Skip to main content

Cytokines and Inflammatory Bowel Disease

  • Chapter
  • First Online:

Abstract

The etiology of inflammatory bowel diseases (IBD) is generally described as multifactorial including genetic predisposition, environmental insult, and a dysregulated immune response. The immune response is the only one of these that is currently amenable to therapy. Understanding the factors that go into the activation of the inflammation, and those that perpetuate this effect is improving greatly. With this mastery we are able to define the cytokines that are important in the etiology of IBD. Over the past 15 years, many of the newest and arguably the most successful therapies for Crohn disease (CD) and ulcerative colitis (UC) have been due to an increased understanding of the immune response and specifically the cytokines essential to this response.

As stated earlier, IBD is in part due to a dysregulated or an inappropriate immune reaction, which has been thought in part to be against to the microflora of the gut. Upon activation of the immune system, cytokines and chemokines, which are proteins produced by the cells involved in the immune response, are produced, and trigger a cascade of downstream reactions. These cytokines are increasingly being defined as important molecules in the pathogenesis of IBD as well as putative and known targets for the therapy of IBD.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   199.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   259.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Neurath MF, et al. Experimental granulomatous colitis in mice is abrogated by induction of TGF-beta-mediated oral tolerance. J Exp Med. 1996;183(6):2605–16.

    Article  PubMed  CAS  Google Scholar 

  2. Reinecker HC, et al. Enhanced secretion of tumour necrosis factor-alpha, IL-6, and IL-1 beta by isolated lamina propria mononuclear cells from patients with ulcerative colitis and Crohn’s disease. Clin Exp Immunol. 1993;94(1):174–81.

    Article  PubMed  CAS  Google Scholar 

  3. Camoglio L, et al. Altered expression of interferon-gamma and interleukin-4 in inflammatory bowel disease. Inflamm Bowel Dis. 1998;4(4):285–90.

    Article  PubMed  CAS  Google Scholar 

  4. Boirivant M, et al. Oxazolone colitis: a murine model of T helper cell type 2 colitis treatable with antibodies to interleukin 4. J Exp Med. 1998;188(10):1929–39.

    Article  PubMed  CAS  Google Scholar 

  5. Shetty A, Forbes A. Pharmacogenomics of response to anti-tumor necrosis factor therapy in patients with Crohn’s disease. Am J Pharmacogenomics. 2002;2(4):215–21.

    Article  PubMed  CAS  Google Scholar 

  6. Strober W, et al. Reciprocal IFN-gamma and TGF-beta responses regulate the occurrence of mucosal inflammation. Immunol Today. 1997;18(2):61–4.

    Article  PubMed  CAS  Google Scholar 

  7. Neurath MF, et al. Predominant pathogenic role of tumor necrosis factor in experimental colitis in mice. Eur J Immunol. 1997;27(7):1743–50.

    Article  PubMed  CAS  Google Scholar 

  8. Murch SH, et al. Serum concentrations of tumour necrosis factor alpha in childhood chronic inflammatory bowel disease. Gut. 1991;32(8):913–7.

    Article  PubMed  CAS  Google Scholar 

  9. Reimund JM, et al. Mucosal inflammatory cytokine production by intestinal biopsies in patients with ulcerative colitis and Crohn’s disease. J Clin Immunol. 1996;16(3):144–50.

    Article  PubMed  CAS  Google Scholar 

  10. Targan SR, et al. A short-term study of chimeric monoclonal antibody cA2 to tumor necrosis factor alpha for Crohn’s disease. Crohn’s Disease cA2 Study Group. N Engl J Med. 1997;337(15):1029–35.

    Article  PubMed  CAS  Google Scholar 

  11. Hanauer SB, et al. Maintenance infliximab for Crohn’s disease: the ACCENT I randomised trial. Lancet. 2002;359(9317):1541–9.

    Article  PubMed  CAS  Google Scholar 

  12. Colgan SP, et al. Interferon-gamma induces a cell surface phenotype switch on T84 intestinal epithelial cells. Am J Physiol. 1994;267(2 Pt 1):C402–10.

    PubMed  CAS  Google Scholar 

  13. Strober W, Fuss IJ, Blumberg RS. The immunology of mucosal models of inflammation. Annu Rev Immunol. 2002;20:495–549.

    Article  PubMed  CAS  Google Scholar 

  14. Reinisch W, et al. A dose escalating, placebo controlled, double blind, single dose and multidose, safety and tolerability study of fontolizumab, a humanised anti-interferon gamma antibody, in patients with moderate to severe Crohn’s disease. Gut. 2006;55(8):1138–44.

    Article  PubMed  CAS  Google Scholar 

  15. Hommes DW, et al. Fontolizumab, a humanised anti-interferon gamma antibody, demonstrates safety and clinical activity in patients with moderate to severe Crohn’s disease. Gut. 2006;55(8):1131–7.

    Article  PubMed  CAS  Google Scholar 

  16. Cominelli F, Pizarro TT. Interleukin-1 and interleukin-1 receptor antagonist in inflammatory bowel disease. Aliment Pharmacol Ther. 1996;10(Suppl 2):49–53; discussion 54.

    Google Scholar 

  17. Mahida YR, Wu K, Jewell DP. Enhanced production of interleukin 1-beta by mononuclear cells isolated from mucosa with active ulcerative colitis of Crohn’s disease. Gut. 1989;30(6):835–8.

    Article  PubMed  CAS  Google Scholar 

  18. Andus T, et al. Imbalance of the interleukin 1 system in colonic mucosa—association with intestinal inflammation and interleukin 1 receptor antagonist [corrected] genotype 2. Gut. 1997;41(5):651–7.

    Article  PubMed  CAS  Google Scholar 

  19. Van Assche G, et al. A pilot study on the use of the humanized anti-interleukin-2 receptor antibody daclizumab in active ulcerative colitis. Am J Gastroenterol. 2003;98(2):369–76.

    Article  PubMed  Google Scholar 

  20. Van Assche G, et al. Daclizumab, a humanised monoclonal antibody to the interleukin 2 receptor (CD25), for the treatment of moderately to severely active ulcerative colitis: a randomised, double blind, placebo controlled, dose ranging trial. Gut. 2006;55(11):1568–74.

    Article  PubMed  Google Scholar 

  21. Cantor MJ, Nickerson P, Bernstein CN. The role of cytokine gene polymorphisms in determining disease susceptibility and phenotype in inflammatory bowel disease. Am J Gastroenterol. 2005;100(5):1134–42.

    Article  PubMed  CAS  Google Scholar 

  22. Atreya R, Neurath MF. Involvement of IL-6 in the pathogenesis of inflammatory bowel disease and colon cancer. Clin Rev Allergy Immunol. 2005;28(3):187–96.

    Article  PubMed  CAS  Google Scholar 

  23. Ito H, et al. A pilot randomized trial of a human anti-interleukin-6 receptor monoclonal antibody in active Crohn’s disease. Gastroenterology. 2004;126(4):989-96; discussion 947.

    Google Scholar 

  24. Bouma G, Strober W. The immunological and genetic basis of inflammatory bowel disease. Nat Rev Immunol. 2003;3(7):521–33.

    Article  PubMed  CAS  Google Scholar 

  25. Fuss IJ, et al. Both IL-12p70 and IL-23 are synthesized during active Crohn’s disease and are down-regulated by treatment with anti-IL-12 p40 monoclonal antibody. Inflamm Bowel Dis. 2006;12(1):9–15.

    Article  PubMed  Google Scholar 

  26. Mannon PJ, et al. Anti-interleukin-12 antibody for active Crohn’s disease. N Engl J Med. 2004;351(20):2069–79.

    Article  PubMed  CAS  Google Scholar 

  27. Fuss IJ, et al. Anti-interleukin 12 treatment regulates apoptosis of Th1 T cells in experimental colitis in mice. Gastroenterology. 1999;117(5):1078–88.

    Article  PubMed  CAS  Google Scholar 

  28. Harrington LE, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol. 2005;6(11):1123–32.

    Article  PubMed  CAS  Google Scholar 

  29. Hue S, et al. Interleukin-23 drives innate and T cell-mediated intestinal inflammation. J Exp Med. 2006;203(11):2473–83.

    Article  PubMed  CAS  Google Scholar 

  30. Fujino S, et al. Increased expression of interleukin 17 in inflammatory bowel disease. Gut. 2003;52(1):65–70.

    Article  PubMed  CAS  Google Scholar 

  31. Langrish CL, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med. 2005;201(2):233–40.

    Article  PubMed  CAS  Google Scholar 

  32. Kullberg MC, et al. IL-23 plays a key role in Helicobacter hepaticus-induced T cell-dependent colitis. J Exp Med. 2006;203(11):2485–94.

    Article  PubMed  CAS  Google Scholar 

  33. Kolls JK, Linden A. Interleukin-17 family members and inflammation. Immunity. 2004;21(4):467–76.

    Article  PubMed  CAS  Google Scholar 

  34. Mangan PR, et al. Transforming growth factor-beta induces development of the T(H)17 lineage. Nature. 2006;441(7090):231–4.

    Article  PubMed  CAS  Google Scholar 

  35. Bettelli E, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature. 2006;441(7090):235–8.

    Article  PubMed  CAS  Google Scholar 

  36. Ahern PP, et al. Interleukin-23 drives intestinal inflammation through direct activity on T cells. Immunity. 2010;33(2):279–88.

    Article  PubMed  CAS  Google Scholar 

  37. Sujino T, et al. Regulatory T cells suppress development of colitis, blocking differentiation of T-helper 17 into alternative T-helper 1 cells. Gastroenterology. 2011;141(3):1014–23.

    Article  PubMed  CAS  Google Scholar 

  38. Duerr RH, et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science. 2006;314(5804):1461–3.

    Article  PubMed  CAS  Google Scholar 

  39. Wang K, et al. Diverse genome-wide association studies associate the IL12/IL23 pathway with Crohn Disease. Am J Hum Genet. 2009;84(3):399–405.

    Article  PubMed  CAS  Google Scholar 

  40. Pizarro TT, et al. IL-18, a novel immunoregulatory cytokine, is up-regulated in Crohn’s disease: expression and localization in intestinal mucosal cells. J Immunol. 1999;162(11):6829–35.

    PubMed  CAS  Google Scholar 

  41. Reuter BK, Pizarro TT. Commentary: the role of the IL-18 system and other members of the IL-1R/TLR superfamily in innate mucosal immunity and the pathogenesis of inflammatory bowel disease: friend or foe? Eur J Immunol. 2004;34(9):2347–55.

    Article  PubMed  CAS  Google Scholar 

  42. Okamura H, et al. Regulation of interferon-gamma production by IL-12 and IL-18. Curr Opin Immunol. 1998;10(3):259–64.

    Article  PubMed  CAS  Google Scholar 

  43. Nakanishi K, et al. Interleukin-18 is a unique cytokine that stimulates both Th1 and Th2 responses depending on its cytokine milieu. Cytokine Growth Factor Rev. 2001;12(1):53–72.

    Article  PubMed  CAS  Google Scholar 

  44. Fuss IJ, et al. Nonclassical CD1d-restricted NK T cells that produce IL-13 characterize an atypical Th2 response in ulcerative colitis. J Clin Invest. 2004;113(10):1490–7.

    PubMed  CAS  Google Scholar 

  45. Heller F, et al. Interleukin-13 is the key effector Th2 cytokine in ulcerative colitis that affects epithelial tight junctions, apoptosis, and cell restitution. Gastroenterology. 2005;129(2):550–64.

    PubMed  CAS  Google Scholar 

  46. Schiechl G, et al. Tumor development in murine ulcerative colitis depends on MyD88 signaling of colonic F4/80+CD11b(high)Gr1(low) macrophages. J Clin Invest. 2011;121(5):1692–708.

    Article  PubMed  CAS  Google Scholar 

  47. Prehn JL, et al. The T cell costimulator TL1A is induced by FcgammaR signaling in human monocytes and dendritic cells. J Immunol. 2007;178(7):4033–8.

    PubMed  CAS  Google Scholar 

  48. Takedatsu H, et al. TL1A (TNFSF15) regulates the development of chronic colitis by modulating both T-helper 1 and T-helper 17 activation. Gastroenterology. 2008;135(2):552–67.

    Article  PubMed  CAS  Google Scholar 

  49. Meylan F, et al. The TNF-family receptor DR3 is essential for diverse T cell-mediated inflammatory diseases. Immunity. 2008;29(1):79–89.

    Article  PubMed  CAS  Google Scholar 

  50. Schreiber TH, et al. Therapeutic Treg expansion in mice by TNFRSF25 prevents allergic lung inflammation. J Clin Invest. 2010;120(10):3629–40.

    Article  PubMed  CAS  Google Scholar 

  51. Kamada N, et al. TL1A produced by lamina propria macrophages induces Th1 and Th17 immune responses in cooperation with IL-23 in patients with Crohn’s disease. Inflamm Bowel Dis. 2010;16(4):568–75.

    PubMed  Google Scholar 

  52. Michelsen KS, et al. IBD-associated TL1A gene (TNFSF15) haplotypes determine increased expression of TL1A protein. PLoS One. 2009;4(3):e4719.

    Article  PubMed  Google Scholar 

  53. McClane SJ, Rombeau JL. Cytokines and inflammatory bowel disease: a review. JPEN J Parenter Enteral Nutr. 1999;23(5 Suppl):S20–4.

    Article  PubMed  CAS  Google Scholar 

  54. Powrie F, et al. A critical role for transforming growth factor-beta but not interleukin 4 in the suppression of T helper type 1-mediated colitis by CD45RB(low) CD4+ T cells. J Exp Med. 1996;183(6):2669–74.

    Article  PubMed  CAS  Google Scholar 

  55. Maul J, et al. Peripheral and intestinal regulatory CD4+ CD25(high) T cells in inflammatory bowel disease. Gastroenterology. 2005;128(7):1868–78.

    Article  PubMed  CAS  Google Scholar 

  56. Bamias G, et al. Proinflammatory effects of TH2 cytokines in a murine model of chronic small intestinal inflammation. Gastroenterology. 2005;128(3):654–66.

    Article  PubMed  CAS  Google Scholar 

  57. Dohi T, et al. T helper type-2 cells induce ileal villus atrophy, goblet cell metaplasia, and wasting disease in T cell-deficient mice. Gastroenterology. 2003;124(3):672–82.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edwin F. de Zoeten MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

de Zoeten, E.F., Fuss, I.J. (2013). Cytokines and Inflammatory Bowel Disease. In: Mamula, P., Markowitz, J., Baldassano, R. (eds) Pediatric Inflammatory Bowel Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5061-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5061-0_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5060-3

  • Online ISBN: 978-1-4614-5061-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics