Skip to main content

Monte-Carlo Simulations of Light Scattering in Turbid Media

  • Reference work entry
  • First Online:

Abstract

The physics behind the simulation program developed by our group are explained. The various options for light transport and scattering, reflection and refraction at boundaries, light sources and detection, and output are described. In addition, some special features, like laser Doppler velocimetry, photoacoustics, and frequency-modulation scattering, are described.

The author Frits F. M. de Mul was previously at the Department of Applied Physics, University of Twente, AE Enschede, The Netherlands (now retired).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. K.M. Case, P.F. Zweifel, Linear Transport Theory (Addison-Wesley, Reading, 1967)

    Google Scholar 

  2. A. Ishimaru, Diffusion of light in turbid material. Appl. Opt. 28, 2210–2215 (1989)

    Article  ADS  Google Scholar 

  3. A. Ishimaru, Wave Propagation and Scattering in Random Media, vols. 1, 2. (Academic, San Diego, 1978)

    Google Scholar 

  4. R.A.J. Groenhuis, H.A. Ferwerda, J.J. ten Bosch, Scattering and absorption of turbid materials determined from reflection measurements, 1: Theory. Appl. Opt. 22, 2456–2462 (1983); 2: Measuring method and calibration. Appl. Opt. 22, 2463–2467 (1983)

    Google Scholar 

  5. R.F. Bonner, R. Nossal, S. Havlin, G.H. Weiss, Model for photon migration in turbid biological media. J. Opt. Soc. Am. A 4, 423–432 (1987)

    Article  ADS  Google Scholar 

  6. M.S. Patterson, B. Chance, B.C. Wilson, Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties. Appl. Opt. 28, 2331–2336 (1989)

    Article  ADS  Google Scholar 

  7. T.J. Farrell, M.S. Patterson, B.C. Wilson, A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo. Med. Phys. 19, 879–888 (1992)

    Article  Google Scholar 

  8. R.C. Haskell, L.O. Svaasand, T.T. Tsay, T.C. Feng, M.S. McAdams, B.J. Tromberg, Boundary conditions for the diffusion equation in radiative transfer. J. Opt. Soc. Am. A 11, 2727–2741 (1994)

    Article  ADS  Google Scholar 

  9. A. Kienle, M.S. Patterson, N. Dögnitz, R. Bays, G. Wagnières, H. van den Bergh, Noninvasive determination of the optical properties of two-layered media. Appl. Opt. 37, 779–791 (1998)

    Article  ADS  Google Scholar 

  10. A. Kienle, T. Glanzmann, In vivo determination of the optical properties of muscle with time-resolved reflecntance using a layered model. Phys. Med. Biol. 44, 2689–2702 (1999)

    Article  Google Scholar 

  11. F.F.M. de Mul, M.H. Koelink, M.L. Kok, P.J. Harmsma, J. Greve, R. Graaff, J.G. Aarnoudse, Laser Doppler velocimetry and Monte Carlo simulations on models for blood perfusion in tissue. Appl. Opt. 34, 6595–6611 (1995)

    Article  ADS  Google Scholar 

  12. For further information: see the general site of the University Twente, click to “Faculties” or “Departments”, then to “Applied Physics”, “Research”, “Biophysics”, “Biomedical Optics”, “courses”

    Google Scholar 

  13. L. Wang, S.L. Jacques, Hybrid model of Monte-Carlo simulation and diffusion theory for light reflectance by turbid media. J. Opt. Soc. Am. A 10, 1746–1752 (1993)

    Article  ADS  Google Scholar 

  14. V.G. Kolinko, F.F.M. de Mul, J. Greve, A.V. Priezzhev, On refraction in Monte-Carlo simulations of light transport through biological tissues. Med. Biol. Eng. Comp. 35, 287–288 (1997)

    Article  Google Scholar 

  15. H.C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1957, 1981)

    Google Scholar 

  16. G. Yao, L.V. Wang, Propagation of polarized light in turbid media: simulated animation sequences. Opt. Express 7, 198–203 (2000)

    Article  ADS  Google Scholar 

  17. M.J. Rakovic, G.W. Kattawar, Theoretical analysis of polarization patterns from incoherent backscattering of light. Appl. Opt. 37, 3333–3338 (1998)

    Article  ADS  Google Scholar 

  18. M.J. Rakovic, G.W. Kattawar, M. Mehrubeoglu, B.D. Cameron, L.V. Wang, S. Rastegar, G.L. Coté, Light backscattering polarization patterns from turbid media: theory and experiment. Appl. Opt. 38, 3399–3408 (1999)

    Article  ADS  Google Scholar 

  19. W.S. Bickel, W.M. Bailey, Stokes vectors, Mueller matrices and polarized light. Am. J. Phys. 53, 468–478 (1985)

    Article  ADS  Google Scholar 

  20. S. Bartel, A.H. Hielscher, Monte-Carlo simulations of diffuse backscattering Mueller matrix for highly scattering media. Appl. Opt. 39, 1580–1588 (2000)

    Article  ADS  Google Scholar 

  21. X. Wang, G. Yao, L.V. Wang, Monte Carlo model and single-scattering approximation of the propagation of polarized light in turbid media containing glucose. Appl. Opt. 41, 792–801 (2002)

    Article  ADS  Google Scholar 

  22. M. Born, E. Wolf, Principles of Optics, 6th edn. (Cambridge University Press, Cambridge, 1980–1993)

    Google Scholar 

  23. J.R. Zijp, J.J. ten Bosch, Pascal program to perform Mie calculations. Opt. Eng. 32, 1691–1695 (1993)

    Article  ADS  Google Scholar 

  24. L.G. Henyey, J.L. Greenstein, Diffuse radiation in the galaxy. Astrophys. J. 93, 70–83 (1941)

    Article  ADS  Google Scholar 

  25. C.G.A. Hoelen, F.F.M. de Mul, R. Pongers, A. Dekker, Three-dimensional photoacoustic imaging of blood vessels in tissue. Opt. Lett. 23, 648–650 (1998)

    Article  ADS  Google Scholar 

  26. C.G.A. Hoelen, F.F.M. de Mul, A new theoretical approach to photoacoustic signal generation. J. Acoust. Soc. Am. 106, 695–706 (1999)

    Article  ADS  Google Scholar 

  27. C.G.A. Hoelen, A. Dekker, F.F.M. de Mul, Detection of photoacoustic transients originating from microstructures in optically diffuse media such as biological tissue. IEEE – UFFC 48, 37–47 (2001)

    Article  Google Scholar 

  28. C.G.A. Hoelen, F.F.M. de Mul, Image reconstruction for photoacoustic scanning of tissue structures. Appl. Opt. 39, 5872–5883 (2000)

    Article  ADS  Google Scholar 

  29. R. Graaff, K. Rinzema, Practical improvements on photon diffusion theory: application to isotropic scattering. Phys. Med. Biol. 46, 3043–3050 (2001)

    Article  Google Scholar 

  30. M. Keijser, W.M. Star, P.R. Storchi, Optical diffusion in layered media. Appl. Opt. 27, 1820–1824 (1988)

    Article  ADS  Google Scholar 

  31. L.V. Wang, S.L. Jacques, Source of error in calculation of optical diffuse reflectance from turbid media using diffusion theory. Comput. Meth. Progr. Biomed. 61, 163–170 (2000)

    Article  Google Scholar 

  32. L.V. Wang, H.-I. Wu, Biomedical Optics: Principles and Imaging (Wiley-Interscience, Hoboken, 2007)

    Google Scholar 

  33. ftp://ftp.wiley.com/public/sci_tech_med/biomedical_optics

  34. I.V. Meglinski, Modeling the reflectance spectra of the optical radiation for random inhomogeneous multi-layered highly scattering and absorbing media by the Monte Carlo technique. Quant. Electr. 31(12), 1101–1107 (2001)

    Article  ADS  Google Scholar 

  35. D.Y. Churmakov, I.V. Meglinski, D.A. Greenhalgh, Influence of refractive index matching on the photon diffuse reflectance. Phys. Med. Biol. 47(23), 4271–4285 (2002)

    Article  Google Scholar 

  36. A. Doronin, I. Meglinski, Online object oriented Monte Carlo computational tool for the needs of biomedical optics. Biomed. Opt. Express 2(9), 2461–2469 (2011)

    Article  Google Scholar 

  37. Meglinski I. SPIE News, website http://biophotonics.otago.ac.nz (2012)

  38. M. McShane, S. Rastegar, M. Pishko, G. Cote, Monte Carlo modeling of implantable fluorescent analyte sensors. IEEE Trans. Biomed. Eng. 47(5), 624–632 (2000)

    Article  Google Scholar 

  39. K. Vishwanath, B. Pogue, M. Mycek, Quantitative fluorescence spectroscopy in turbid media: comparison of theoretical, experimental and computational methods. Phys. Med. Biol. 47(18), 3387–3405 (2002)

    Article  Google Scholar 

  40. D.Y. Churmakov, I.V. Meglinski, S.A. Piletsky, D.A. Greenhalgh, Analysis of skin tissues spatial fluorescence distribution by the Monte Carlo simulation. J. Phys. D: Appl. Phys. 36(14), 1722–1728 (2003)

    Article  ADS  Google Scholar 

  41. I.V. Meglinski, S.J. Matcher, Quantitative assessment of skin layers absorption and skin reflectance spectra simulation in visible and near infrared spectral region. Physiol. Meas. 23(4), 741–753 (2002)

    Article  Google Scholar 

  42. I.V. Meglinski, D.Y. Churmakov, A.N. Bashkatov, E.A. Genina, V.V. Tuchin, The enhancement of confocal images of tissues at bulk optical immersion. Laser Phys. 13(1), 65–69 (2003)

    Google Scholar 

  43. V.L. Kuzmin, I.V. Meglinski, Coherent multiple scattering effects and Monte Carlo method. JETP Lett. 79(3), 109–112 (2004)

    Article  ADS  Google Scholar 

  44. I.V. Meglinski, V.L. Kuzmin, D.Y. Churmakov, D.A. Greenhalgh, Monte Carlo simulation of coherent effects in multiple scattering. Proc. Royal Soc. A 461(2053), 43–53 (2005)

    Article  ADS  Google Scholar 

  45. E. Berrocal, I.V. Meglinski, D.A. Greenhalgh, M.A. Linne, Image transfer through the complex scattering turbid media. Laser Phys. Lett. 3(9), 464–468 (2006)

    Article  ADS  Google Scholar 

  46. I.V. Meglinski, M. Kirillin, V.L. Kuzmin, R. Myllylä, Simulation of polarization-sensitive optical coherence tomography images by a Monte Carlo method. Opt. Lett. 33(14), 1581–1583 (2008)

    Article  ADS  Google Scholar 

  47. M. Kirillin, I. Meglinski, E. Sergeeva, V.L. Kuzmin, R. Myllylä, Simulation of optical coherence tomography images by Monte Carlo modeling based on polarization vector approach. Opt. Express 18(21), 21714–21724 (2010)

    Article  ADS  Google Scholar 

  48. E. Alerstam, T. Svensson, S. Andersson-Engels, Parallel computing with graphics processing units for high-speed Monte Carlo simulation of photon migration. J. Biomed. Opt. 13, 060504 (2008)

    Article  ADS  Google Scholar 

  49. D.A. Boas, J.P. Culver, J.J. Stott, A.K. Dunn, Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head. Opt. Express 10(3), 159–170 (2002)

    Article  ADS  Google Scholar 

  50. J. Ramella-Roman, S. Prahl, S. Jacques, Three Monte Carlo programs of polarized light transport into scattering media: part I. Opt. Express 13(12), 4420–4438 (2005)

    Article  ADS  Google Scholar 

  51. P. Valisuo, I. Kaartinen, V. Tuchin, J. Alander, New closed-form approximation for skin chromophore mapping. J. Biomed. Opt. 16(4), 046012-1–046012-10 (2011)

    Article  ADS  Google Scholar 

  52. T. Binzoni, T.S. Leung, D. Van De Ville, The photo-electric current in laser-Doppler flowmetry by Monte Carlo simulations. Phys. Med. Biol. 54(14), N303–N318 (2009)

    Article  ADS  Google Scholar 

  53. A.N. Yaroslavsky, I.V. Yaroslavsky, T. Goldbach, H.-J. Schwarzmaier, The optical properties of blood in the near infrared spectral range. Proc. SPIE. 2678, 314–324 (1996)

    Article  ADS  Google Scholar 

  54. A.N. Yaroslavsky, I.V. Yaroslavsky, T. Goldbach, H.-J. Schwarzmaier, Different phase function approximations to determine optical properties of blood: a comparison. Proc. SPIE. 2982, 324–330 (1997)

    Article  ADS  Google Scholar 

  55. A.N. Yaroslavsky, I.V. Yaroslavsky, T. Goldbach, H.-J. Schwarzmaier, Influence of the scattering phase function approximation on the optical properties of blood determined from the integrating sphere measurements. J. Biomed. Opt. 4(1), 47–53 (1999)

    Article  ADS  Google Scholar 

  56. A. Roggan, M. Friebel, K. Dorschel, A. Hahn, G. Müller, Optical properties of circulating human blood in the wavelength range 400–2500 nm. J. Biomed. Opt. 4(1), 36–46 (1999)

    Article  ADS  Google Scholar 

  57. D. Chicea, I. Turcu, Testing a new multiple light scattering phase function using RWMCS. J. Optoelectr. Adv. Mater. 8(4), 1516–1519 (2006)

    Google Scholar 

  58. D. Chicea, I. Turcu, RWMCS – An alternative random walk Monte Carlo code to simulate light scattering in biological suspensions. Optik 118, 232–236 (2007)

    Article  ADS  Google Scholar 

  59. E. Berrocal, D. Sedarsky, M. Paciaroni, I.V. Meglinski, M.A. Linne, Laser light scattering in turbid media part I: experimental and simulated results for the spatial intensity distribution. Opt. Express 15, 10649–10665 (2007)

    Article  ADS  Google Scholar 

  60. E. Berrocal, D. Sedarsky, M. Paciaroni, I.V. Meglinski, M.A. Linne, Laser light scattering in turbid media part II: spatial and temporal analysis of individual scattering orders via Monte Carlo simulation. Opt. Express 17, 13792–13809 (2009)

    Article  ADS  Google Scholar 

  61. D. Sakotam, S. Takatani, Photon-cell interactive Monte Carlo model based on the geometrical optics theory for photon migration in blood by incorporating both extra and intra-cellular pathways. J. Biomed. Opt. 15(6), 065001, 1–14 (2010)

    Google Scholar 

  62. A.N. Bashkatov, E.A. Genina, V.V. Tuchin, Optical properties of skin, subcutaneous, and muscle tissues: a review. J. Innov. Opt. Health Sci. 4(1), 9–38 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frits F. M. de Mul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

de Mul, F.F.M. (2013). Monte-Carlo Simulations of Light Scattering in Turbid Media. In: Tuchin, V. (eds) Handbook of Coherent-Domain Optical Methods. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5176-1_15

Download citation

Publish with us

Policies and ethics