Skip to main content

Prion Strain Interference

  • Chapter
  • First Online:
  • 1600 Accesses

Abstract

Prions are transmissible agents that comprised of a misfolded protein PrPSc that is posttranslationally derived from the normal isoform PrPC. Prion strains are operationally defined by differences in the distribution and intensity of spongiform degeneration and distribution of PrPSc in the CNS. The mechanism by which prion strains are encoded is not known; however, current evidence suggests that the conformation of PrPSc encodes prion strain diversity. In natural prion disease, more than one prion strain can exist in an individual. Prion strains, when present in the same host, can interfere with each other, a process that may be important during prion adaptation following interspecies transmission. While the parameters that influence prion strain interference are beginning to be described, the mechanism responsible for strain interference is not known.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bartz JC, Bessen R, McKenzie D, Marsh R, Aiken JM (2000) Adaptation and selection of prion protein strain conformations following interspecies transmission of transmissible mink encephalopathy. J Virol 74:5542–5547

    Article  PubMed  CAS  Google Scholar 

  • Bartz JC, Aiken JM, Bessen RA (2004) Delay in onset of prion disease for the HY strain of transmissible mink encephalopathy as a result of prior peripheral inoculation with the replication-deficient DY strain. J Gen Virol 85:265–273

    Article  PubMed  CAS  Google Scholar 

  • Bartz JC, Dejoia C, Tucker T, Kincaid AE, Bessen RA (2005) Extraneural prion neuroinvasion without lymphoreticular system infection. J Virol 79:11858–11863

    Article  PubMed  CAS  Google Scholar 

  • Bartz JC, Kramer ML, Sheehan MH, Hutter JAL, Ayers JI, Bessen RA, Kincaid AE (2007) Prion interference is due to a reduction in strain-specific PrPSc levels. J Virol 81:689–697

    Article  PubMed  CAS  Google Scholar 

  • Basler K, Oesch B, Scott M, Westaway D, Walchli M, Groth D, McKinley M, Prusiner S, Weissmann C (1986) Scrapie and cellular PrP isoforms are encoded by the same chromosomal gene. Cell 46:417–428

    Article  PubMed  CAS  Google Scholar 

  • Bessen R, Marsh R (1992a) Biochemical and physical properties of the prion protein from two strains of the transmissible mink encephalopathy agent. J Virol 66:2096–2101

    PubMed  CAS  Google Scholar 

  • Bessen R, Marsh R (1992b) Identification of two biologically distinct strains of transmissible mink encephalopathy in hamsters. J Gen Virol 73:329–334

    Article  PubMed  Google Scholar 

  • Bessen RA, Marsh RF (1994) Distinct PrP properties suggest the molecular basis of strain variation in transmissible mink encephalopathy. J Virol 68:7859–7868

    PubMed  CAS  Google Scholar 

  • Bessen R, Kocisko D, Raymond G, Nandan S, Lansbury P, Caughey B (1995) Non-genetic propagation of strain-specific properties of scrapie prion protein. Nature 375:698–700

    Article  PubMed  CAS  Google Scholar 

  • Bruce M, Will R, Ironside J, McConnell I, Drummond D, Suttie A, McCardle L, Chree A, Hope J, Birkett C, Cousens S, Fraser H, Bostock C (1997) Transmissions to mice indicate that “new variant” CJD is caused by the BSE agent. Nature 389:498–501

    Article  PubMed  CAS  Google Scholar 

  • Castilla J, Saa P, Hetz C, Soto C (2005) In vitro generation of infectious scrapie prions. Cell 121:195–206

    Article  PubMed  CAS  Google Scholar 

  • Caughey B, Kocisko DA (2003) Prion diseases: a nucleic-acid accomplice? Nature 425:673–674

    Article  PubMed  CAS  Google Scholar 

  • Caughey B, Raymond G (1991) The scrapie-associated form of PrP is made from a cell surface precursor that is both protease- and phospholipase-sensitive. J Biol Chem 266:18217–18223

    PubMed  CAS  Google Scholar 

  • Caughey B, Raymond GJ, Bessen RA (1998) Strain-dependent differences in beta-sheet conformations of abnormal prion protein. J Biol Chem 273:32230–32235

    Article  PubMed  CAS  Google Scholar 

  • Colby D, Zhang Q, Wang S, Groth D, Legname G, Riesner D, Prusiner S (2007) Prion detection by an amyloid seeding assay. Proc Natl Acad Sci USA 104:20914–20919

    Article  PubMed  CAS  Google Scholar 

  • Collinge J, Clarke A (2007) A general model of prion strains and their pathogenicity. Science 318:930–936

    Article  PubMed  CAS  Google Scholar 

  • Deleault NR, Lucassen RW, Supattapone S (2003) RNA molecules stimulate prion protein conversion. Nature 425:717–720

    Article  PubMed  CAS  Google Scholar 

  • Deleault N, Harris B, Rees J, Supattapone S (2007) Formation of native prions from minimal components in vitro. Proc Natl Acad Sci USA 104:9741–9746

    Article  PubMed  CAS  Google Scholar 

  • Dickinson A (1976) Scrapie in sheep and goats. Front Biol 44:209–241

    PubMed  CAS  Google Scholar 

  • Dickinson A, Prusiner S (1979) The scrapie replication-site hypothesis and its implications for pathogenesis. In: Prusiner SB, Hadlow WJ et al (eds) Slow transmissible diseases of the nervous system, vol 2. Academic, New York, pp 13–31

    Google Scholar 

  • Dickinson A, Fraser H, Meikle V, Outram G (1972) Competition between different scrapie agents in mice. Nat New Biol 237:244–245

    PubMed  CAS  Google Scholar 

  • Dickinson AG, Fraser H, McConnell I, Outram GW, Sales DI, Taylor DM (1975) Extraneural competition between different scrapie agents leading to loss of infectivity. Nature 253:556

    Article  PubMed  CAS  Google Scholar 

  • Domingo E, Sabo D, Taniguchi T, Weissmann C (1978) Nucleotide sequence heterogeneity of an RNA phage population. Cell 13:735–744

    Article  PubMed  CAS  Google Scholar 

  • Fischer M, Rulicke T, Raeber A, Sailer A, Moser M, Oesch B, Brandner S, Aguzzi A, Weissmann C (1996) Prion protein (PrP) with amino-proximal deletions restoring susceptibility of PrP knockout mice to scrapie. EMBO J 15:1255–1264

    PubMed  CAS  Google Scholar 

  • Geoghegan JC, Valdes PA, Orem NR, Deleault NR, Williamson RA, Harris BT, Supattapone S (2007) Selective incorporation of polyanionic molecules into hamster prions. J Biol Chem 282:36341–36353

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Montalban N, Makarava N, Savtchenko R, Baskakov IV (2011) Relationship between conformational stability and amplification efficiency of prions. Biochemistry 50:6815–6823

    Article  Google Scholar 

  • Hirogari Y, Kubo M, Kimura KM, Haritani M, Yokoyama T (2003) Two different scrapie prions isolated in Japanese sheep flocks. Microbiol Immunol 47:871–876

    PubMed  CAS  Google Scholar 

  • Hunter N, Hope J, McConnell I, Dickinson A (1987) Linkage of the scrapie-associated fibril protein (PrP) gene and Sinc using congenic mice and restriction fragment length polymorphism analysis. J Gen Virol 68:2711–2716

    Article  PubMed  CAS  Google Scholar 

  • Kimberlin R, Walker C (1978) Evidence that the transmission of one source of scrapie agent to hamsters involves separation of agent strains from a mixture. J Gen Virol 39:487–496

    Article  PubMed  CAS  Google Scholar 

  • Kimberlin R, Walker C (1985) Competition between strains of scrapie depends on the blocking agent being infectious. Intervirology 23:74–81

    Article  PubMed  CAS  Google Scholar 

  • Kimberlin R, Cole S, Walker C (1987) Temporary and permanent modifications to a single strain of mouse scrapie on transmission to rats and hamsters. J Gen Virol 68:1875–1881

    Article  PubMed  Google Scholar 

  • Kimberlin R, Walker C, Fraser H (1989) The genomic identity of different strains of mouse scrapie is expressed in hamsters and preserved on reisolation in mice. J Gen Virol 70:2017–2025

    Article  PubMed  Google Scholar 

  • Kocisko D, Come J, Priola S, Chesebro B, Raymond G, Lansbury P, Caughey B (1994) Cell-free formation of protease-resistant prion protein. Nature 370:471–474

    Article  PubMed  CAS  Google Scholar 

  • Lasmezas C, Deslys J, Demaimay R, Adjou K, Lamoury F, Dormont D, Robain O, Ironside J, Hauw J (1996) BSE transmission to macaques. Nature 381:743–744

    Article  PubMed  CAS  Google Scholar 

  • Li J, Browning S, Mahal S, Oelschlegel A, Weissmann C (2009) Darwinian evolution of prions in cell culture. Science 327(5967):869–872

    Article  PubMed  Google Scholar 

  • Makarava N, Ostapchenko V, Savtchenko R, Baskakov I (2009) Conformational switching within individual amyloid fibrils. J Biol Chem 284:14386–14395

    Article  PubMed  CAS  Google Scholar 

  • Manuelidis L, Lu ZY (2003) Virus-like interference in the latency and prevention of Creutzfeldt–Jakob disease. Proc Natl Acad Sci USA 100:5360–5365

    Article  PubMed  Google Scholar 

  • Manuelidis L (1998) Vaccination with an attenuated Creutzfeldt–Jakob disease strain prevents expression of a virulent agent. Proc Natl Acad Sci USA 95:2520–2525

    Article  PubMed  CAS  Google Scholar 

  • Manuelidis L, Yun Lu Z (2000) Attenuated Creutzfeldt–Jakob disease agents can hide more virulent infections. Neurosci Lett 293:163–166

    Article  PubMed  CAS  Google Scholar 

  • Marsh RF, Burger D, Eckroade R, Zu Rhein GM, Hanson RP (1969) A preliminary report on the experimental host range of the transmissible mink encephalopathy agent. J Infect Dis 120:713–719

    Article  PubMed  CAS  Google Scholar 

  • Mays CE, Titlow W, Seward T, Telling GC, Ryou C (2009) Enhancement of protein misfolding cyclic amplification by using concentrated cellular prion protein source. Biochem Biophys Res Commun 388:306–310

    Article  PubMed  CAS  Google Scholar 

  • Meyer RK, McKinley MP, Bowman KA, Braunfeld MB, Barry RA, Prusiner SB (1986) Separation and properties of cellular and scrapie prion proteins. Proc Natl Acad Sci USA 83:2310–2314

    Article  PubMed  CAS  Google Scholar 

  • Nilsson KPR, Joshi-Barr S, Winson O, Sigurdson CJ (2010) Prion strain interactions are highly selective. J Neurosci 30:12094–12102

    Article  PubMed  CAS  Google Scholar 

  • Nishida N, Katamine S, Manuelidis L (2005) Reciprocal interference between specific CJD and scrapie agents in neural cell cultures. Science 310:493–496

    Article  PubMed  CAS  Google Scholar 

  • Nishina K, Jenks S, Supattapone S (2004) Ionic strength and transition metals control PrPSc protease resistance and conversion-inducing activity. J Biol Chem 279:40788–40794

    Article  PubMed  CAS  Google Scholar 

  • Oesch B, Westaway D, Walchli M, McKinley MP, Kent SB, Aebersold R, Barry RA, Tempst P, Teplow DB, Hood LE (1985) A cellular gene encodes scrapie PrP 27–30 protein. Cell 40:735–746

    Article  PubMed  CAS  Google Scholar 

  • Parchi P, Gambetti P (1995) Human prion diseases. Curr Opin Neurol 8:286–293

    Article  PubMed  CAS  Google Scholar 

  • Polymenidou M, Stoeck K, Glatzel M, Vey M, Bellon A, Aguzzi A (2005) Coexistence of multiple PrPSc types in individuals with Creutzfeldt–Jakob disease. Lancet Neurol 4:805–814

    Article  PubMed  CAS  Google Scholar 

  • Prusiner S (1991) Molecular biology of prion diseases. Science 252:1515–1522

    Article  PubMed  CAS  Google Scholar 

  • Schutt CR, Bartz JC (2008) Prion interference with multiple prion isolates. Prion 2:61–63

    Article  PubMed  Google Scholar 

  • Shikiya RA, Bartz JC (2011) In vitro generation of high titer prions. J Virol 85(24):13439–13442

    Article  PubMed  CAS  Google Scholar 

  • Shikiya RA, Ayers JI, Schutt CR, Kincaid AE, Bartz JC (2010) Coinfecting prion strains compete for a limiting cellular resource. J Virol 84:5706–5714

    Article  PubMed  CAS  Google Scholar 

  • Sigurdson C, Nilsson K, Hornemann S, Heikenwalder M, Manco G, Schwarz P, Ott D, Rulicke T, Liberski P, Julius C, Falsig J, Stitz L, Wuthrich K, Aguzzi A (2009) De novo generation of a transmissible spongiform encephalopathy by mouse transgenesis. Proc Natl Acad Sci USA 106:304–309

    Article  PubMed  CAS  Google Scholar 

  • Snow A, Kisilevsky R, Willmer J, Prusiner S, DeArmond S (1989) Sulfated glycosaminoglycans in amyloid plaques of prion diseases. Acta Neuropathol 77:337–342

    Article  PubMed  CAS  Google Scholar 

  • Taylor D, Dickinson A, Fraser H, Marsh R (1986) Evidence that transmissible mink encephalopathy agent is biologically inactive in mice. Neuropathol Appl Neurobiol 12:207–215

    Article  PubMed  CAS  Google Scholar 

  • Telling GC, Haga T, Torchia M, Tremblay P, DeArmond S, Prusiner S (1996a) Interactions between wild-type and mutant prion proteins modulate neurodegeneration in transgenic mice. Genes Dev 10:1736–1750

    Article  PubMed  CAS  Google Scholar 

  • Telling GC, Parchi P, DeArmond S, Cortelli P, Montagna P, Gabizon R, Mastrianni J, Lugaresi E, Gambetti P, Prusiner S (1996b) Evidence for the conformation of the pathologic isoform of the prion protein enciphering and propagating prion diversity. Science 274:2079–2082

    Article  PubMed  CAS  Google Scholar 

  • Wadsworth JD, Hill AF, Joiner S, Jackson GS, Clarke AR, Collinge J (1999) Strain-specific prion-protein conformation determined by metal ions. Nat Cell Biol 1:55–59

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Center for Research Resources (P20 RR0115635-6 and C06 RR17417-01) and the National Institute for Neurological Disorders and Stroke (R01 NS052609).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason C. Bartz Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schutt, C.R., Shikiya, R.A., Bartz, J.C. (2013). Prion Strain Interference. In: Zou, WQ., Gambetti, P. (eds) Prions and Diseases. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5305-5_14

Download citation

Publish with us

Policies and ethics