Skip to main content

Moduli of Abelian Varieties, Vinberg θ-Groups, and Free Resolutions

  • Chapter
  • First Online:
Commutative Algebra

Abstract

We present a systematic approach to studying the geometric aspects of Vinberg θ-representations. The main idea is to use the Borel-Weil construction for representations of reductive groups as sections of homogeneous bundles on homogeneous spaces, and then to study degeneracy loci of these vector bundles. Our main technical tool is to use free resolutions as an “enhanced” version of degeneracy loci formulas. We illustrate our approach on several examples and show how they are connected to moduli spaces of Abelian varieties. To make the article accessible to both algebraists and geometers, we also include background material on free resolutions and representation theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bala, P., Carter, R.: Classes of unipotent elements in simple algebraic groups. I, II. Proc. Camb. Phil. Soc. 79, 401–425 (1976); 80, 1–18 (1976)

    Google Scholar 

  2. Beauville, A.: Vector bundles on curves and generalized theta functions: recent results and open problems. Current topics in complex algebraic geometry (Berkeley, CA, 1992/93), pp. 17–33. Mathematical Sciences Research Institute Publications, vol. 28. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  3. Beauville, A.: The Coble hypersurfaces. C. R. Math. Acad. Sci. Paris 337(3), 189–194 (2003). http://arxiv.org/abs/math/0306097v1

  4. Beauville, A.: Vector bundles on curves and theta functions. Moduli Spaces and Arithmetic Geometry, pp. 145–156. Advanced Studies in Pure Mathematics, vol. 45. Mathematical Society, Japan, Tokyo (2006). http://arxiv.org/abs/math/0502179v2

  5. Berkesch, C., Erman, D., Kummini, M., Sam, S.V.: Tensor complexes: multilinear free resolutions constructed from higher tensors. J. Eur. Math. Soc. (JEMS). To appear. http://arxiv.org/abs/1101.4604v4

  6. Bhargava, M.: Higher composition laws. I–IV. Ann. Math. (2) 159(1) 217–250 (2004); 159(2), 865–886 (2004); 159(3), 1329–1360 (2004); 167(1), 53–94 (2008)

    Google Scholar 

  7. Birkenhake, C., Lange, H.: Complex Abelian Varieties, 2nd edn. Grundlehren der Mathematischen Wissenschaften, vol. 302. Springer, Berlin (2004)

    Google Scholar 

  8. Bombieri, E., Mumford, D.: Enriques’ classification of surfaces in char. p. II. Complex analysis and algebraic geometry, pp. 23–42. Iwanami Shoten, Tokyo (1977)

    Google Scholar 

  9. Brivio, S., Verra, A.: The theta divisor of SU C (2, 2d)s is very ample if C is not hyperelliptic. Duke Math. J. 82(3), 503–552 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bruns, W., Vetter, U.: Determinantal rings. In: Lecture Notes in Mathematics, vol. 1327. Springer, Berlin (1988)

    Google Scholar 

  11. Buchsbaum, D.A., Eisenbud, D.: Algebra structures for finite free resolutions, and some structure theorems for ideals of codimension 3. Amer. J. Math. 99(3), 447–485 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  12. Burkhardt, H.: Untersuchungen aus dem Gebiete der hyperelliptischen Modulfunctionen. Math. Ann. 41(3), 313–343 (1892)

    Article  MathSciNet  Google Scholar 

  13. Coble, A.: Point sets and allied Cremona groups. III. Trans. Amer. Math. Soc. 18, 331–372 (1917)

    MathSciNet  Google Scholar 

  14. Coble, A.: Algebraic geometry and theta functions. In: American Mathematical Society Colloquium Publications, vol. 10 (1929). American Mathematical Society, Providence (1982)

    Google Scholar 

  15. Cohen, A.M., Helminck, A.G.: Trilinear alternating forms on a vector space of dimension 7. Comm. Algebra 16(1), 1–25 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  16. Collingwood, D.H., McGovern, W.M.: Nilpotent orbits in semisimple Lie algebras. In: Van Nostrand Reinhold Mathematics Series. Van Nostrand Reinhold, New York (1993)

    Google Scholar 

  17. Desale, U.V., Ramanan, S.: Classification of vector bundles of rank 2 on hyperelliptic curves. Invent. Math. 38(2), 161–185 (1976/77)

    Google Scholar 

  18. Dolgachev, I., Ortland, D.: Point sets in projective spaces and theta functions. Astérisque 165 (1988)

    Google Scholar 

  19. Dolgachev, I., Lehavi, D.: On isogenous principally polarized abelian surfaces. Curves and Abelian Varieties. Contemporary in Mathematics, vol. 465, pp. 51–69 (2008). http://arxiv.org/abs/0710.1298v3

  20. Eisenbud, D.: Commutative algebra with a view toward algebraic geometry. In: Graduate Texts in Mathematics, vol. 150. Springer, New York (1995)

    Google Scholar 

  21. Èlašvili, A.G., Vinberg, È.B.: A classification of the three-vectors of 9-dimensional space. Trudy Sem. Vektor. Tenzor. Anal. 18, 197–233 (1978). Translated in Sel. Math. Sov. 7(1) (1988)

    Google Scholar 

  22. Fisher, T.: Invariants for the elliptic normal quintic, preprint (2002). Available at http://www.dpmms.cam.ac.uk/taf1000/papers/invenq.html

  23. Fisher, T.: Genus one curves defined by Pfaffians. preprint (2006). Available at http://www.dpmms.cam.ac.uk/taf1000/papers/genus1pf.html

  24. Galetto, F.: work in progress.

    Google Scholar 

  25. van Geemen, B., Izadi, E.: The tangent space to the moduli space of vector bundles on a curve and the singular locus of the theta divisor of the Jacobian. J. Algebraic Geom. 10(1), 133–177 (2001). http://arxiv.org/abs/math/9805037v1

    Google Scholar 

  26. Gelfand, I.M., Kapranov, M.M., Zelevinsky, A.V.: Discriminants, Resultants, and Multidimensional Determinants. Reprint of the 1994 edition, Modern Birkhäuser Classics. Birkhäuser, Boston (2008)

    Google Scholar 

  27. Grayson, D.R., Stillman, M.E.: Macaulay 2, a software system for research in algebraic geometry. Version 1.4 available at http://www.math.uiuc.edu/Macaulay2/

  28. Gross, M., Popescu, S.: The moduli space of (1, 11)-polarized abelian surfaces is unirational. Compositio Math. 126(1), 1–23 (2001). http://arxiv.org/abs/math/9902017v1

    Google Scholar 

  29. Gyoja, A.: Construction of invariants. Tsukuba J. Math. 14(2), 437–457 (1999)

    MathSciNet  Google Scholar 

  30. Ho, W.: Orbit parametrizations of curves. Ph.D. thesis, Princeton University, New Jersey (2009)

    Google Scholar 

  31. Holweck, F.: Singularities of duals of Grassmannians. J. Algebra 337, 369–384 (2011). http://arxiv.org/abs/1206.1038v1

    Google Scholar 

  32. Józefiak, T.: Ideals generated by minors of a symmetric matrix. Comment. Math. Helv. 53(4), 595–607 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kac, V.G.: On the question of describing the orbit space of linear algebraic groups. Uspehi Mat. Nauk 30(6(186)), 173–174 (1975)

    Google Scholar 

  34. Kac, V.G.: Some remarks on nilpotent orbits. J. Algebra 64(1), 190–213 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kawamata, Y.: Characterization of abelian varieties. Compositio Math. 43(2), 253–276 (1981)

    MathSciNet  MATH  Google Scholar 

  36. Khaled, A.: Projective normality and equations of Kummer varieties. J. Reine Angew. Math. 465, 197–217 (1995)

    MathSciNet  MATH  Google Scholar 

  37. Kimura, T.: Remark on some combinatorial construction of relative invariants. Tsukuba J. Math. 5(1), 101–115 (1981)

    MathSciNet  MATH  Google Scholar 

  38. Kraśkiewicz, W., Weyman, J.: Geometry of orbit closures for the representations associated to gradings of Lie algebras of types E 6, F 4 and G 2. preprint. http://arxiv.org/abs/1201.1102v2

  39. van Leeuwen, M.A.A., Cohen, A.M., Lisser, B.: LiE, a package for Lie group computations, version 2.2.2. http://www-math.univ-poitiers.fr/maavl/LiE/

  40. Looijenga, E.: Cohomology of 3 and 3 1. Mapping class groups and moduli spaces of Riemann surfaces (Göttingen, 1991/Seattle, WA, 1991), pp. 205–228. Contemporary Mathematics, vol. 150. American Mathematical Society, Providence, RI (1993)

    Google Scholar 

  41. Maschke, H.: Aufstellung des vollen Formensytems einer quaternären Gruppe von 51840 linearen substitutionen. Math. Ann. 33, 317–344 (1889)

    Article  MathSciNet  MATH  Google Scholar 

  42. Mumford, D.: On the equations defining abelian varieties. I. Invent. Math. 1, 287–354 (1966)

    Article  MathSciNet  Google Scholar 

  43. Minh, N.Q.: Vector bundles, dualities and classical geometry on a curve of genus two. Internat. J. Math. 18(5), 535–558 (2007). http://arxiv.org/abs/math/0702724v1

  44. Narasimhan, M.S., Ramanan, S.: Moduli of vector bundles on a compact Riemann surface. Ann. Math. (2) 89, 14–51 (1969)

    Google Scholar 

  45. Narasimhan, M.S., Ramanan, S.: 2θ-linear systems on abelian varieties. Vector bundles on algebraic varieties (Bombay, 1984), pp. 415–427. Tata Institute of Fundamental Research Studies in Mathematics, vol. 11. Tata Institute of Fundamental Research, Bombay (1987)

    Google Scholar 

  46. Ortega, A,: On the moduli space of rank 3 vector bundles on a genus 2 curve and the Coble cubic. J. Algebraic Geom. 14(2), 327–356 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  47. Ottaviani, G.: Spinor bundles on quadrics. Trans. Amer. Math. Soc. 307(1), 301–316 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  48. Oxbury, W., Pauly, C.: Heisenberg invariant quartics and \(\mathcal{S}\mathcal{U}_{C}(2)\) for a curve of genus four. Math. Proc. Cambridge Philos. Soc. 125(2), 295–319 (1999). http://arxiv.org/abs/alg-geom/9703026v1

  49. Pauly, C.: Self-duality of Coble’s quartic hypersurface and applications. Michigan Math. J. 50(3), 551–574 (2002). http://arxiv.org/abs/math/0109218v1

  50. Poonen, B.: Computational aspects of curves of genus at least 2. Algorithmic number theory (Talence, 1996), pp. 283–306. Lecture Notes in Computer Science, vol. 1122, Springer, Berlin (1996)

    Google Scholar 

  51. Pragacz, P.: Characteristic free resolution of n − 2-order Pfaffians of n ×n antisymmetric matrix. J. Algebra 78(2), 386–396 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  52. Ramanan, S.: Orthogonal and spin bundles over hyperelliptic curves. Proc. Indian Acad. Sci. Math. Sci. 90(2), 151–166 (1981)

    Article  MathSciNet  Google Scholar 

  53. Sam, S.V.: Schubert complexes and degeneracy loci. J. Algebra 337, 103–125 (2011). http://arxiv.org/abs/1006.5514v2

    Google Scholar 

  54. Shephard, G.C., Todd, J.A.: Finite unitary reflection groups. Canadian J. Math. 6, 274–304 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  55. Spaltenstein, N.: Classes unipotentes et sous-groupes de Borel. In: Lecture Notes in Mathematics, vol. 946. Springer, Berlin (1982)

    Google Scholar 

  56. Vinberg, È.B.: The Weyl group of a graded Lie algebra. Math. USSR-Izv. 10(3), 463–495 (1976)

    Article  MathSciNet  Google Scholar 

  57. Vinberg, È.B.: Classification of homogeneous nilpotent elements of a semisimple graded Lie algebra. Selecta Mathematica Sovietica 6(1), 15–35 (1987)

    MATH  Google Scholar 

  58. Weyman, J.: Cohomology of vector bundles and syzygies. In: Cambridge Tracts in Mathematics, vol. 149. Cambridge University Press, Cambridge (2003)

    Google Scholar 

Download references

Acknowledgements

We thank Manjul Bhargava, Igor Dolgachev, Wei Ho, Steven Kleiman, Bjorn Poonen, and Jack Thorne for helpful discussions and Damiano Testa for explaining the proof of Theorem 1. We also thank Igor Dolgachev for pointing out numerous references related to this work. Finally, we thank an anonymous referee for making some suggestions.

We also thank Federico Galetto and Witold Kraśkiewicz for assistance with some computer calculations. The software LiE [39] and Macaulay2 27] were helpful in our work.

Steven Sam was supported by an NDSEG fellowship while this work was done. Jerzy Weyman was partially supported by NSF grant DMS-0901185.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerzy Weyman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gruson, L., Sam, S.V., Weyman, J. (2013). Moduli of Abelian Varieties, Vinberg θ-Groups, and Free Resolutions. In: Peeva, I. (eds) Commutative Algebra. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5292-8_13

Download citation

Publish with us

Policies and ethics