Skip to main content

Differences in Concentric Cardiac Hypertrophy and Eccentric Hypertrophy

  • Chapter
  • First Online:
Book cover Cardiac Adaptations

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 4))

Abstract

Cardiac hypertrophy is an adaptive process which occurs as a result of increased stress endured by the heart and this cardiac remodeling serves as a reactive mechanism to compensate for volume overload or pressure overload. An increase in pressure, common in hypertension or resistance training, results in a concentric hypertrophic phenotype whereas an increase in volume, as seen with valvular defects or endurance training, results in an eccentric hypertrophic phenotype. Concentric hypertrophy is associated with increased left ventricular wall thickness whereas eccentric hypertrophy is characterized by dilatation of the left ventricular chamber; however, there occurs a general increase in the overall size of cardiomyocytes under both conditions. Although various hormonal systems are activated during the development of cardiac hypertrophy, differences in the type of ventricular wall stress and strain seem to determine the occurrence of eccentric or concentric remodeling in addition to changes in myocardial structure. There are variations between the eccentric and concentric hypertrophic phenotypes with respect to gene and protein expression, signaling transduction pathways, and local hormone release. Both types of cardiac hypertrophy are known to occur under physiological and pathological situations; the lack of inflammatory response and fibrosis in the heart differentiates physiological from pathological hypertrophy. It is suggested that concentric and eccentric hypertrophy are the result of differences in the effects of increased ventricular wall tension superimposed by the impact of hormones released locally in the heart in response to stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grossman W, Jones D, McLaurin LP (1975) Wall stress and patterns of hypertrophy in the human left ventricle. J Clin Invest 56:56–64

    Article  PubMed  CAS  Google Scholar 

  2. Scharf M, Brem MH, Wilhem M et al (2010) Atrial and ventricular function and structural adaptations of the heart in elite triathletes assessed with cardiac MR imaging. Radiology 257:71–79

    Article  PubMed  Google Scholar 

  3. Pluim BM, Lamb HJ, Kayser HW et al (1998) Functional and metabolic evaluation of the athlete’s heart by magnetic resonance imaging and dobutamine stress magnetic resonance spectroscopy. Circulation 97:666–672

    Article  PubMed  CAS  Google Scholar 

  4. Lalande S, Baldi JC (2007) Left ventricular mass in elite olympic weight lifters. Am J Cardiol 100:1177–1180

    Article  PubMed  Google Scholar 

  5. Madeira RB, Trabulo M, Alves F, Pereira JG (2008) Effects of chronic exercise training on left ventricular dimensions and function in young adults. Rev Port Cardiol 27:909–922

    PubMed  Google Scholar 

  6. Vinereanu D, Florescu N, Sculthorpe N et al (2002) Left ventricular long-axis diastolic function is augmented in the hearts of endurance-trained compared with strength-trained athletes. Clin Sci 103:249–257

    PubMed  Google Scholar 

  7. Baggish AL, Wang F, Weiner RB et al (2008) Training-specific changes in cardiac structure and function: a prospective and longitudinal assessment of competitive athletes. J Appl Physiol 104:1121–1128

    Article  PubMed  Google Scholar 

  8. Fagard RH (1997) Effect of training on left ventricular structure and functioning of the normotensive and hypertensive subject. Blood Press Monit 2:241–245

    PubMed  Google Scholar 

  9. MacDougall JD, Tuxen D, Sale DG et al (1985) Arterial blood pressure response to heavy resistance exercise. J Appl Physiol 58:785–790

    PubMed  CAS  Google Scholar 

  10. Uchino K, Ishigami T, Ohshige K et al (2009) Left ventricular geometry, risk factors, and outcomes of hospitalized patients with diastolic heart failure in Japan. J Cardiol 54:101–107

    Article  PubMed  Google Scholar 

  11. van Heerebeek L, Borbély A, Niessen HW et al (2006) Myocardial structure and function differ in systolic and diastolic heart failure. Circulation 113:1966–1973

    Article  PubMed  Google Scholar 

  12. Chakko S, Mayor M, Allison MD et al (1991) Abnormal left ventricular diastolic filling in eccentric left ventricular hypertrophy of obesity. Am J Cardiol 68:95–98

    Article  PubMed  CAS  Google Scholar 

  13. Nishimura RA, Housmans PR, Hatle LK, Tajik AJ (1989) Assessment of diastolic function of the heart: background and current applications of Doppler echocardiography. Part 1. physiologic and pathophysiologic features. Mayo Clin Proc 64:71–81

    PubMed  CAS  Google Scholar 

  14. Nishimura RA, Abel MD, Hatle LK, Tajik AJ (1989) Assessment of diastolic function of the heart: background and current applications of Doppler echocardiography. Part 2. Clinical Studies. Mayo Clin Proc 64:181–204

    PubMed  CAS  Google Scholar 

  15. Toprak A, Wang H, Chen W et al (2008) Relation of childhood risk factors to left ventricular hypertrophy (eccentric or concentric) in relatively young adulthood (from the bogalusa heart study). Am J Cardiol 101:1621–1625

    Article  PubMed  Google Scholar 

  16. Carroll JF, Braden DS, Cockrell K, Mizelle HL (1997) Obese hypertensive rabbits develop concentric and eccentric hypertrophy and diastolic filling abnormalities. Am J Hypertens 10:230–233

    Article  PubMed  CAS  Google Scholar 

  17. Schmieder R, Messerli FH (1987) Obesity hypertension. Med Clin N Am 71:991–1001

    PubMed  CAS  Google Scholar 

  18. Lemmens K, Segers VF, Demolder M et al (2007) Endogenous inhibitors of hypertrophy in concentric versus eccentric hypertrophy. Eur J Heart Fail 9:352–356

    Article  PubMed  CAS  Google Scholar 

  19. Kouzu H, Yuda S, Muranaka A et al (2011) Left ventricular hypertrophy causes different changes in longitudinal, radial, circumferential mechanics in patients with hypertension: a two-dimensional speckle tracking study. J Am Soc Echocardiogr 24:192–199

    Article  PubMed  Google Scholar 

  20. Rogers RK, Collins SP, Kontos MC et al (2008) Diagnosis and characterization of left ventricular hypertrophy by computerized acoustic cardiography, brain natriuretic peptide, and electrocardiography. J Electrocardiol 41:518–525

    Article  PubMed  Google Scholar 

  21. Sawada K, Kawamura K (1991) Architecture of myocardial cells in human cardiac ventricles with concentric and eccentric hypertrophy as demonstrated by quantitative scanning electron microscopy. Heart Vessels 6:129–142

    Article  PubMed  CAS  Google Scholar 

  22. Yamamoto S, James TN, Sawada K et al (1996) Generation of new intercellular junctions between cardiocytes. A possible mechanism compensating for mechanical overload in the hypertrophied human adult myocardium. Circ Res 78:362–370

    Article  PubMed  CAS  Google Scholar 

  23. Cohn JN, Ferrari R, Sharpe N (2000) Cardiac remodeling—concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. On behalf of an International forum of cardiac remodeling. J Am Coll Cardiol 35:569–582

    Article  PubMed  CAS  Google Scholar 

  24. Matsui Y, Eguchi K, Shibasaki S et al (2010) Morning hypertension assessed by home monitoring is a strong predictor of concentric left ventricular hypertrophy in patients with untreated hypertension. J Clin Hypertens (Greenwich) 12:776–783

    Article  Google Scholar 

  25. Koren MJ, Devereux BB, Casale PN et al (1991) Relation of left ventricular mass and geometry to morbidity and mortality in uncomplicated essential hypertension. Ann Intern Med 114:345–352

    PubMed  CAS  Google Scholar 

  26. Muiesan ML, Salvetti M, Monteduro C et al (2004) Left ventricular concentric geometry during treatment adversely affects cardiovascular prognosis in hypertensive patients. Hypertension 43:731–738

    Article  PubMed  CAS  Google Scholar 

  27. Harizi RC, Bianco JA, Alpert JS (1988) Diastolic function of the heart in clinical cardiology. Arch Intern Med 148:99–109

    Article  PubMed  CAS  Google Scholar 

  28. Aurigemma GP, Devereux RB, De Simone G et al (2002) Myocardial function and geometry in hypertensive subjects with low levels of afterload. Am Heart J 143:546–551

    Article  PubMed  Google Scholar 

  29. Linzbach AJ (1960) Heart failure from the point of view of quantitative anatomy. Am J Cardiol 5:370–382

    Article  PubMed  CAS  Google Scholar 

  30. Linzbach AJ (1976) Hypertrophy, hyperplasia and structural dilatation of the human heart. Adv Cardiol 18:1–14

    PubMed  CAS  Google Scholar 

  31. Suwa N (1982) Myocardial structure of hypertrophied hearts. Jpn Circ J 46:995–1000

    Article  PubMed  CAS  Google Scholar 

  32. Fujiwara H, Hoshino T, Yamana K et al (1983) Number and size of myocytes and amount of interstitial space in the ventricular septum and in the left ventricular free wall in hypertrophic cardiomyopathy. Am J Cardiol 52:818–823

    Article  PubMed  CAS  Google Scholar 

  33. Cantor EJF, Babick AP (2005) Vasanji, et al. A comparative serial echocardiagraphic analysis of cardiac structure and function in rats subjected to pressure or volume overload. J Mol Cell Cardiol 38:777–786

    Article  PubMed  CAS  Google Scholar 

  34. du Cailar G, Pasquié JL, Ribstein J, Mimran A (2000) Left ventricular adaptation to hypertension and plasma renin activity. J Hum Hypertens 14:181–188

    Article  PubMed  Google Scholar 

  35. Safar ME, Toto-Moukouo JJ, Boutheir JA et al (1987) Arterial dynamics, cardiac hypertrophy, and antihypertensive treatment. Circulation 75(Suppl I):I156–I161

    PubMed  CAS  Google Scholar 

  36. Roman MJ, Saba PS, Pini R et al (1992) Parallel cardiac and vascular adaptation in hypertension. Circulation 86:1909–1918

    Article  PubMed  CAS  Google Scholar 

  37. Vangheluwe P, Tjwa M, Van Den Bergh A et al (2006) A SERCA-2 pump with an increased Ca2+-affinity can lead to severe cardiac hypertrophy, stress intolerance and reduced life span. J Mol Cell Cardiol 41:308–317

    Article  PubMed  CAS  Google Scholar 

  38. Scuteri A, Castello L, Coluccia R et al (2011) Depression is associated with increased occurrence of left ventricle concentric geometry in older subjects independently of blood pressure levels. Nutr Metab Cardiovasc Dis 21:915–921

    Article  PubMed  CAS  Google Scholar 

  39. Kehat I, Davis J, Tiburcy M et al (2011) Extracellular signal-regulated kinases 1 and 2 regulate the balance between eccentric and concentric cardiac growth. Circ Res 108:176–183

    Article  PubMed  CAS  Google Scholar 

  40. Nicol RL, Frey N, Pearson G et al (2001) Activated MEK5 induces serial assembly of sarcomeres and eccentric cardiac hypertrophy. EMBO J 20:2757–2767

    Article  PubMed  CAS  Google Scholar 

  41. Grant C, Greene DG, Bunnell IL (1965) Left ventricular enlargement and hypertrophy. Am J Med 39:895–904

    Article  PubMed  CAS  Google Scholar 

  42. Weber KT, Janicki JS, Shroff SG et al (1988) Collagen remodeling of the pressure-overloaded, hypertrophied nonhuman primate myocardium. Circ Res 62:757–765

    Article  PubMed  CAS  Google Scholar 

  43. Michel JB, Salzmann JL (1986) Ossondo Nlom M, et al. Morphometric analysis of collagen network and plasma perfused capillary bed in the myocardium of rats during evolution of cardiac hypertrophy. Basic Res Cardiol 81:142–154

    Article  PubMed  CAS  Google Scholar 

  44. Swynghedauw B, Piguet V, Preteseille M (1972) Adenosine triphosphatase, adenylate kinase, and collagen content of heart myofibrils in experimental aortic insufficiency. Cardiovasc Res 40:364–372

    Google Scholar 

  45. Norton GR, Woodiwiss AJ, Gaasch WH et al (2002) Heart failure in pressure overload hypertrophy. The relative roles of ventricular remodeling and myocardial dysfunction. J Am Coll Cardiol 39:664–671

    Article  PubMed  Google Scholar 

  46. Bueno OF, Molkentin JD (2002) Involvement of extracellular signal-regulated kinases 1/2 in cardiac hypertrophy and cell death. Circ Res 91:776–781

    Article  PubMed  CAS  Google Scholar 

  47. Toischer K, Rokita AH, Unsöld B et al (2010) Differential cardiac remodeling in preload versus afterload. Circulation 122:993–1003

    Article  PubMed  Google Scholar 

  48. Franz M, Berndt A, Altendorf-Hofmann A et al (2009) Serum levels of large tenascin-C variants matrix metalloproteinase-9, and tissue inhibitors of matrix metalloproteinases in concentric versus eccentric left ventricular hypertrophy. Eur J Heart Fail 11:1057–1062

    Article  PubMed  CAS  Google Scholar 

  49. Serra AJ, Santos MH, Bocalini DS et al (2010) Exercise training inhibits inflammatory cytokines and more than prevents myocardial dysfunction in rats with sustained-beta adrenergic hyperactivity. J Physiol 588(Pt 13):2431–2442

    Article  PubMed  CAS  Google Scholar 

  50. Murad N, Tucci PJ (2000) Isoproterenol-induced hypertrophy may result in distinct left ventricular changes. Clin Exp Pharmacol Physiol 27:352–357

    Article  PubMed  CAS  Google Scholar 

  51. Serra AJ, Higuchi ML, Ihara SS et al (2008) Exercise training prevents beta-adrenergic hyperactivity-induced myocardial hypertrophy and lesions. Eur J Heart Fail 10:534–539

    Article  PubMed  CAS  Google Scholar 

  52. Honda H, Harada K, Komura I et al (1999) Heart-specific activation of LTK results in cardiac hypertrophy, cardiomyocyte degeneration, and gene reprogramming in transgenic mice. Oncogene 18:3821

    Article  PubMed  CAS  Google Scholar 

  53. Ueno H, Hirano N, Kozutsumi H et al (1995) An epidermal growth factor receptor-leukocyte tyrosine kinase chimeric receptor generates ligand-dependent growth signals through the Ras signaling pathway. J Biol Chem 270:20135–20142

    Article  PubMed  CAS  Google Scholar 

  54. Ueno H, Sasaki K, Kozutsumi H et al (1996) Growth and survival signals transmitted via two distinct NPXY motifs within leukocyte tyrosine kinase, an insulin receptor-related tyrosine kinase. J Biol Chem 271:27707–27714

    Article  PubMed  CAS  Google Scholar 

  55. Tiburcy M, Didié M, Boy O et al (2011) Terminal differentiation, advanced organotypic maturation, and modeling of hypertrophic growth in engineered heart tissue. Circ Res 109:1105–1114

    Article  PubMed  CAS  Google Scholar 

  56. Casey TM, Arthur PG, Bogoyevitch MA (2005) Proteomic analysis reveals different protein changes during endothelin-1 or leukemic inhibitor factor-induced hypertrophy of cardiomyocytes in vitro. Mol Cell Proteomics 4:651–661

    Article  PubMed  CAS  Google Scholar 

  57. Martin JL, Mestril R, Hilal-Dandan R et al (1997) Small heat shock proteins and protection against ischemic injury in cardiac myocytes. Circulation 96:4343–4348

    Article  PubMed  CAS  Google Scholar 

  58. Vikstrom KL, Bohlmeyer T, Factor SM, Leinward LA (1998) Hypertrophy, pathology, and molecular markers of cardiac pathogenesis. Circ Res 82:773–778

    Article  PubMed  CAS  Google Scholar 

  59. Kiriazis H, Wang K, Xu Q et al (2008) Knockout of beta(1)-and beta(2)-adrenoceptors attenuates pressure overload-induced cardiac hypertrophy and fibrosis. Br J Pharmacol 153:684–692

    Article  PubMed  CAS  Google Scholar 

  60. Zhang J (2002) Myocardial energetics in cardiac hypertrophy. Clin Exp Pharmacol Physiol 29:351–359

    Article  PubMed  Google Scholar 

  61. Lamb HJ, Beyerbacht HP, van der Laarse A et al (1999) Diastolic dysfunction in hypertensive heart disease is associated with altered myocardial metabolism. Circulation 99:2261–2267

    Article  PubMed  CAS  Google Scholar 

  62. Neubauer S, Horn M, Cramer M et al (1997) The myocardial phosphocreatine/ATP ratio is a predictor of mortality in patients with dilated cardiomyopathy. Circulation 96:2190–2196

    Article  PubMed  CAS  Google Scholar 

  63. Bouchard-Thomassin AA, Lachance D, Drolet MC et al (2011) A high-fructose diet worsens eccentric left ventricular hypertrophy in experimental volume overload. Am J Physiol Heart Circ Physiol 1:H125–H134

    Article  CAS  Google Scholar 

  64. Juric D, Wojciechowski P, Das DK, Netticadan T (2007) Prevention of concentric hypertrophy and diastolic impairment in aortic-banded rats treated with resveratrol. Am J Physiol Heart Circ Physiol 292:H2138–H2143

    Article  PubMed  CAS  Google Scholar 

  65. Wojciechowski P, Juric D, Louis XL et al (2010) Resveratrol arrests and regresses the development of pressure overload-but not volume overload-induced cardiac hypertrophy in rats. J Nutr 140:962–968

    Article  PubMed  CAS  Google Scholar 

  66. Sethi R, Saini HK, Wang W et al (2006) Differential changes in beta-adrenoceptor signal transduction in left and right ventricles of infarcted rats. Can J Physiol Pharmacol 84:747–754

    Article  PubMed  CAS  Google Scholar 

  67. Rupp H, Elimban V, Dhalla NS (1988) Sucrose feeding prevents changes in myosin isoenzymes and sarcoplasmic reticulum Ca2+-pump ATPase in pressure-overloaded rat heart. Biochem Biophys Res Commun 156:917–923

    Article  PubMed  CAS  Google Scholar 

  68. Gealekman O, Abassi Z, Rubinstein I et al (2002) Role of myocardial inducible nitric oxide synthase in contractile dysfunction and beta-adrenergic hyporesponsiveness in rats with experimental volume-overload heart failure. Circulation 105:236–243

    Article  PubMed  CAS  Google Scholar 

  69. Medeiros DM, Beard JL (1998) Dietary iron deficiency results in cardiac eccentric hypertrophy in rats. Proc Soc Exp Biol Med 218:370–375

    PubMed  CAS  Google Scholar 

  70. Drazner MH (2005) The transition from hypertrophy to failure: how certain are we? Circulation 112:936–938

    Article  PubMed  Google Scholar 

  71. Hoshijima M, Chien KR (2002) Mixed signals in heart failure: cancer rules. J Clin Invest 109:849–855

    PubMed  CAS  Google Scholar 

  72. Pan J, Fukuda K, Saito M et al (1999) Mechanical stretch activates the JAK/STAT pathway in rat cardiomyocytes. Circ Res 84:1127–1136

    Article  PubMed  CAS  Google Scholar 

  73. Wang Y, De Keulenaer GW, Lee RT (2002) Vitamin D(3)-up-regulated protein-1 is a stress-responsive gene that regulates cardiomyocyte viability through interaction with thioredoxin. J Biol Chem 277:26496–26500

    Article  PubMed  CAS  Google Scholar 

  74. De Keulenaer GW, Wang Y, Feng Y et al (2002) Identification of IEX-1 as a biochemically controlled nuclear factor-kappaB target gene that inhibits cardiomyocyte hypertrophy. Circ Res 90:690–696

    Article  PubMed  Google Scholar 

  75. Li XM, Ma YT, Yang YN et al (2009) Downregulation of survival signaling pathways and increased apoptosis in the transition of pressure overload-induced cardiac hypertrophy to heart failure. Clin Exp Pharmacol Physiol 36:1054–1061

    Article  PubMed  CAS  Google Scholar 

  76. Soubrier F, Alhenc-Gelas F, Hubert C et al (1988) Two putative active centers in human angiotensin I-converting enzyme revealed by molecular cloning. Proc Natl Acad Sci USA 85:9386–9390

    Article  PubMed  CAS  Google Scholar 

  77. Rigat B, Hubert C, Alhenc-Gelas F et al (1990) An insertion/deletion polymorphism in the angiotensin I converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest 86:1343–1346

    Article  PubMed  CAS  Google Scholar 

  78. Harrap SB, Davidson HR, Connor JM et al (1993) The angiotensin I converting enzyme gene and predisposition to high blood pressure. Hypertension 21:455–460

    Article  PubMed  CAS  Google Scholar 

  79. Perticone F, Maio R, Cosco C et al (1999) Hypertensive left ventricular remodeling and ACE-gene polymorphism. Cardiovasc Res 43:192–199

    Article  PubMed  CAS  Google Scholar 

  80. Miyazaki H, Oka N, Koga A et al (2006) Comparison of gene expression profiling in pressure and volume overload-induced myocardial hypertrophies in rats. Hypertens Res 29:1029–1045

    Article  PubMed  CAS  Google Scholar 

  81. Feil S, Hofmann F, Feil R (2004) SM22alpha modulates vascular smooth muscle cell phenotype during atherogenesis. Circ Res 94:863–865

    Article  PubMed  CAS  Google Scholar 

  82. Morgan KG, Gangopadhyay SS (2001) Invited review: cross-bridge regulation by thin filament-associated proteins. J Appl Physiol 91:953–962

    PubMed  CAS  Google Scholar 

  83. Sugden MC, Holness MJ (2003) Recent advances in mechanisms regulating glucose oxidation at the level of the pyruvate dehydrogenase complex by PDKs. Am J Physiol Endocrinol Metab 284:E855–E862

    PubMed  CAS  Google Scholar 

  84. Chapman D, Weber KT, Eghbali M (1990) Regulation of fibrillar collagen types I and III and basement membrane type IV collagen gene expression in pressure overloaded rat myocardium. Circ Res 67:787–794

    Article  PubMed  CAS  Google Scholar 

  85. Namba T, Tsutsui H, Tagawa H et al (1997) Regulation of fibrillar collagen gene expression and protein accumulation in volume-overloaded cardiac hypertrophy. Circulation 95:2448–2454

    Article  PubMed  CAS  Google Scholar 

  86. Nagatomo Y, Carabello BA, Coker ML et al (2000) Differential effects of pressure or volume overload on myocardial MMP levels and inhibitory control. Am J Physiol Heart Circ Physiol 278:H151–H161

    PubMed  CAS  Google Scholar 

  87. Imamura T, McDermott PJ, Kent RL et al (1994) Acute changes in myosin heavy chain synthesis rate in pressure versus volume overload. Circ Res 75:418–425

    Article  PubMed  CAS  Google Scholar 

  88. Yoshihara F, Nishikimi T, Horio T et al (2000) Ventricular adrenomedullin concentration is a sensitive biochemical marker for volume and pressure overload in rats. Am J Physiol Heart Circ Physiol 278:H633–H642

    PubMed  CAS  Google Scholar 

  89. Calderone A, Takahashi N, Izzo NJ Jr et al (1995) Pressure- and volume-induced left ventricular hypertrophies are associated with distinct myocyte phenotypes and differential induction of peptide growth factor mRNAs. Circulation 92:2385–2390

    Article  PubMed  CAS  Google Scholar 

  90. Modesti PA, Vanni S, Bertolozzi I et al (2000) Early sequence of cardiac adaptations and growth factor formation in pressure- and volume-overload hypertrophy. Am J Physiol Heart Circ Physiol 279:H976–H985

    PubMed  CAS  Google Scholar 

  91. Tsutsui H, Tagawa H, Kent RL et al (1994) Role of microtubules in contractile dysfunction of hypertrophied cardiocytes. Circulation 90:533–555

    Article  PubMed  CAS  Google Scholar 

  92. Dhalla NS, Xu YJ, Sheu SS et al (1997) Phosphatidic acid: a potential signal transducer for cardiac hypertrophy. J Mol Cell Cardiol 29:2865–2871

    Article  PubMed  CAS  Google Scholar 

  93. Dhalla NS, Heyliger CE, Beamish RE, Innes IR (1987) Pathophysiological aspects of myocardial hypertrophy. Can J Cardiol 3:183–196

    PubMed  CAS  Google Scholar 

  94. Xu YJ, Yau L, Yu LP et al (1996) Stimulation of protein synthesis by phosphatidic acid in rat cardiomyocytes. Biochem Pharmacol 52:1735–1740

    Article  PubMed  CAS  Google Scholar 

  95. Ganguly PK, Lee SL, Beamish RE, Dhalla NS (1989) Altered sympathetic system and adrenoceptors during the development of cardiac hypertrophy. Am Heart J 118:520–525

    Article  PubMed  CAS  Google Scholar 

  96. Baker KM, Chermin MI, Wixson SK, Aceto JF (1990) Renin-angiotensin system involvement in pressure-overload cardiac hypertrophy in rats. Am J Physiol Heart Circ Physiol 259:H324–H332

    CAS  Google Scholar 

  97. Sethi R, Saini HK, Guo X et al (2007) Dependence of changes in beta-adrenoceptor signal transduction on type and stage of cardiac hypertrophy. J Appl Physiol 102:978–984

    Article  PubMed  CAS  Google Scholar 

  98. Karliner JS, Barnes P, Brown M, Dollery C (1980) Chronic heart failure in the guinea pig increases cardiac alpha1 and beta-adrenoceptors. Eur J Pharmacol 67:115–118

    Article  PubMed  CAS  Google Scholar 

  99. Dhalla NS, Golfman L, Liu X et al (1999) Subcellular remodeling and heart dysfunction in cardiac hypertrophy due to pressure overload. Ann NY Acad Sci 874:100–110

    Article  PubMed  CAS  Google Scholar 

  100. Dhalla NS, Alto LE, Heyliger CE et al (1984) Sarcoplasmic reticular Ca2+-pump adaptation in cardiac hypertrophy due to pressure overload in pigs. Eur Heart J 5(Suppl F):323–328

    PubMed  CAS  Google Scholar 

  101. Elimban V, Dhalla KS, Panagia V et al (1987) A biphasic change in contractile proteins during the development of cardiac hypertrophy in pigs. Basic Res Cardiol 82:1–8

    Article  PubMed  CAS  Google Scholar 

  102. Yoneda T, Kihara Y, Ohkusa T et al (2001) Calcium handling and sarcoplasmic-reticular protein functions during heart-failure transition in ventricular myocardium from rats with hypertension. Life Sci 70:143–157

    Article  PubMed  CAS  Google Scholar 

  103. Liu X, Shao Q, Dhalla NS (1995) Myosin light chain phosphorylation in cardiac hypertrophy and failure due to myocardial infarction. J Mol Cell Cardiol 27:2613–2621

    Article  PubMed  CAS  Google Scholar 

  104. Dixon IMC, Lee SL, Dhalla NS (1990) Nitrendipine binding in congestive heart failure due to myocardial infarction. Circ Res 66:782–788

    Article  PubMed  CAS  Google Scholar 

  105. Afzal N, Dhalla NS (1992) Differential changes in left and right ventricular SR Ca2+-transport in congestive heart failure. Am J Physiol Heart Circ Physiol 262:H868–H874

    CAS  Google Scholar 

  106. Liu X, Sentex E, Golfman L et al (1999) Modification of cardiac subcellular remodeling due to pressure overload by captopril and losartan. Clin Exper Hypertens 21(1&2):145–156

    Article  CAS  Google Scholar 

  107. Takeo S, Elmoselhi AB, Goel R et al (2000) Attenuation of changes in sarcoplasmic reticular gene expression in cardiac hypertrophy by propanolol and verapamil. Mol Cell Biochem 213:111–118

    Article  PubMed  CAS  Google Scholar 

  108. Chidsey CA, Koiser GA, Sonnenblick EH et al (1964) Cardiac norepinephrine stores in experimental heart failure in the dog. J Clin Invest 43:3286–3293

    Article  Google Scholar 

  109. Pool PE, Covell JW, Levitt M et al (1967) Reduction of cardiac tyrosine hydroxylase activity in experimental congestive heart failure. Circ Res 20:349–353

    Article  PubMed  CAS  Google Scholar 

  110. Dent MR, Tappia PS, Dhalla NS (2010) Gender differences in cardiac dysfunction and remodeling due to volume overload. J Card Fail 16:439–449 (Erratum: J Card Fail 2011; 17: 79)

    Article  PubMed  Google Scholar 

  111. Dent MR, Tappia PS, Dhalla NS (2011) Gender differences in beta-adrenoceptor system in cardiac hypertrophy due to arteriovenous fistula. J Cell Physiol 226:181–186

    Article  PubMed  CAS  Google Scholar 

  112. Dent MR, Tappia PS, Dhalla NS (2010) Gender differences in apoptotic signaling in heart failure due to volume overload. Apoptosis 15:499–510 (Erratum: Apoptosis 2011; 16:757-758)

    Article  PubMed  Google Scholar 

  113. Colan SD (1997) Mechanics of left ventricular systolic and diastolic function in physiologic hypertrophy of the athlete’s heart. Cardiol Clin 15:355–372

    Article  PubMed  CAS  Google Scholar 

  114. Fagard RH (2003) Athlete’s heart. Heart 89:1455–1461

    Article  PubMed  Google Scholar 

  115. Lentini AC, McKelvie RS, McCartney N et al (1993) Left ventricular response in healthy young men during heavy-intensity weight-lifting exercise. J Appl Physiol 75:2703–2710

    PubMed  CAS  Google Scholar 

  116. Babaee Bigi MA, Aslani A (2007) Aortic root size and prevalence of aortic regurgitation in elite strength trained athletes. Am J Cardiol 100:528–530

    Article  PubMed  Google Scholar 

  117. Neilan TG, Yoerger DM, Douglas PS et al (2006) Persistant and reversible cardiac dysfunction among amateur marathon runners. Eur Heart J 27:1079–1084

    Article  PubMed  Google Scholar 

  118. Spence AL, Naylor LH, Carter HH et al (2011) A prospective randomised longitudinal MRI study of left ventricular adaptation to endurance and resistance exercise training in humans. J Physiol 589(Pt 22):5443–5452

    PubMed  CAS  Google Scholar 

  119. Lauschke J, Maisch B (2008) Athlete’s heart or hypertrophic cardiomyopathy? Clin Res Cardiol 98:80–88

    Article  PubMed  CAS  Google Scholar 

  120. Mihl C, Dassen WR, Kuipers H (2008) Cardiac remodeling: concentric versus eccentric hypertrophy in strength and endurance athletes. Neth Heart J 16:129–133

    Article  PubMed  CAS  Google Scholar 

  121. Limongelli G, Verrengia M, Pacileo G et al (2006) Left ventricular hypertrophy in Caucasian master athletes: differences with hypertension and hypertrophic cardiomyopathy. Int J Cardiol 111:113–119

    Article  PubMed  Google Scholar 

  122. Cardim N, Oliveira AG, Longo S et al (2003) Doppler tissue imaging: regional myocardial function in hypertrophic cardiomyopathy and in athlete’s heart. J Am Soc Echocardiogr 16:223–232

    Article  PubMed  Google Scholar 

  123. Pelliccia A, Culasso F, Di Paolo FM, Maron BJ (1999) Physiologic left ventricular cavity dilatation in elite athletes. Ann Intern Med 130:23–31

    PubMed  CAS  Google Scholar 

  124. Pelliccia A, Maron BJ, Spataro A et al (1991) The upper limit of physiologic cardiac hypertrophy in highly trained elite athletes. N Engl J Med 324:295–301

    Article  PubMed  CAS  Google Scholar 

  125. Sharma S, Maron BJ, Whyte G et al (2002) Physiologic limits of left ventricular hypertrophy in elite junior athletes: relevance to differential diagnosis of athlete’s heart and hypertrophic cardiomyopathy. J Am Coll Cardiol 40:1431–1436

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naranjan S. Dhalla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Müller, A.L., Dhalla, N.S. (2013). Differences in Concentric Cardiac Hypertrophy and Eccentric Hypertrophy . In: Ostadal, B., Dhalla, N. (eds) Cardiac Adaptations. Advances in Biochemistry in Health and Disease, vol 4. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5203-4_8

Download citation

Publish with us

Policies and ethics