    Article  PubMed  CAS  Google Scholar 

  • Liu B, Larsson L, Caballero A, Hao X, Oling D, Grantham J, Nystrom T (2010) The polarisome is required for segregation and retrograde transport of protein aggregates. Cell 140:257–267

    Article  PubMed  CAS  Google Scholar 

  • Lund PM, Cox BS (1981) Reversion analysis of [psi-] mutations in Saccharomyces cerevisiae. Genet Res 37:173–182

    Article  PubMed  CAS  Google Scholar 

  • Maddelein ML, Dos Reis S, Duvezin-Caubet S, Coulary-Salin B, Saupe SJ (2002) Amyloid aggregates of the HET-s prion protein are infectious. Proc Natl Acad Sci USA 99:7402–7407

    Article  PubMed  CAS  Google Scholar 

  • Masison DC, Wickner RB (1995) Prion-inducing domain of yeast Ure2p and protease resistance of Ure2p in prion-containing cells. Science 270:93–95

    Article  PubMed  CAS  Google Scholar 

  • Masison DC, Maddelein M-L, Wickner RB (1997) The prion model for [URE3] of yeast: spontaneous generation and requirements for propagation. Proc Natl Acad Sci USA 94:12503–12508

    Article  PubMed  CAS  Google Scholar 

  • McGlinchey R, Kryndushkin D, Wickner RB (2011) Suicidal [PSI+] is a lethal yeast prion. Proc Natl Acad Sci USA 108:5337–5341

    Article  PubMed  CAS  Google Scholar 

  • Moriyama H, Edskes HK, Wickner RB (2000) [URE3] prion propagation in Saccharomyces cerevisiae: requirement for chaperone Hsp104 and curing by overexpressed chaperone Ydj1p. Mol Cell Biol 20:8916–8922

    Article  PubMed  CAS  Google Scholar 

  • Ness F, Ferreira P, Cox BS, Tuite MF (2002) Guanidine hydrochloride inhibits the generation of prion “seeds” but not prion protein aggregation in yeast. Mol Cell Biol 22:5593–5605

    Article  PubMed  CAS  Google Scholar 

  • Osherovich LZ, Weissman JS (2001) Multiple Gln/Asn-rich prion domains confer susceptibility to induction of the yeast [PSI+] prion. Cell 106:183–194

    Article  PubMed  CAS  Google Scholar 

  • Patel BK, Liebman SW (2007) “Prion proof” for [PIN+]: infection with in vitro-made amyloid aggregates of Rnq1p-(132–405) induces [PIN+]. J Mol Biol 365:773–782

    Article  PubMed  CAS  Google Scholar 

  • Patel BK, Gavin-Smyth J, Liebman SW (2009) The yeast global transcriptional co-repressor protein Cyc8 can propagate as a prion. Nat Cell Biol 11:344–349

    Article  PubMed  CAS  Google Scholar 

  • Patino MM, Liu J-J, Glover JR, Lindquist S (1996) Support for the prion hypothesis for inheritance of a phenotypic trait in yeast. Science 273:622–626

    Article  PubMed  CAS  Google Scholar 

  • Paushkin SV, Kushnirov VV, Smirnov VN, Ter-Avanesyan MD (1996) Propagation of the yeast prion-like [psi +] determinant is mediated by oligomerization of the SUP35-encoded polypeptide chain release factor. EMBO J 15:3127–3134

    PubMed  CAS  Google Scholar 

  • Reidy M, Masison DC (2011) Modulation and elimination of yeast prions by protein chaperones and co-chaperones. Prion 5(4) 245–249

    Google Scholar 

  • Rizet G (1952) Les phenomenes de barrage chez Podospora anserina: analyse genetique des barrages entre les souches s et S. Rev Cytol Biol Veg 13:51–92

    Google Scholar 

  • Roberts BT, Wickner RB (2003) A class of prions that propagate via covalent auto-activation. Genes Dev 17:2083–2087

    Article  PubMed  CAS  Google Scholar 

  • Rogoza T, Goginashvili A, Rodionova S, Ivanov M, Viktorovskaya O, Rubel A, Volkov K, Mironova L (2010) Non-mendelian determinant [ISP+] in yeast is a nuclear-residing prion form of the global transcriptional regulator Sfp1. Proc Natl Acad Sci USA 107:10573–10577

    Article  PubMed  CAS  Google Scholar 

  • Saupe SJ (2000) Molecular genetics of heterokaryon incompatibility in filamentous ascomycetes. Microbiol Mol Biol Revs 64:489–502

    Article  CAS  Google Scholar 

  • Saupe SJ (2007) A short history of small s: a prion of the fungus Podospora anserina. Prion 1:110–115

    Article  PubMed  Google Scholar 

  • Schlumpberger M, Prusiner SB, Herskowitz I (2001) Induction of distinct [URE3] yeast prion strains. Mol Cell Biol 21:7035–7046

    Article  PubMed  CAS  Google Scholar 

  • Schwimmer C, Masison DC (2002) Antagonistic interactions between yeast [PSI+] and [URE3] prions and curing of [URE3] by Hsp70 protein chaperone Ssa1p but not by Ssa2p. Mol Cell Biol 22:3590–3598

    Article  PubMed  CAS  Google Scholar 

  • Sharma D, Masison DC (2008) Functionally redundant isoforms of a yeast Hsp70 chaperone subfamily have different antiprion effects. Genetics 179:1301–1311

    Article  PubMed  Google Scholar 

  • Sharma D, Masison DC (2009) Hsp70 structure, function, regulation and influence on yeast prions. Protein Pept Lett 16(6):571–581

    Article  PubMed  CAS  Google Scholar 

  • Sondheimer N, Lindquist S (2000) Rnq1: an epigenetic modifier of protein function in yeast. Mol Cell 5:163–172

    Article  PubMed  CAS  Google Scholar 

  • Sondheimer N, Lopez N, Craig EA, Lindquist S (2001) The role of Sis1 in the maintenance of the [RNQ+] prion. EMBO J 20:2435–2442

    Article  PubMed  CAS  Google Scholar 

  • Tanaka M, Chien P, Naber N, Cooke R, Weissman JS (2004) Conformational variations in an infectious protein determine prion strain differences. Nature 428:323–328

    Article  PubMed  CAS  Google Scholar 

  • Taylor KL, Cheng N, Williams RW, Steven AC, Wickner RB (1999) Prion domain initiation of amyloid formation in vitro from native Ure2p. Science 283:1339–1343

    Article  PubMed  CAS  Google Scholar 

  • TerAvanesyan A, Dagkesamanskaya AR, Kushnirov VV, Smirnov VN (1994) The SUP35 omnipotent suppressor gene is involved in the maintenance of the non-Mendelian determinant [psi+] in the yeast Saccharomyces cerevisiae. Genetics 137:671–676

    CAS  Google Scholar 

  • Vitrenko YA, Pavon ME, Stone SI, Liebman SW (2007) Propagation of the [PIN +] prion by fragments of Rnq1 fused to GFP. Curr Genet 51:309–319

    Article  PubMed  CAS  Google Scholar 

  • Volkov KV, Aksenova YA, Soom MJ, Sipov KV, Svitin AV, Kurischko C, Shkundina IS, Ter-Avanesyan MD, Inge-Vechtomov SG, Mironova LN (2002) Novel non-Mendelian determinant involved in the control of translation accuracy in Saccharomyces cerevisiae. Genetics 160:25–36

    PubMed  CAS  Google Scholar 

  • Wickner RB (1994) [URE3] as an altered URE2 protein: evidence for a prion analog in S. cerevisiae. Science 264:566–569

    Article  PubMed  CAS  Google Scholar 

  • Zubenko GS, Park FJ, Jones EW (1982) Genetic properties of mutations at the PEP4 locus in Saccharomyces cerevisiae. Genetics 102:679–690

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reed B. Wickner M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wickner, R.B. (2013). Introduction to Yeast and Fungal Prions. In: Zou, WQ., Gambetti, P. (eds) Prions and Diseases. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5305-5_15

Download citation

Publish with us

Policies and ethics