Skip to main content

Quantifying Argonaute Proteins In and Out of GW/P-Bodies: Implications in microRNA Activities

  • Chapter
  • First Online:
Book cover Ten Years of Progress in GW/P Body Research

Part of the book series: Advances in Experimental Medicine and Biology ((volume 768))

Abstract

MicroRNAs (miRNAs) are a class of ∼22nt non-coding RNAs that regulate the translational potential and stability of mRNAs. Though constituting only 1–4% of human genes, miRNAs are predicted to regulate more than 60% of all mRNAs. The action of miRNAs is mediated through their associations with Argonaute proteins and mRNA targets. Previous studies indicated that though the majority of Argonaute proteins is diffusely distributed in the cytoplasm, a small fraction is consistently observed to be concentrated in a cytoplasmic compartment called GW/P-bodies. In this chapter, we will provide a quantitative and dynamic view of the subcellular localization of miRNA function, followed by a discussion on the possible roles of PBs in miRNA silencing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aizer A, Brody Y, Ler LW, Sonenberg N, Singer RH, Shav-Tal Y (2008) The dynamics of mammalian P body transport, assembly, and disassembly in vivo. Mol Biol Cell 19:4154–4166

    Article  PubMed  CAS  Google Scholar 

  • Andersen JS, Lam YW, Leung AK, Ong SE, Lyon CE, Lamond AI, Mann M (2005) Nucleolar proteome dynamics. Nature 433:77–83

    Article  PubMed  CAS  Google Scholar 

  • Anderson P, Kedersha N (2006) RNA granules. J Cell Biol 172:803–808

    Article  PubMed  CAS  Google Scholar 

  • Anderson P, Kedersha N (2008) Stress granules: the Tao of RNA triage. Trends Biochem Sci 33:141–150

    Article  PubMed  CAS  Google Scholar 

  • Andrei MA, Ingelfinger D, Heintzmann R, Achsel T, Rivera-Pomar R, Luhrmann R (2005) A role for eIF4E and eIF4E-transporter in targeting mRNPs to mammalian processing bodies. RNA 11:717–727

    Article  PubMed  CAS  Google Scholar 

  • Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  PubMed  CAS  Google Scholar 

  • Behm-Ansmant I, Rehwinkel J, Doerks T, Stark A, Bork P, Izaurralde E (2006) mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev 20:1885–1898

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharyya SN, Habermacher R, Martine U, Closs EI, Filipowicz W (2006) Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell 125:1111–1124

    Article  PubMed  CAS  Google Scholar 

  • Brengues M, Teixeira D, Parker R (2005) Movement of eukaryotic mRNAs between polysomes and cytoplasmic processing bodies. Science 310:486–489

    Article  PubMed  CAS  Google Scholar 

  • Chu CY, Rana TM (2006) Translation repression in human cells by MicroRNA-induced gene silencing requires RCK/p54. PLoS Biol 4:e210

    Article  PubMed  Google Scholar 

  • Cougot N, Babajko S, Seraphin B (2004) Cytoplasmic foci are sites of mRNA decay in human cells. J Cell Biol 165:31–40

    Article  PubMed  CAS  Google Scholar 

  • Cougot N, Bhattacharyya SN, Tapia-Arancibia L, Bordonne R, Filipowicz W, Bertrand E, Rage F (2008) Dendrites of mammalian neurons contain specialized P-body-like structures that respond to neuronal activation. J Neurosci 28:13793–13804

    Article  PubMed  CAS  Google Scholar 

  • Ding L, Spencer A, Morita K, Han M (2005) The developmental timing regulator AIN-1 interacts with miRISCs and may target the argonaute protein ALG-1 to cytoplasmic P bodies in C. elegans. Mol Cell 19:437–447

    Article  PubMed  CAS  Google Scholar 

  • Doench JG, Petersen CP, Sharp PA (2003) siRNAs can function as miRNAs. Genes Dev 17:438–442

    Article  PubMed  CAS  Google Scholar 

  • Eulalio A, Behm-Ansmant I, Schweizer D, Izaurralde E (2007) P-body formation is a consequence, not the cause, of RNA-mediated gene silencing. Mol Cell Biol 27:3970–3981

    Article  PubMed  CAS  Google Scholar 

  • Eulalio A, Tritschler F, Izaurralde E (2009) The GW182 protein family in animal cells: new insights into domains required for miRNA-mediated gene silencing. RNA 15:1433–1442

    Article  PubMed  CAS  Google Scholar 

  • Fabian MR, Sonenberg N, Filipowicz W (2010) Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 79:351–379

    Article  PubMed  CAS  Google Scholar 

  • Femino AM, Fay FS, Fogarty K, Singer RH (1998) Visualization of single RNA transcripts in situ. Science 280:585–590

    Article  PubMed  CAS  Google Scholar 

  • Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19:92–105

    Article  PubMed  CAS  Google Scholar 

  • Fusco D, Accornero N, Lavoie B, Shenoy SM, Blanchard JM, Singer RH, Bertrand E (2003) Single mRNA molecules demonstrate probabilistic movement in living mammalian cells. Curr Biol 13:161–167

    Article  PubMed  CAS  Google Scholar 

  • Gibbings DJ, Ciaudo C, Erhardt M, Voinnet O (2009) Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nat Cell Biol 11:1143–1149

    Article  PubMed  CAS  Google Scholar 

  • Gorlach M, Burd CG, Dreyfuss G (1994) The mRNA poly(A)-binding protein: localization, abundance, and RNA-binding specificity. Exp Cell Res 211:400–407

    Article  PubMed  CAS  Google Scholar 

  • Hock J, Meister G (2008) The Argonaute protein family. Genome Biol 9:210

    Article  PubMed  Google Scholar 

  • Hock J, Weinmann L, Ender C, Rudel S, Kremmer E, Raabe M, Urlaub H, Meister G (2007) Proteomic and functional analysis of Argonaute-containing mRNA-protein complexes in human cells. EMBO Rep 8:1052–1060

    Article  PubMed  Google Scholar 

  • Hutvagner G, Zamore PD (2002) A microRNA in a multiple-turnover RNAi enzyme complex. Science 297:2056–2060

    Article  PubMed  CAS  Google Scholar 

  • Jackson RJ, Standart N (2007) How do microRNAs regulate gene expression? Sci STKE 2007:re1

    Article  PubMed  Google Scholar 

  • Jagannath A, Wood MJ (2009) Localization of double-stranded small interfering RNA to cytoplasmic processing bodies is Ago2 dependent and results in up-regulation of GW182 and Argonaute-2. Mol Biol Cell 20:521–529

    Article  PubMed  CAS  Google Scholar 

  • Jakymiw A, Lian S, Eystathioy T, Li S, Satoh M, Hamel JC, Fritzler MJ, Chan EK (2005) Disruption of GW bodies impairs mammalian RNA interference. Nat Cell Biol 7:1267–1274

    Article  PubMed  Google Scholar 

  • James V, Zhang Y, Foxler DE, de Moor CH, Kong YW, Webb TM, Self TJ, Feng Y, Lagos D, Chu CY, Rana TM, Morley SJ, Longmore GD, Bushell M, Sharp TV (2010) LIM-domain proteins, LIMD1, Ajuba, and WTIP are required for microRNA-mediated gene silencing. Proc Natl Acad Sci U S A 107:12499–12504

    Article  PubMed  CAS  Google Scholar 

  • Johnston M, Geoffroy MC, Sobala A, Hay R, Hutvagner G (2010) HSP90 protein stabilizes unloaded argonaute complexes and microscopic P-bodies in human cells. Mol Biol Cell 21:1462–1469

    Article  PubMed  CAS  Google Scholar 

  • Kedersha N, Stoecklin G, Ayodele M, Yacono P, Lykke-Andersen J, Fitzler MJ, Scheuner D, Kaufman RJ, Golan DE, Anderson P (2005) Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J Cell Biol 169:871–884

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Krichevsky A, Grad Y, Hayes GD, Kosik KS, Church GM, Ruvkun G (2004) Identification of many microRNAs that copurify with polyribosomes in mammalian neurons. Proc Natl Acad Sci U S A 101:360–365

    Article  PubMed  CAS  Google Scholar 

  • Landthaler M (2010) Chaperones get RISC loaded. Mol Cell 39:161–162

    Article  PubMed  CAS  Google Scholar 

  • Lee YS, Pressman S, Andress AP, Kim K, White JL, Cassidy JJ, Li X, Lubell K, Lim DH, Cho IS, Nakahara K, Preall JB, Bellare P, Sontheimer EJ, Carthew RW (2009) Silencing by small RNAs is linked to endosomal trafficking. Nat Cell Biol 11:1150–1156

    Article  PubMed  CAS  Google Scholar 

  • Leung AK, Calabrese JM, Sharp PA (2006) Quantitative analysis of Argonaute protein reveals microRNA-dependent localisation to stress granules. Proc Natl Acad Sci U S A 103:18125–18130

    Article  PubMed  CAS  Google Scholar 

  • Leung AK, Sharp PA (2006) Function and localization of microRNAs in mammalian cells. Cold Spring Harb Symp Quant Biol 71:29–38

    Article  PubMed  CAS  Google Scholar 

  • Leung AK, Sharp PA (2007) microRNAs: a safeguard against turmoil? Cell 130:581–585

    Article  PubMed  CAS  Google Scholar 

  • Lippincott-Schwartz J, Altan-Bonnet N, Patterson GH (2003) Photobleaching and photoactivation: following protein dynamics in living cells. Nat Cell Biol suppl:S7–S14

    Google Scholar 

  • Liu J, Rivas FV, Wohlschlegel J, Yates JR 3rd, Parker R, Hannon GJ (2005a) A role for the P-body component GW182 in microRNA function. Nat Cell Biol 7:1261–1266

    PubMed  Google Scholar 

  • Liu J, Valencia-Sanchez MA, Hannon GJ, Parker R (2005b) MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nat Cell Biol 7:719–723

    Article  PubMed  CAS  Google Scholar 

  • Luby-Phelps K (2000) Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area. Int Rev Cytol 192:189–221

    Article  PubMed  CAS  Google Scholar 

  • Nelson PT, Hatzigeorgiou AG, Mourelatos Z (2004) miRNP:mRNA association in polyribosomes in a human neuronal cell line. RNA 10:387–394

    Article  PubMed  CAS  Google Scholar 

  • Olsen PH, Ambros V (1999) The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev Biol 216:671–680

    Article  PubMed  CAS  Google Scholar 

  • Pare JM, Tahbaz N, Lopez-Orozco J, LaPointe P, Lasko P, Hobman TC (2009) Hsp90 regulates the function of argonaute 2 and its recruitment to stress granules and P-bodies. Mol Biol Cell 20:3273–3284

    Article  PubMed  CAS  Google Scholar 

  • Parker JS (2010) How to slice: snapshots of Argonaute in action. Silence 1:3

    Article  PubMed  Google Scholar 

  • Pauley KM, Eystathioy T, Jakymiw A, Hamel JC, Fritzler MJ, Chan EK (2006) Formation of GW bodies is a consequence of microRNA genesis. EMBO Rep 7:904–910

    Article  PubMed  CAS  Google Scholar 

  • Pillai RS, Bhattacharyya SN, Artus CG, Zoller T, Cougot N, Basyuk E, Bertrand E, Filipowicz W (2005) Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science 309:1573–1576

    Article  PubMed  CAS  Google Scholar 

  • Qi HH, Ongusaha PP, Myllyharju J, Cheng D, Pakkanen O, Shi Y, Lee SW, Peng J (2008) Prolyl 4-hydroxylation regulates Argonaute 2 stability. Nature 455:421–424

    Article  PubMed  CAS  Google Scholar 

  • Savas JN, Makusky A, Ottosen S, Baillat D, Then F, Krainc D, Shiekhattar R, Markey SP, Tanese N (2008) Huntington’s disease protein contributes to RNA-mediated gene silencing through association with Argonaute and P bodies. Proc Natl Acad Sci U S A 105:10820–10825

    Article  PubMed  CAS  Google Scholar 

  • Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, Kiebler M, Greenberg ME (2006) A brain-specific microRNA regulates dendritic spine development. Nature 439:283–289

    Article  PubMed  CAS  Google Scholar 

  • Seggerson K, Tang L, Moss EG (2002) Two genetic circuits repress the Caenorhabditis elegans heterochronic gene lin-28 after translation initiation. Dev Biol 243:215–225

    Article  PubMed  CAS  Google Scholar 

  • Standart N, Jackson RJ (2007) MicroRNAs repress translation of m7Gppp-capped target mRNAs in vitro by inhibiting initiation and promoting deadenylation. Genes Dev 21:1975–1982

    Article  PubMed  CAS  Google Scholar 

  • Tahbaz N, Carmichael JB, Hobman TC (2001) GERp95 belongs to a family of signal-transducing proteins and requires Hsp90 activity for stability and Golgi localization. J Biol Chem 276:43294–43299

    Article  PubMed  CAS  Google Scholar 

  • Taipale M, Jarosz DF, Lindquist S (2010) HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat Rev Mol Cell Biol 11:515–528

    Article  PubMed  CAS  Google Scholar 

  • Takimoto K, Wakiyama M, Yokoyama S (2009) Mammalian GW182 contains multiple Argonaute-binding sites and functions in microRNA-mediated translational repression. RNA 15:1078–1089

    Article  PubMed  CAS  Google Scholar 

  • Vasudevan S, Steitz JA (2007) AU-rich-element-mediated upregulation of translation by FXR1 and Argonaute 2. Cell 128:1105–1118

    Article  PubMed  CAS  Google Scholar 

  • Yang Z, Jakymiw A, Wood MR, Eystathioy T, Rubin RL, Fritzler MJ, Chan EK (2004) GW182 is critical for the stability of GW bodies expressed during the cell cycle and cell proliferation. J Cell Sci 117:5567–5578

    Article  PubMed  CAS  Google Scholar 

  • Zeng Y, Sankala H, Zhang X, Graves PR (2008) Phosphorylation of Argonaute 2 at serine-387 facilitates its localization to processing bodies. Biochem J 413:429–436

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Lindstrom for figure illustrations. This work was supported by R01-CA133404 from NIH, P01-CA42063 from NCI to PAS and partially by Cancer Center Support (core) grant P30-CA14051 from NCI. AKLL was a special fellow of the Leukemia and Lymphoma Society and is supported by a DOD Breast Cancer Research Program Idea Award #BC101881.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony K. L. Leung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Leung, A.K.L., Sharp, P.A. (2013). Quantifying Argonaute Proteins In and Out of GW/P-Bodies: Implications in microRNA Activities. In: Chan, E., Fritzler, M. (eds) Ten Years of Progress in GW/P Body Research. Advances in Experimental Medicine and Biology, vol 768. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5107-5_10

Download citation

Publish with us

Policies and ethics