Skip to main content
  • 2300 Accesses

Abstract

Radiotherapy (RT) for breast cancer patients, the appropriate indications and use of modern methods has been confirmed positive contributions that disease, disease-specific and overall survival in meta-analysis [1, 2]. The aim of RT is homogeneous distribution of the dose required for tumor control (±5%) at the target volume while protecting healthy tissue [3]. RT techniques can be difficult and vary depending on the anatomic structure of the region to be irradiated (breast, chest wall, or regional lymphatic) that target volumes could be in different depths and geometries [3–5]. Over time, with technologic advances and increasing experience in clinical practice, different simulation and treatment techniques have been developed [6–17]. Beginning in the 1950s, use of megavoltage treatment equipment in modern RT processes has reached a new point, with the use of magnetic resonance imaging, positron emission tomography, and computed tomography (CT) for treatment planning and in determining the target volumes. In a realistic virtual environment, a large number of techniques can be reviewed and an optimal technique can be formed using modern planning computers. Intensity modulated radiotherapy is becoming increasingly popular for critical organ volumes and dose reductions better than for target volume can be achieved [18, 19].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Whelan TJ, Julian J, Wright J, et al. Does locoregional radiotherapy improve survival in breast cancer? A meta-analysis. J Clin Oncol. 2000;18:1220–9.

    PubMed  CAS  Google Scholar 

  2. Clarke M, Collins R, Darby S, et al. Early Breast Cancer Trialists’ Collaborative Group. Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomized trials. Lancet. 2005;366:2087–106.

    PubMed  CAS  Google Scholar 

  3. İnternational Commission on Radiation and Measurements. Prescribing, Recording and Reporting Photon Beam Therapy, (Supplement to ICRU Report 50). Bethesda, ICRU Report 62; 1999. p. 1–55.

    Google Scholar 

  4. Perez CA-Brady’s. Principles and practice of radiation oncology. 5th ed. Perez CA Chapter 53.

    Google Scholar 

  5. Gunderson-Teper. Clinical radiothion oncology. 3rd ed. In: Recht A, Buchholoz TA (eds) Chapter 61–62. Breast cancer. 2012. p. 1321–1338, 1338–1353.

    Google Scholar 

  6. Svensson GK, Bjarngard B, Iarsen RD, Levene MB. A modified three field technique for breast treatment. Int J Radiat Oncol Biol Phys. 1980;6(6):689–94.

    Article  PubMed  CAS  Google Scholar 

  7. Siddon RL, Tonnesen GL, Svensson GK. Three-field technique for breast treatment using a rotatable half-beam block. Int J Radiat Oncol Biol Phys. 1981;7:1473–7.

    Article  PubMed  CAS  Google Scholar 

  8. Mitine C, Dutreix A, Schueren E. Tangential breast irradiation: influence of technique of set-up on transfer errors and reproducibility. Radiother Oncol. 1991;22:308–10.

    Article  PubMed  CAS  Google Scholar 

  9. Marchal M. Three- field isosentric breast irradiation using asymetric jaws and a tilt board. Radiother Oncol. 1993;28(3):228–32.

    Article  Google Scholar 

  10. Klein E, Taylor M, Lorenz M, et al. A mono isocentric technique for breast and regional nodal therapy using dual asymmetric jaws. Int J Radiat Oncol Biol Phys. 1994;28(3):753–60.

    Article  PubMed  CAS  Google Scholar 

  11. Kelly A, Wang X-Y, Chu JC, Hartsel WF. Dose to contralateral breast: a comparison of four primary breast irradiation techniques. Int J Radiat Oncol Biol Phys. 1996;34(3):727–32.

    Article  PubMed  CAS  Google Scholar 

  12. Carruthers LJ, Redpath AT, Kunkler IH, et al. The use of compensators to optimise the three dimensional dose distribution in radiotherapy of the intact breast. Radiother Oncol. 1999;50:291–300.

    Article  PubMed  CAS  Google Scholar 

  13. Hurkmans CW, Saarnak AE, Pieters BR, et al. An improved technique for breast cancer irradiation including the locoregional lymph nodes. Int J Radiat Oncol Biol Phys. 2000;47(5):1421–9.

    Article  PubMed  CAS  Google Scholar 

  14. Cormack M, Calcott J, Gillies J, MacLellan J. Tangential breast irradiation—optimising the technique. J Radiother Pract. 2001;2:117–23.

    Article  Google Scholar 

  15. Pierce LJ, Butler JB, Martel MK, et al. Postmastectomy radiotherapy of the chest wall: dosimetric comparison of common techniques. Int J Radiat Oncol Biol Phys. 2002;52:1220–30.

    Article  PubMed  Google Scholar 

  16. Lu XQ, Sullivan S, Eggleston T, et al. A precise geometric matching using multileaf collimator–equipped linear accelerators. Int J Radiat Oncol Biol Phys. 2003;55(5):1420–31.

    Article  PubMed  Google Scholar 

  17. Truong PT, Berthelet E, Patenaude V, et al. Setup variations in locoregional radiotherapy for breast cancer: an electronic portal imaging study. Br J Radiol. 2005;78:742–5.

    Article  PubMed  CAS  Google Scholar 

  18. Donovan E, Bleakley N, Denholm E, et al. Randomised trial of standard 2D radiotherapy (RT) versus intensity modulated radiotherapy (IMRT) in patients prescribed breast radiotherapy. Radiother Oncol. 2007;82:254–64.

    Article  PubMed  Google Scholar 

  19. Peulen H, Hanbeukers B, Boersma L, et al. Forward intensity-modulated radiotherapy planning in breast cancer to improve dose homogenıty: feasibility of class solutions. Int J Radiat Oncol Biol Phys. 2012;82(1):394–400.

    Article  PubMed  Google Scholar 

  20. Hurkmans CW, Borger JH, Bos LJ, et al. Cardiac and lung complication probabilities after breast cancer irradiation. Radiother Oncol. 2000;55:145–51.

    Article  PubMed  CAS  Google Scholar 

  21. Giordano G, Kuo Y, Freeman J, et al. Risk of cardiac death after adjuvant radiotherapy for breast cancer. J Natl Cancer Inst. 2005;97:419–24.

    Article  PubMed  Google Scholar 

  22. Çetintaş SK, Özkan L, Kurt M, et al. Factors influencing cosmetic results after breast conserving management [Turkish experience]. Breast. 2002;11(1):72–80.

    Article  PubMed  Google Scholar 

  23. Veldeman L, Gersem W, Speleers B, et al. Alternated prone and supine whole-breast ırradiation using IMRT: setup precision, respiratory movement and treatment time. Int J Radiat Oncol Biol Phys. 2011:1–10. Article in press. doi:10.1016/j.ijrobp.

  24. İrdesel J, Özkan L, Kurt, et al. The role of rehabilitation in the prevention of shoulder limitation and lymphedema after axillary dissection and radiation therapy. 10th European Congress of Physical Medicine and Rehabilitation, Abstract Book, Rehabilitation, Roma; 1997. p. 257.

    Google Scholar 

  25. Thilmann C, Adamietz IA, Saran F, et al. The use of a standardized positioning support cushion during daily routine of breast irradiation. Int J Radiat Oncol Biol Phys. 1998;41:459–63.

    Article  PubMed  CAS  Google Scholar 

  26. Nalder CA, Bidmead AM, Mubata CD, et al. Influence of a vac-fix immobilization device on the accuracy of patient positioning during routine breast radiotherapy. Br J Radiol. 2001;74:249–54.

    PubMed  CAS  Google Scholar 

  27. Varga Z, Hideghéty K, Mezo T, et al. Individual positioning: a comparative study of adjuvant breast radiotherapy in the prone versus supine position. Int J Radiat Oncol Biol Phys. 2009;75(1):94–100.

    Article  PubMed  Google Scholar 

  28. Griem K, Fetherston P, Kuznetsova M, et al. Three-dimensional photon dosimetry: a comparison of treatment of the intact breast in the supine and prone position. Int J Radiat Oncol Biol Phys. 2003;57(3):891–9.

    Article  PubMed  Google Scholar 

  29. Algan O, Fowble B, McNeeley S, et al. Use of the prone position in radiation treatment for women with early stage breast cancer. Int J Radiat Oncol Biol Phys. 1998;40(5):1137–40.

    Article  PubMed  CAS  Google Scholar 

  30. Campana F, Kırova Y, Rosenwald JC, et al. Breast radiotherapy in the lateral decubitus position: a technique to prevent lung and heart irradiation. Int J Radiat Oncol Biol Phys. 2005;61(5):1348–54.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sibel Kahraman Cetintas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cetintas, S.K., Ozkan, L., Gozcu, S., Altay, A. (2013). Simulation and Patient Fixation Methods. In: Haydaroglu, A., Ozyigit, G. (eds) Principles and Practice of Modern Radiotherapy Techniques in Breast Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5116-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5116-7_15

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5115-0

  • Online ISBN: 978-1-4614-5116-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics