Skip to main content

Super-diffusive Transport Processes in Porous Media

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 28))

Abstract

The basic assumption of models for the transport of contaminants through soil is that the movements of solute particles are characterized by the Brownian motion. However, the complexity of pore space in natural porous media makes the hypothesis of Brownian motion far too restrictive in some situations. Therefore, alternative models have been proposed. One of the models, many times encountered in hydrology, is based in fractional differential equations, which is a one-dimensional fractional advection diffusion equation where the usual second-order derivative gives place to a fractional derivative of order α, with 1 < α ≤ 2. When a fractional derivative replaces the second-order derivative in a diffusion or dispersion model, it leads to anomalous diffusion, also called super-diffusion. We derive analytical solutions for the fractional advection diffusion equation with different initial and boundary conditions. Additionally, we analyze how the fractional parameter α affects the behavior of the solutions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Benson, D.A.: The fractional advection-dispersion equation: development and application. Ph.D. dissertation, University of Nevada, Reno, USA (1998)

    Google Scholar 

  2. Benson, D.A., Wheatcraft, S.W., Meerschaert, M.M.: Application of a fractional advection-dispersion equation. Water Resour. Res. 36, 1403–1412 (2000)

    Article  Google Scholar 

  3. Chaves, A.S.: A fractional diffusion equation to describe Lévy flights. Phys. Lett. A. 239, 13–16 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Deng,W.: Finite element method for the space and time fractional Fokker–Planck equation. SIAM J. Numer. Anal. 47, 204–226 (2008)

    Article  MathSciNet  Google Scholar 

  5. Diethelm, K.: The analysis of fractional differential equations. Lecture Notes in Mathematics, vol. 2004. Springer, Heidelberg (2010)

    Google Scholar 

  6. Huang, G., Huang, Q., Zhan, H.: Evidence of one-dimensional scale-dependent fractional advection-dispersion. J. Contam. Hydrol. 85, 53–71 (2006)

    Article  Google Scholar 

  7. Huang, Q., Huang, G., Zhan, H.: A finite element solution for the fractional advection-dispersion equation. Adv. Water Resour. 31, 1578–1589 (2008)

    Article  Google Scholar 

  8. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  9. Li, X., Xu, C.: A space-time spectral method for the time fractional diffusion equation. SIAM J. Numer. Anal. 47 2108–2131 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. McCulloch, J.H., Panton, D.P.: Precise tabulation of the maximally-skewed stable distributions and densities. Comput. Stat. Data An. 23, 307–320 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172, 65–77 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ogata, A., Banks, R.B.: A solution of the differential equation of longitudinal dispersion in porous media. U.S. Geological Survey, Professional Paper No. 411-A A1–A7 (1961)

    Google Scholar 

  13. Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York-London (1974)

    MATH  Google Scholar 

  14. Ortigueira, M.D.: Fractional calculus for scientists and engineers. Lecture Notes in Electrical Engineering, vol. 84, Springer, Heidelberg (2011)

    Google Scholar 

  15. Pachepsky, Y., Benson, D., Rawls, W.: Simulating scale-dependent solute transport in soils with the fractional advective-dispersive equation. Soil Sci. Soc. Am. J. 4, 1234–1243 (1997)

    Google Scholar 

  16. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  17. Roop, J.P.: Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in \({\mathbb{R}}^{2}\). J. Comput. Appl. Math. 193, 243–268 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers, Amsterdam (1993)

    MATH  Google Scholar 

  19. San Jose Martinez, F., Pachepsky, Y.A., Rawls, W.J.: Fractional Advective-dispersive equations as a model of solute transport in porous media. In: Sabatier, J., Agrawal, O.P., Machado, J.A. (eds.) Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering. pp. 199–212. Springer, Dordrecht (2007)

    Google Scholar 

  20. Sousa, E.: Finite difference approximations for a fractional advection diffusion problem. J. Comput. Phys. 228 4038–4054 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Tadjeran, C., Meerschaert, M.M., Scheffler, H-P.: A second-order accurate numerical approximation for the fractional diffusion equation. J. Comput. Phys. 213, 205–213 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhang, X., Mouchao, L., Crawford, J.W., Young, I.M.: The impact of boundary on the fractional advection-dispersion equation for solute transport in soil: defining the fractional dispersive flux with the Caputo derivatives. Adv. Water Resour. 30, 1205–1217 (2007)

    Article  Google Scholar 

  23. Zhang, H., Fawang, L., Anh, V.: Galerkin finite element approximation of symmetric space-fractional partial differential equations. Appl. Math. Comput. 217, 2534–2545 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhou, L., Selim, H.M.: Application of the fractional advection-dispersion equation in porous media. Soil Sci. Soc. Am. J. 67, 1079–1084 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

Research supported by CMUC and FCT (Portugal), through European program COMPETE/FEDER and by the research project UTAustin/MAT/066/2008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Sousa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this paper

Cite this paper

Sousa, E. (2013). Super-diffusive Transport Processes in Porous Media. In: Ferreira, J., Barbeiro, S., Pena, G., Wheeler, M. (eds) Modelling and Simulation in Fluid Dynamics in Porous Media. Springer Proceedings in Mathematics & Statistics, vol 28. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5055-9_5

Download citation

Publish with us

Policies and ethics