Skip to main content

Structure and Mechanisms of SF1 DNA Helicases

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 767))

Abstract

Superfamily I is a large and diverse group of monomeric and dimeric helicases defined by a set of conserved sequence motifs. Members of this class are involved in essential processes in both DNA and RNA metabolism in all organisms. In addition to conserved amino acid sequences, they also share a common structure containing two RecA-like motifs involved in ATP binding and hydrolysis and nucleic acid binding and unwinding. Unwinding is facilitated by a “pin” structure which serves to split the incoming duplex. This activity has been measured using both ensemble and single-molecule conditions. SF1 helicase activity is modulated through interactions with other proteins.

The online version of the original chapter can be found at http://dx.doi.org/10.1007/978-1-4614-5037-5_14

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-1-4614-5037-5_14

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Caruthers JM, McKay DB. Helicase structure and mechanism. Curr Opin Struct Biol. 2002;12:123–33.

    Article  CAS  PubMed  Google Scholar 

  2. Delagoutte E, von Hippel PH. Helicase mechanisms and the coupling of helicases within macromolecular machines. Part II: integration of helicases into cellular processes. Q Rev Biophys. 2003;36:1–69.

    Article  CAS  PubMed  Google Scholar 

  3. Matson SW, Kaiser-Rogers KA. DNA helicases. Annu Rev Biochem. 1990;59:289–329.

    Article  CAS  PubMed  Google Scholar 

  4. Schmid SR, Linder P. D-E-A-D protein family of putative RNA helicases. Mol Microbiol. 1992;6:283–91.

    Article  CAS  PubMed  Google Scholar 

  5. Matson SW, Bean DW, George JW. DNA helicases: enzymes with essential roles in all aspects of DNA metabolism. Bioessays. 1994;16:13–22.

    Article  CAS  PubMed  Google Scholar 

  6. Alberts B. The cell as a collection of protein machines: preparing the next generation of molecular biologists. Cell. 1998;92:291–4.

    Article  CAS  PubMed  Google Scholar 

  7. Li J, Tang H, Mullen TM, Westberg C, Reddy TR, Rose DW, et al. A role for RNA helicase A in post-transcriptional regulation of HIV type 1. Proc Natl Acad Sci USA. 1999;96:709–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Linder P, Yeast RNA. helicases of the DEAD-box family involved in translation initiation. Biol Cell. 2003;95:157–67.

    Article  CAS  PubMed  Google Scholar 

  9. Bennett RJ, Keck JL. Structure and function of RecQ DNA helicases. Crit Rev Biochem Mol Biol. 2004;39:79–97.

    Article  CAS  PubMed  Google Scholar 

  10. Sangrithi MN, Bernal JA, Madine M, Philpott A, Lee J, Dunphy WG, et al. Initiation of DNA replication requires the RECQL4 protein mutated in Rothmund-Thomson syndrome. Cell. 2005;121:887–98.

    Article  CAS  PubMed  Google Scholar 

  11. Hartman TR, Qian S, Bolinger C, Fernandez S, Schoenberg DR, Boris-Lawrie K. RNA helicase A is necessary for translation of selected messenger RNAs. Nat Struct Mol Biol. 2006;13:509–16.

    Article  CAS  PubMed  Google Scholar 

  12. Matsuno K, Kumano M, Kubota Y, Hashimoto Y, Takisawa H. The N-terminal noncatalytic region of Xenopus RecQ4 is required for chromatin binding of DNA polymerase alpha in the initiation of DNA replication. Mol Cell Biol. 2006;26:4843–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hu Y, Raynard S, Sehorn MG, Lu X, Bussen W, Zheng L, et al. RECQL5/Recql5 helicase regulates homologous recombination and suppresses tumor formation via disruption of Rad51 presynaptic filaments. Genes Dev. 2007;21:3073–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Modrich P. Mismatch repair, genetic stability, and cancer. Science. 1994;266:1959–60.

    Article  CAS  PubMed  Google Scholar 

  15. Sancar A. Mechanisms of DNA excision repair. Science. 1994;266:1954–6.

    Article  CAS  PubMed  Google Scholar 

  16. Andressoo JO, Hoeijmakers JH, de Waard H. Nucleotide excision repair and its connection with cancer and ageing. Adv Exp Med Biol. 2005;570:45–83.

    Article  CAS  PubMed  Google Scholar 

  17. Stevnsner T, Muftuoglu M, Aamann MD, Bohr VA. The role of Cockayne syndrome group B (CSB) protein in base excision repair and aging. Mech Ageing Dev. 2008;129:441–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ellis NA. DNA helicases in inherited human disorders. Curr Opin Genet Dev. 1997;7:354–63.

    Article  CAS  PubMed  Google Scholar 

  19. Andressoo JO, Hoeijmakers JH. Transcription-coupled repair and premature ageing. Mutat Res. 1997;577:179–94.

    Article  CAS  Google Scholar 

  20. Brosh Jr RM, Bohr VA. Human premature aging, DNA repair and RecQ helicases. Nucleic Acids Res. 2007;35:7527–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ouyang KJ, Woo LL, Ellis NA. Homologous recombination and maintenance of genome integrity: cancer and aging through the prism of human RecQ helicases. Mech Ageing Dev. 2008;129:425–40.

    Article  CAS  PubMed  Google Scholar 

  22. German J. Bloom’s syndrome. Dermatol Clin. 1995;13:7–18.

    Article  CAS  PubMed  Google Scholar 

  23. Shen JC, Gray MD, Oshima J, Kamath-Loeb AS, Fry M, Loeb LA. Werner syndrome protein. I. DNA helicase and dna exonuclease reside on the same polypeptide. J Biol Chem. 1998;273:34139–44.

    Article  CAS  PubMed  Google Scholar 

  24. Gibbons RJ, Bachoo S, Picketts DJ, Aftimos S, Asenbauer B, Bergoffen J, et al. Mutations in transcriptional regulator ATRX establish the functional significance of a PHD-like domain. Nat Genet. 1997;17:146–8.

    Article  CAS  PubMed  Google Scholar 

  25. Prince PR, Emond MJ, Monnat Jr RJ. Loss of Werner syndrome protein function promotes aberrant mitotic recombination. Genes Dev. 2001;15:933–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Saintigny Y, Makienko K, Swanson C, Emond MJ, Monnat Jr RJ. Homologous recombination resolution defect in werner syndrome. Mol Cell Biol. 2002;22:6971–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hickson ID. RecQ helicases: caretakers of the genome. Nat Rev Cancer. 2003;3:169–78.

    Article  CAS  PubMed  Google Scholar 

  28. Sharma S, Doherty KM, Brosh Jr RM. Mechanisms of RecQ helicases in pathways of DNA metabolism and maintenance of genomic stability. Biochem J. 2006;398:319–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ozgenc A, Loeb LA. Werner syndrome, aging and cancer. Genome Dyn. 2006;1:206–17.

    Article  CAS  PubMed  Google Scholar 

  30. Muftuoglu M, Oshima J, von Kobbe C, Cheng WH, Leistritz DF, Bohr VA. The clinical characteristics of Werner syndrome: molecular and biochemical diagnosis. Hum Genet. 2008;124:369–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chisholm KM, Aubert SD, Freese KP, Zakian VA, King MC, Welcsh PL. A genomewide screen for suppressors of Alu-mediated rearrangements reveals a role for PIF1. PLoS One. 2012;7:e30748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen YZ, Bennett CL, Huynh HM, Blair IP, Puls I, Irobi J, et al. DNA/RNA helicase gene mutations in a form of juvenile amyotrophic lateral sclerosis (ALS4). Am J Hum Genet. 2004;74:1128–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Moreira MC, Klur S, Watanabe M, Nemeth AH, Le Ber I, Moniz JC, et al. Senataxin, the ortholog of a yeast RNA helicase, is mutant in ataxia-ocular apraxia 2. Nat Genet. 2004;36:225–7.

    Article  CAS  PubMed  Google Scholar 

  34. Guenther UP, Handoko L, Laggerbauer B, Jablonka S, Chari A, Alzheimer M, et al. IGHMBP2 is a ribosome-associated helicase inactive in the neuromuscular disorder distal SMA type 1 (DSMA1). Hum Mol Genet. 2009;18:1288–300.

    Article  CAS  PubMed  Google Scholar 

  35. Grohmann K, Schuelke M, Diers A, Hoffmann K, Lucke B, Adams C, et al. Mutations in the gene encoding immunoglobulin mu-binding protein 2 cause spinal muscular atrophy with respiratory distress type 1. Nat Genet. 2001;29:75–7.

    Article  CAS  PubMed  Google Scholar 

  36. Aggarwal M, Brosh Jr RM. Hitting the bull’s eye: novel directed cancer therapy through helicase-targeted synthetic lethality. J Cell Biochem. 2009;106:758–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lehman IR, Boehmer PE. Replication of herpes simplex virus DNA. J Biol Chem. 1999;274:28059–62.

    Article  CAS  PubMed  Google Scholar 

  38. Kleymann G. Novel agents and strategies to treat herpes simplex virus infections. Expert Opin Investig Drugs. 2003;12:165–83.

    Article  CAS  PubMed  Google Scholar 

  39. Kleymann G. New antiviral drugs that target herpesvirus helicase primase enzymes. Herpes. 2003;10:46–52.

    PubMed  Google Scholar 

  40. Kim DW, Gwack Y, Han JH, Choe J. C-terminal domain of the hepatitis C virus NS3 protein contains an RNA helicase activity. Biochem Biophys Res Commun. 1995;215:160–6.

    Article  CAS  PubMed  Google Scholar 

  41. De FR, Rice CM. New therapies on the horizon for hepatitis C: are we close? Clin Liver Dis. 2003;7:211–42, xi.

    Google Scholar 

  42. Harb OS, Abu KY. Essential role for the Legionella pneumophila rep helicase homologue in intracellular infection of mammalian cells. Infect Immun. 2000;68:6970–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Singleton MR, Dillingham MS, Wigley DB. Structure and mechanism of helicases and nucleic acid translocases. Annu Rev Biochem. 2007;76:23–50.

    Article  CAS  PubMed  Google Scholar 

  44. Enemark EJ, Joshua-Tor L. On helicases and other motor proteins. Curr Opin Struct Biol. 2008;18:243–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lohman TM, Tomko EJ, Wu CG. Non-hexameric DNA helicases and translocases: mechanisms and regulation. Nat Rev Mol Cell Biol. 2008;9:391–401.

    Article  CAS  PubMed  Google Scholar 

  46. Gorbalenya AE, Koonin EV, Donchenko AP, Blinov VM. Two related superfamilies of putative helicases involved in replication, recombination, repair and expression of DNA and RNA genomes. Nucleic Acids Res. 1989;17:4713–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gorbalenya AE, Koonin EV. Helicases: amino acid sequence comparisons and structure-function relationships. Curr Opin Struct Biol. 1993;3:419–29.

    Article  CAS  Google Scholar 

  48. Singleton MR, Wigley DB. Modularity and specialization in superfamily 1 and 2 helicases. J Bacteriol. 2002;184:1819–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. von Hippel PH, Delagoutte E. Macromolecular complexes that unwind nucleic acids. Bioessays. 2003;25:1168–77.

    Article  CAS  Google Scholar 

  50. Becker PB, Horz W. ATP-dependent nucleosome remodeling. Annu Rev Biochem. 2002;71:247–73.

    Article  CAS  PubMed  Google Scholar 

  51. Lusser A, Kadonaga JT. Chromatin remodeling by ATP-dependent molecular machines. Bioessays. 2003;25:1192–200.

    Article  CAS  PubMed  Google Scholar 

  52. Petkovic M, Dietschy T, Freire R, Jiao R, Stagljar I. The human Rothmund-Thomson syndrome gene product, RECQL4, localizes to distinct nuclear foci that coincide with proteins involved in the maintenance of genome stability. J Cell Sci. 2005;118:4261–9.

    Article  CAS  PubMed  Google Scholar 

  53. Sharma S, Brosh Jr RM. Human RECQ1 is a DNA damage responsive protein required for genotoxic stress resistance and suppression of sister chromatid exchanges. PLoS One. 2007;2:e1297.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Larsen DH, Poinsignon C, Gudjonsson T, Dinant C, Payne MR, Hari FJ, et al. The chromatin-remodeling factor CHD4 coordinates signaling and repair after DNA damage. J Cell Biol. 2010;190:731–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Raynard S, Bussen W, Sung P. A double Holliday junction dissolvasome comprising BLM, topoisomerase IIIalpha, and BLAP75. J Biol Chem. 2006;281:13861–4.

    Article  CAS  PubMed  Google Scholar 

  56. Wu L, Bachrati CZ, Ou J, Xu C, Yin J, Chang M, et al. BLAP75/RMI1 promotes the BLM-dependent dissolution of homologous recombination intermediates. Proc Natl Acad Sci U S A. 2006;103:4068–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Barber LJ, Youds JL, Ward JD, McIlwraith MJ, O’Neil NJ, Petalcorin MI, et al. RTEL1 maintains genomic stability by suppressing homologous recombination. Cell. 2008;135:261–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Singh TR, Ali AM, Busygina V, Raynard S, Fan Q, Du CH, et al. BLAP18/RMI2, a novel OB-fold-containing protein, is an essential component of the Bloom helicase-double Holliday junction dissolvasome. Genes Dev. 2008;22:2856–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bugreev DV, Brosh Jr RM, Mazin AV. RECQ1 possesses DNA branch migration activity. J Biol Chem. 2008;283:20231–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Uringa EJ, Youds JL, Lisaingo K, Lansdorp PM, Boulton SJ. RTEL1: an essential helicase for telomere maintenance and the regulation of homologous recombination. Nucleic Acids Res. 2011;39:1647–55.

    Article  CAS  PubMed  Google Scholar 

  61. Picketts DJ, Tastan AO, Higgs DR, Gibbons RJ. Comparison of the human and murine ATRX gene identifies highly conserved, functionally important domains. Mamm Genome. 1998;9:400–3.

    Article  CAS  PubMed  Google Scholar 

  62. Travers A. Chromatin modification by DNA tracking. Proc Natl Acad Sci USA. 1999;96:13634–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Alexeev A, Mazin A, Kowalczykowski SC. Rad54 protein possesses chromatin-remodeling activity stimulated by the Rad51-ssDNA nucleoprotein filament. Nat Struct Biol. 2003;10:182–6.

    Article  CAS  PubMed  Google Scholar 

  64. Zhang Z, Fan HY, Goldman JA, Kingston RE. Homology-driven chromatin remodeling by human RAD54. Nat Struct Mol Biol. 2007;14:397–405.

    Article  CAS  PubMed  Google Scholar 

  65. Srivastava V, Modi P, Tripathi V, Mudgal R, De S, Sengupta S. BLM helicase stimulates the ATPase and chromatin-remodeling activities of RAD54. J Cell Sci. 2009;122:3093–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Troelstra C, van Gool A, de Wit J, Vermeulen W, Bootsma D, Hoeijmakers JH. ERCC6, a member of a subfamily of putative helicases, is involved in Cockayne’s syndrome and preferential repair of active genes. Cell. 1992;71:939–53.

    Article  CAS  PubMed  Google Scholar 

  67. Evans E, Fellows J, Coffer A, Wood RD. Open complex formation around a lesion during nucleotide excision repair provides a structure for cleavage by human XPG protein. EMBO J. 1997;16:625–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Eisen A, Lucchesi JC. Unraveling the role of helicases in transcription. Bioessays. 1998;20:634–41.

    Article  CAS  PubMed  Google Scholar 

  69. Moreland RJ, Tirode F, Yan Q, Conaway JW, Egly JM, Conaway RC. A role for the TFIIH XPB DNA helicase in promoter escape by RNA polymerase II. J Biol Chem. 1999;274:22127–30.

    Article  CAS  PubMed  Google Scholar 

  70. Fuller-Pace FV. DExD/H box RNA helicases: multifunctional proteins with important roles in transcriptional regulation. Nucleic Acids Res. 2008;34:4206–15.

    Article  Google Scholar 

  71. Aygun O, Svejstrup J, Liu Y. A RECQ5-RNA polymerase II association identified by targeted proteomic analysis of human chromatin. Proc Natl Acad Sci U S A. 2008;105:8580–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Izumikawa K, Yanagida M, Hayano T, Tachikawa H, Komatsu W, Shimamoto A, et al. Association of human DNA helicase RecQ5beta with RNA polymerase II and its possible role in transcription. Biochem J. 2008;413:505–16.

    Article  CAS  PubMed  Google Scholar 

  73. Dillingham MS, Spies M, Kowalczykowski SC. RecBCD enzyme is a bipolar DNA helicase. Nature. 2003;423:893–7.

    Article  CAS  PubMed  Google Scholar 

  74. Naqvi A, Tinsley E, Khan SA. Purification and characterization of the PcrA helicase of Bacillus anthracis. J Bacteriol. 2003;185:6633–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Constantinesco F, Forterre P, Koonin EV, Aravind L, Elie C. A bipolar DNA helicase gene, herA, clusters with rad50, mre11 and nurA genes in thermophilic archaea. Nucleic Acids Res. 2004;32:1439–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hall MC, Matson SW. Helicase motifs: the engine that powers DNA unwinding. Mol Microbiol. 1999;34:867–77.

    Article  CAS  PubMed  Google Scholar 

  77. Tuteja N, Tuteja R. Prokaryotic and eukaryotic DNA helicases. Essential molecular motor proteins for cellular machinery. Eur J Biochem. 2004;271:1835–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lohman TM. Escherichia coli DNA helicases: mechanisms of DNA unwinding. Mol Microbiol. 1992;6:5–14.

    Article  CAS  PubMed  Google Scholar 

  79. Tuteja N, Tuteja R. Unraveling DNA helicases. Motif, structure, mechanism and function. Eur J Biochem. 2004;271:1849–63.

    Article  CAS  PubMed  Google Scholar 

  80. Bird LE, Subramanya HS, Wigley DB. Helicases: a unifying structural theme? Curr Opin Struct Biol. 1998;8:14–8.

    Article  CAS  PubMed  Google Scholar 

  81. Iyer LM, Leipe DD, Koonin EV, Aravind L. Evolutionary history and higher order classification of AAA+ ATPases. J Struct Biol. 2004;146:11–31.

    Article  CAS  PubMed  Google Scholar 

  82. Kadare G, Haenni AL. Virus-encoded RNA helicases. J Virol. 1997;71:2583–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Cordin O, Banroques J, Tanner NK, Linder P. The DEAD-box protein family of RNA helicases. Gene. 2006;367:17–37.

    Article  CAS  PubMed  Google Scholar 

  84. Jankowsky E, Fairman ME. RNA helicases—one fold for many functions. Curr Opin Struct Biol. 2007;17:316–24.

    Article  CAS  PubMed  Google Scholar 

  85. Pyle AM. Translocation and unwinding mechanisms of RNA and DNA helicases. Annu Rev Biophys. 2008;37:317–36.

    Article  CAS  PubMed  Google Scholar 

  86. Fairman-Williams ME, Guenther UP, Jankowsky E. SF1 and SF2 helicases: family matters. Curr Opin Struct Biol. 2010;20:313–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Subramanya HS, Bird LE, Brannigan JA, Wigley DB. Crystal structure of a DExx box DNA helicase. Nature. 1996;384:379–83.

    Article  CAS  PubMed  Google Scholar 

  88. Korolev S, Hsieh J, Gauss GH, Lohman TM, Waksman G. Major domain swiveling revealed by the crystal structures of complexes of E. coli Rep helicase bound to single-stranded DNA and ADP. Cell. 1997;90:635–47.

    Article  CAS  PubMed  Google Scholar 

  89. Velankar SS, Soultanas P, Dillingham MS, Subramanya HS, Wigley DB. Crystal structures of complexes of PcrA DNA helicase with a DNA substrate indicate an inchworm mechanism. Cell. 1999;97:75–84.

    Article  CAS  PubMed  Google Scholar 

  90. Soultanas P, Dillingham MS, Wiley P, Webb MR, Wigley DB. Uncoupling DNA translocation and helicase activity in PcrA: direct evidence for an active mechanism. EMBO J. 2000;19:3799–810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Dillingham MS, Wigley DB, Webb MR. Demonstration of unidirectional single-stranded DNA translocation by PcrA helicase: measurement of step size and translocation speed. Biochemistry. 2000;39:205–12.

    Article  CAS  PubMed  Google Scholar 

  92. Tomko EJ, Fischer CJ, Niedziela-Majka A, Lohman TM. A nonuniform stepping mechanism for E. coli UvrD monomer translocation along single-stranded DNA. Mol Cell. 2007;26:335–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Saikrishnan K, Griffiths SP, Cook N, Court R, Wigley DB. DNA binding to RecD: role of the 1B domain in SF1B helicase activity. EMBO J. 2008;27:2222–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Saikrishnan K, Powell B, Cook NJ, Webb MR, Wigley DB. Mechanistic basis of 5′–3′ translocation in SF1B helicases. Cell. 2009;137:849–59.

    Article  CAS  PubMed  Google Scholar 

  95. Gorbalenya AE, Koonin EV, Donchenko AP, Blinov VM. A novel superfamily of nucleoside triphosphate-binding motif containing proteins which are probably involved in duplex unwinding in DNA and RNA replication and recombination. FEBS Lett. 1988;235:16–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Gorbalenya AE, Koonin EV, Donchenko AP, Blinov VM. A conserved NTP-motif in putative helicases. Nature. 1988;333:22.

    Article  CAS  PubMed  Google Scholar 

  97. Hodgman TC. A new superfamily of replicative proteins. Nature. 1988;333:22–3.

    Article  CAS  PubMed  Google Scholar 

  98. Ilyina TV, Koonin EV. Conserved sequence motifs in the initiator proteins for rolling circle DNA replication encoded by diverse replicons from eubacteria, eucaryotes and archaebacteria. Nucleic Acids Res. 1992;20:3279–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Korolev S, Yao N, Lohman TM, Weber PC, Waksman G. Comparisons between the structures of HCV and Rep helicases reveal structural similarities between SF1 and SF2 super-families of helicases. Protein Sci. 1998;7:605–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kim JL, Morgenstern KA, Griffith JP, Dwyer MD, Thomson JA, Murcko MA, et al. Hepatitis C virus NS3 RNA helicase domain with a bound oligonucleotide: the crystal structure provides insights into the mode of unwinding. Structure. 1998;6:89–100.

    Article  CAS  PubMed  Google Scholar 

  101. Tanner NK. The newly identified Q motif of DEAD box helicases is involved in adenine recognition. Cell Cycle. 2003;2:18–9.

    Article  CAS  PubMed  Google Scholar 

  102. Bernstein DA, Zittel MC, Keck JL. High-resolution structure of the E. coli RecQ helicase catalytic core. EMBO J. 2003;22:4910–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Singleton MR, Dillingham MS, Gaudier M, Kowalczykowski SC, Wigley DB. Crystal structure of RecBCD enzyme reveals a machine for processing DNA breaks. Nature. 2004;432:187–93.

    Article  CAS  PubMed  Google Scholar 

  104. Durr H, Korner C, Muller M, Hickmann V, Hopfner KP. X-ray structures of the Sulfolobus solfataricus SWI2/SNF2 ATPase core and its complex with DNA. Cell. 2005;121:363–73.

    Article  PubMed  CAS  Google Scholar 

  105. Rozen F, Pelletier J, Trachsel H, Sonenberg N. A lysine substitution in the ATP-binding site of eucaryotic initiation factor 4A abrogates nucleotide-binding activity. Mol Cell Biol. 1989;9:4061–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Tanner NK, Linder P. DExD/H box RNA helicases: from generic motors to specific dissociation functions. Mol Cell. 2001;8:251–62.

    Article  CAS  PubMed  Google Scholar 

  107. Walker JE, Saraste M, Runswick MJ, Gay NJ. Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1982;1:945–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Venkatesan M, Silver LL, Nossal NG. Bacteriophage T4 gene 41 protein, required for the synthesis of RNA primers, is also a DNA helicase. J Biol Chem. 1982;257:12426–34.

    Article  CAS  PubMed  Google Scholar 

  109. Story RM, Steitz TA. Structure of the recA protein-ADP complex. Nature. 1992;355:374–6.

    Article  CAS  PubMed  Google Scholar 

  110. Pause A, Sonenberg N. Mutational analysis of a DEAD box RNA helicase: the mammalian translation initiation factor eIF-4A. EMBO J. 1992;11:2643–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Brosh Jr RM, Matson SW. Mutations in motif II of Escherichia coli DNA helicase II render the enzyme nonfunctional in both mismatch repair and excision repair with differential effects on the unwinding reaction. J Bacteriol. 1995;177:5612–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Weng Y, Czaplinski K, Peltz SW. Genetic and biochemical characterization of mutations in the ATPase and helicase regions of the Upf1 protein. Mol Cell Biol. 1996;16:5477–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Graves-Woodward KL, Gottlieb J, Challberg MD, Weller SK. Biochemical analyses of mutations in the HSV-1 helicase-primase that alter ATP hydrolysis, DNA unwinding, and coupling between hydrolysis and unwinding. J Biol Chem. 1997;272:4623–30.

    Article  CAS  PubMed  Google Scholar 

  114. Brosh Jr RM, Matson SW. A point mutation in Escherichia coli DNA helicase II renders the enzyme nonfunctional in two DNA repair pathways. Evidence for initiation of unwinding from a nick in vivo. J Biol Chem. 1997;272:572–9.

    Article  CAS  PubMed  Google Scholar 

  115. Brosh Jr RM, Matson SW. A partially functional DNA helicase II mutant defective in forming stable binary complexes with ATP and DNA. A role for helicase motif III. J Biol Chem. 1996;271:25360–8.

    Article  CAS  PubMed  Google Scholar 

  116. Graves-Woodward KL, Weller SK. Replacement of gly815 in helicase motif V alters the single-stranded DNA-dependent ATPase activity of the herpes simplex virus type 1 helicase-primase. J Biol Chem. 1996;271:13629–35.

    Article  CAS  PubMed  Google Scholar 

  117. Hall MC, Ozsoy AZ, Matson SW. Site-directed mutations in motif VI of Escherichia coli DNA helicase II result in multiple biochemical defects: evidence for the involvement of motif VI in the coupling of ATPase and DNA binding activities via conformational changes. J Mol Biol. 1998;277:257–71.

    Article  CAS  PubMed  Google Scholar 

  118. Banroques J, Cordin O, Doere M, Linder P, Tanner NK. A conserved phenylalanine of motif IV in superfamily 2 helicases is required for cooperative, ATP-dependent binding of RNA substrates in DEAD-box proteins. Mol Cell Biol. 2008;28:3359–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Cheng W, Hsieh J, Brendza KM, Lohman TM. E. coli Rep oligomers are required to initiate DNA unwinding in vitro. J Mol Biol. 2001;310:327–50.

    Article  CAS  PubMed  Google Scholar 

  120. Ha T, Rasnik I, Cheng W, Babcock HP, Gauss GH, Lohman TM, et al. Initiation and re-initiation of DNA unwinding by the Escherichia coli Rep helicase. Nature. 2002;419:638–41.

    Article  CAS  PubMed  Google Scholar 

  121. Maluf NK, Ali JA, Lohman TM. Kinetic mechanism for formation of the active, dimeric UvrD helicase-DNA complex. J Biol Chem. 2003;278:31930–40.

    Article  CAS  PubMed  Google Scholar 

  122. Lee JY, Yang W. UvrD helicase unwinds DNA bone base pair at a time by a two-part power stroke. Cell. 2006;127:1349–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Yao N, Hesson T, Cable M, Hong Z, Kwong AD, Le HV, et al. Structure of the hepatitis C virus RNA helicase domain. Nat Struct Biol. 1997;4:463–7.

    Article  CAS  PubMed  Google Scholar 

  124. Sengoku T, Nureki O, Nakamura A, Kobayashi S, Yokoyama S. Structural basis for RNA unwinding by the DEAD-box protein Drosophila Vasa. Cell. 2006;125:287–300.

    Article  CAS  PubMed  Google Scholar 

  125. Buttner K, Nehring S, Hopfner KP. Structural basis for DNA duplex separation by a superfamily-2 helicase. Nat Struct Mol Biol. 2007;14:647–52.

    Article  PubMed  CAS  Google Scholar 

  126. Singleton MR, Scaife S, Wigley DB. Structural analysis of DNA replication fork reversal by RecG. Cell. 2001;107:79–89.

    Article  CAS  PubMed  Google Scholar 

  127. Soultanas P, Wigley DB. DNA helicases: ‘inching forward’. Curr Opin Struct Biol. 2000;10:124–8.

    Article  CAS  PubMed  Google Scholar 

  128. Hargreaves D, Rice DW, Sedelnikova SE, Artymiuk PJ, Lloyd RG, Rafferty JB. Crystal structure of E. coli RuvA with bound DNA Holliday junction at 6 A resolution. Nat Struct Biol. 1998;5:441–6.

    Article  CAS  PubMed  Google Scholar 

  129. Ariyoshi M, Nishino T, Iwasaki H, Shinagawa H, Morikawa K. Crystal structure of the Holliday junction DNA in complex with a single RuvA tetramer. Proc Natl Acad Sci USA. 2000;97:8257–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Lam AM, Keeney D, Frick DN. Two novel conserved motifs in the hepatitis C virus NS3 protein critical for helicase action. J Biol Chem. 2003;278:44514–24.

    Article  CAS  PubMed  Google Scholar 

  131. Ali JA, Lohman TM. Kinetic measurement of the step size of DNA unwinding by Escherichia coli UvrD helicase. Science. 1997;275:377–80.

    Article  CAS  PubMed  Google Scholar 

  132. Wong I, Lohman TM. Allosteric effects of nucleotide cofactors on Escherichia coli Rep helicase-DNA binding. Science. 1992;256:350–5.

    Article  CAS  PubMed  Google Scholar 

  133. Manosas M, Xi XG, Bensimon D, Croquette V. Active and passive mechanisms of helicases. Nucleic Acids Res. 2010;38:5518–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Ali JA, Maluf NK, Lohman TM. An oligomeric form of E. coli UvrD is required for optimal helicase activity. J Mol Biol. 1999;293:815–34.

    Article  CAS  PubMed  Google Scholar 

  135. Maluf NK, Fischer CJ, Lohman TM. A dimer of Escherichia coli UvrD is the active form of the helicase in vitro. J Mol Biol. 2003;325:913–35.

    Article  CAS  PubMed  Google Scholar 

  136. Byrd AK, Matlock DL, Bagchi D, Aarattuthodiyil S, Harrison D, Croquette V, et al. Dda helicase tightly couples translocation on single-stranded dna to unwinding of duplex DNA: Dda is an optimally active helicase. J Mol Biol. 2012;420(3):141–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Myong S, Ha T. Stepwise translocation of nucleic acid motors. Curr Opin Struct Biol. 2010;20:121–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Ha T, Kozlov AG, Lohman TM. Single-molecule views of protein movement on single-stranded DNA. Annu Rev Biophys. 2012;41:295–319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Bianco PR, Brewer LR, Corzett M, Balhorn R, Yeh Y, Kowalczykowski SC, et al. Processive translocation and DNA unwinding by individual RecBCD enzyme molecules. Nature. 2001;409:374–8.

    Article  CAS  PubMed  Google Scholar 

  140. Dohoney KM, Gelles J. Chi-sequence recognition and DNA translocation by single RecBCD helicase/nuclease molecules. Nature. 2001;409:370–4.

    Article  CAS  PubMed  Google Scholar 

  141. Spies M, Bianco PR, Dillingham MS, Handa N, Baskin RJ, Kowalczykowski SC. A molecular throttle: the recombination hotspot chi controls DNA translocation by the RecBCD helicase. Cell. 2003;114:647–54.

    Article  CAS  PubMed  Google Scholar 

  142. Spies M, Amitani I, Baskin RJ, Kowalczykowski SC. RecBCD enzyme switches lead motor subunits in response to [chi] recognition. Cell. 2007;131:694–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Rasnik I, Myong S, Ha T. Unraveling helicase mechanisms one molecule at a time. Nucleic Acids Res. 2006;34:4225–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Park J, Myong S, Niedziela-Majka A, Lee KS, Yu J, Lohman TM, et al. PcrA helicase dismantles RecA filaments by reeling in DNA in uniform steps. Cell. 2010;142:544–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Niedziela-Majka A, Chesnik MA, Tomko EJ, Lohman TM. Bacillus stearothermophilus PcrA monomer is a single-stranded DNA translocase but not a processive helicase in vitro. J Biol Chem. 2007;282:27076–85.

    Article  CAS  PubMed  Google Scholar 

  146. Antony E, Tomko Q, Xiao L, Krejci L, Lohman TM, Ellengerger T. Srs2 disassembles Rad51 filaments by a protein-protein interaction triggering ATP turnover and dissociation of Rad51 from DNA. Mol Cell. 2009;35:105–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Myong S, Rasnik I, Joo C, Lohman TM, Ha T. Repetitive shuttling of a motor protein on DNA. Nature. 2005;437:1321–5.

    Article  CAS  PubMed  Google Scholar 

  148. Krejci L, Van KS, Li Y, Villemain J, Reddy MS, Klein H, et al. DNA helicase Srs2 disrupts the Rad51 presynaptic filament. Nature. 2003;423:305–9.

    Article  CAS  PubMed  Google Scholar 

  149. Veaute X, Jeusset J, Soustelle C, Kowalczykowski SC, Le CE, Fabre F. The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments. Nature. 2003;423:309–12.

    Article  CAS  PubMed  Google Scholar 

  150. Veaute X, Delmas S, Selva M, Jeusset J, Le CE, Matic I, et al. UvrD helicase, unlike Rep ­helicase, dismantles RecA nucleoprotein filaments in Escherichia coli. EMBO J. 2005;24:180–9.

    Article  CAS  PubMed  Google Scholar 

  151. Balci H, Arslan S, Myong S, Lohman TM, Ha T. Single-molecule nanopositioning: structural transitions of a helicase-DNA complex during ATP hydrolysis. Biophys J. 2011;101:976–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Hohng S, Joo C, Ha T. Single-molecule three-color FRET. Biophys J. 2004;87:1328–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Clamme JP, Deniz AA. Three-color single-molecule fluorescence resonance energy transfer. Chemphyschem. 2005;6:74–7.

    Article  CAS  PubMed  Google Scholar 

  154. Cheng W, Brendza KM, Gauss GH, Korolev S, Waksman G, Lohman TM. The 2B domain of the Escherichia coli Rep protein is not required for DNA helicase activity. Proc Natl Acad Sci U S A. 2002;99:16006–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Brendza KM, Cheng W, Fischer CJ, Chesnik MA, Niedziela-Majka A, Lohman TM. Autoinhibition of Escherichia coli Rep monomer helicase activity by its 2B subdomain. Proc Natl Acad Sci U S A. 2005;102:10076–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Fischer CJ, Maluf NK, Lohman TM. Mechanism of ATP-dependent translocation of E. coli UvrD monomers along single-stranded DNA. J Mol Biol. 2004;344:1287–309.

    Article  CAS  PubMed  Google Scholar 

  157. Dillingham MS, Wigley DB, Webb MR. Direct measurement of single-stranded DNA translocation by PcrA helicase using the fluorescent base analogue 2-aminopurine. Biochemistry. 2002;41:643–51.

    Article  CAS  PubMed  Google Scholar 

  158. Nanduri B, Byrd AK, Eoff RL, Tackett AJ, Raney KD. Pre-steady-state DNA unwinding by bacteriophage T4 Dda helicase reveals a monomeric molecular motor. Proc Natl Acad Sci U S A. 2002;99:14722–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Sikora B, Eoff RL, Matson SW, Raney KD. DNA unwinding by Escherichia coli DNA helicase I (TraI) provides evidence for a processive monomeric molecular motor. J Biol Chem. 2006;281:36110–6.

    Article  CAS  PubMed  Google Scholar 

  160. Zhang W, Dillingham MS, Thomas CD, Allen S, Roberts CJ, Soultanas P. Directional loading and stimulation of PcrA helicase by the replication initiator protein RepD. J Mol Biol. 2007;371:336–48.

    Article  CAS  PubMed  Google Scholar 

  161. Chao KL, Lohman TM. DNA-induced dimerization of the Escherichia coli Rep helicase. J Mol Biol. 1991;221:1165–81.

    Article  CAS  PubMed  Google Scholar 

  162. Wong I, Chao KL, Bujalowski W, Lohman TM. DNA-induced dimerization of the Escherichia coli rep helicase. Allosteric effects of single-stranded and duplex DNA. J Biol Chem. 1992;267:7596–610.

    Article  CAS  PubMed  Google Scholar 

  163. Amaratunga M, Lohman TM. Escherichia coli rep helicase unwinds DNA by an active mechanism. Biochemistry. 1993;32:6815–20.

    Article  CAS  PubMed  Google Scholar 

  164. Bjornson KP, Amaratunga M, Moore KJ, Lohman TM. Single-turnover kinetics of helicase-catalyzed DNA unwinding monitored continuously by fluorescence energy transfer. Biochemistry. 1994;33:14306–16.

    Article  CAS  PubMed  Google Scholar 

  165. Bjornson KP, Moore KJ, Lohman TM. Kinetic mechanism of DNA binding and DNA-induced dimerization of the Escherichia coli Rep helicase. Biochemistry. 1996;35:2268–82.

    Article  CAS  PubMed  Google Scholar 

  166. Barranco-Medina S, Galletto R. DNA binding induces dimerization of Saccharomyces cerevisiae Pif1. Biochemistry. 2010;49(39):8445–54.

    Article  CAS  PubMed  Google Scholar 

  167. Rasnik I, Myong S, Cheng W, Lohman TM, Ha T. DNA-binding orientation and domain conformation of the E. coli rep helicase monomer bound to a partial duplex junction: single-molecule studies of fluorescently labeled enzymes. J Mol Biol. 2004;336:395–408.

    Article  CAS  PubMed  Google Scholar 

  168. Wagner M, Price G, Rothstein R. The absence of Top3 reveals an interaction between the Sgs1 and Pif1 DNA helicases in Saccharomyces cerevisiae. Genetics. 2006;174:555–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Atkinson J, Gupta MK, Rudolph CJ, Bell H, Lloyd RG, McGlynn P. Localization of an accessory helicase at the replisome is critical in sustaining efficient genome duplication. Nucleic Acids Res. 2011;39(3):949–57.

    Article  CAS  PubMed  Google Scholar 

  170. Korhonen JA, Gaspari M, Falkenberg M. TWINKLE Has 5′ -> 3′ DNA helicase activity and is specifically stimulated by mitochondrial single-stranded DNA-binding protein. J Biol Chem. 2003;278:48627–32.

    Article  CAS  PubMed  Google Scholar 

  171. Cadman CJ, McGlynn P. PriA helicase and SSB interact physically and functionally. Nucleic Acids Res. 2004;32:6378–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Shereda RD, Bernstein DA, Keck JL. A central role for SSB in Escherichia coli RecQ DNA helicase function. J Biol Chem. 2007;282:19247–58.

    Article  CAS  PubMed  Google Scholar 

  173. Rajagopal V, Patel SS. Single strand binding proteins increase the processivity of DNA unwinding by the hepatitis C virus helicase. J Mol Biol. 2008;376:69–79.

    Article  CAS  PubMed  Google Scholar 

  174. Sowd G, Wang H, Pretto D, Chazin WJ, Opresko PL. Replication protein A stimulates the Werner syndrome protein branch migration activity. J Biol Chem. 2009;284:34682–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Scott JF, Eisenberg S, Bertsch LL, Kornberg A. A mechanism of duplex DNA replication revealed by enzymatic studies of phage phi X174: catalytic strand separation in advance of replication. Proc Natl Acad Sci U S A. 1977;74:193–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Eisenberg S, Griffith J, Kornberg A. phiX174 cistron A protein is a multifunctional enzyme in DNA replication. Proc Natl Acad Sci U S A. 1977;74:3198–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Yarranton GT, Gefter ML. Enzyme-catalyzed DNA unwinding: studies on Escherichia coli rep protein. Proc Natl Acad Sci U S A. 1979;76:1658–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Reinberg D, Zipursky SL, Weisbeek P, Brown D, Hurwitz J. Studies on the phi X174 gene A protein-mediated termination of leading strand DNA synthesis. J Biol Chem. 1983;258:529–37.

    Article  CAS  PubMed  Google Scholar 

  179. Soultanas P, Dillingham MS, Papadopoulos F, Phillips SE, Thomas CD, Wigley DB. Plasmid replication initiator protein RepD increases the processivity of PcrA DNA helicase. Nucleic Acids Res. 1999;27:1421–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Slatter AF, Thomas CD, Webb MR. PcrA helicase tightly couples ATP hydrolysis to unwinding double-stranded DNA, modulated by the initiator protein for plasmid replication, RepD. Biochemistry. 2009;48(27):6326–34.

    Article  CAS  PubMed  Google Scholar 

  181. Wigley DB. RecBCD: the supercar of DNA repair. Cell. 2007;131:651–3.

    Article  CAS  PubMed  Google Scholar 

  182. Taylor AF, Smith GR. RecBCD enzyme is a DNA helicase with fast and slow motors of opposite polarity. Nature. 2003;423:889–93.

    Article  CAS  PubMed  Google Scholar 

  183. Roman LJ, Eggleston AK, Kowalczykowski SC. Processivity of the DNA helicase activity of Escherichia coli recBCD enzyme. J Biol Chem. 1992;267:4207–14.

    Article  CAS  PubMed  Google Scholar 

  184. Lam ST, Stahl MM, McMilin KD, Stahl FW. Rec-mediated recombinational hot spot activity in bacteriophage lambda. II. A mutation which causes hot spot activity. Genetics. 1974;77:425–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Anderson DG, Kowalczykowski SC. The recombination hot spot chi is a regulatory element that switches the polarity of DNA degradation by the RecBCD enzyme. Genes Dev. 1997;11:571–81.

    Article  CAS  PubMed  Google Scholar 

  186. Boehmer PE, Emmerson PT. The RecB subunit of the Escherichia coli RecBCD enzyme couples ATP hydrolysis to DNA unwinding. J Biol Chem. 1992;267:4981–7.

    Article  CAS  PubMed  Google Scholar 

  187. Bianco PR, Kowalczykowski SC. Translocation step size and mechanism of the RecBC DNA helicase. Nature. 2000;405:368–72.

    Article  CAS  PubMed  Google Scholar 

  188. Rigden DJ. An inactivated nuclease-like domain in RecC with novel function: implications for evolution. BMC Struct Biol. 2005;5:9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Marsh VL, McGeoch AT, Bell SD. Influence of chromatin and single strand binding proteins on the activity of an archaeal MCM. J Mol Biol. 2006;357:1345–50.

    Article  CAS  PubMed  Google Scholar 

  190. Guy CP, Atkinson J, Gupta MK, Mahdi A, Gwynn EJ, Rudolph CJ, et al. Rep provides a second motor at the replisome to promote duplication of protein-bound DNA. Mol Cell. 2009;36:654–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Bae SH, Seo YS. Characterization of the enzymatic properties of the yeast dna2 helicase/endonuclease suggests a new model for Okazaki fragment processing. J Biol Chem. 2000;275:38022–31.

    Article  CAS  PubMed  Google Scholar 

  192. Henry RA, Balakrishnan L, Ying-Lin ST, Campbell JL, Bambara RA. Components of the secondary pathway stimulate the primary pathway of eukaryotic Okazaki fragment processing. J Biol Chem. 2010;285:28496–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Ivessa AS, Zhou JQ, Schulz VP, Monson EK, Zakian VA. Saccharomyces Rrm3p, a 5′ to 3′ DNA helicase that promotes replication fork progression through telomeric and subtelomeric DNA. Genes Dev. 2002;16:1383–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Azvolinsky AS, Dunaway S, Torres JZ, Bessler JB, Zakian VA. The S. cerevisiae Rrm3p DNA helicase moves with the replication fork and affects replication of all yeast ­chromosomes. Genes Dev. 2006;20:3104–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Armstrong AA, Mohideen F, Lima CD. Recognition of SUMO-modified PCNA requires tandem receptor motifs in Srs2. Nature. 2012;483:59–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Schulz VP, Zakian VA. The Saccharomyces PIF1 DNA helicase inhibits telomere elongation and de novo telomere formation. Cell. 1994;76:145–55.

    Article  CAS  PubMed  Google Scholar 

  197. Zhou J, Monson EK, Teng SC, Schulz VP, Zakian VA. Pif1p helicase, a catalytic inhibitor of telomerase in yeast. Science. 2000;289:771–4.

    Article  CAS  PubMed  Google Scholar 

  198. Boule JB, Vega LR, Zakian VA. The yeast Pif1p helicase removes telomerase from telomeric DNA. Nature. 2005;438:57–61.

    Article  CAS  PubMed  Google Scholar 

  199. Jongeneel CV, Bedinger P, Alberts BM. Effects of the bacteriophage T4 dda protein on DNA synthesis catalyzed by purified T4 replication proteins. J Biol Chem. 1984;259:12933–8.

    Article  CAS  PubMed  Google Scholar 

  200. Amundsen SK, Taylor AF, Chaudhury AM, Smith GR. recD: the gene for an essential third subunit of exonuclease V. Proc Natl Acad Sci U S A. 1986;83:5558–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Lahue EE, Matson SW. Purified Escherichia coli F-factor TraY protein binds oriT. J Bacteriol. 1990;172:1385–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Iordanescu S, Bargonetti J. Staphylococcus aureus chromosomal mutations that decrease efficiency of Rep utilization in replication of pT181 and related plasmids. J Bacteriol. 1989;171:4501–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Dodson MS, Lehman IR. Association of DNA helicase and primase activities with a subassembly of the herpes simplex virus 1 helicase-primase composed of the UL5 and UL52 gene products. Proc Natl Acad Sci U S A. 1991;88:1105–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Rong L, Palladino F, Aguilera A, Klein HL. The hyper-gene conversion hpr5-1 mutation of Saccharomyces cerevisiae is an allele of the SRS2/RADH gene. Genetics. 1991;127:75–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Gauss P, Park K, Spencer TE, Hacker KJ. DNA helicase requirements for DNA replication during bacteriophage T4 infection. J Bacteriol. 1994;176:1667–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Bjornson KP, Wong I, Lohman TM. ATP hydrolysis stimulates binding and release of single stranded DNA from alternating subunits of the dimeric E. coli Rep helicase: implications for ATP-driven helicase translocation. J Mol Biol. 1996;263:411–22.

    Article  CAS  PubMed  Google Scholar 

  207. Budd ME, Campbell JL. A yeast replicative helicase, Dna2 helicase, interacts with yeast FEN-1 nuclease in carrying out its essential function. Mol Cell Biol. 1997;17:2136–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Bird LE, Brannigan JA, Subramanya HS, Wigley DB. Characterisation of Bacillus stearothermophilus PcrA helicase: evidence against an active rolling mechanism. Nucleic Acids Res. 1998;26:2686–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Dao V, Modrich P. Mismatch-, MutS-, MutL-, and helicase II-dependent unwinding from the single-strand break of an incised heteroduplex. J Biol Chem. 1998;273:9202–7.

    Article  CAS  PubMed  Google Scholar 

  210. Petit MA, Dervyn E, Rose M, Entian KD, McGovern S, Ehrlich SD, et al. PcrA is an essential DNA helicase of Bacillus subtilis fulfilling functions both in repair and rolling-circle replication. Mol Microbiol. 1998;29:261–73.

    Article  CAS  PubMed  Google Scholar 

  211. Bruand C, Ehrlich SD. UvrD-dependent replication of rolling-circle plasmids in Escherichia coli. Mol Microbiol. 2000;35:204–10.

    Article  CAS  PubMed  Google Scholar 

  212. Ivessa AS, Zhou JQ, Zakian VA. The Saccharomyces Pif1p DNA helicase and the highly related Rrm3p have opposite effects on replication fork progression in ribosomal DNA. Cell. 2000;100:479–89.

    Article  CAS  PubMed  Google Scholar 

  213. Wang SW, Goodwin A, Hickson ID, Norbury CJ. Involvement of Schizosaccharomyces pombe Srs2 in cellular responses to DNA damage. Nucleic Acids Res. 2001;29:2963–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Choe W, Budd M, Imamura O, Hoopes L, Campbell JL. Dynamic localization of an Okazaki fragment processing protein suggests a novel role in telomere replication. Mol Cell Biol. 2002;22:4202–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Lesur I, Campbell JL. The transcriptome of prematurely aging yeast cells is similar to that of telomerase-deficient cells. Mol Biol Cell. 2004;15:1297–312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Ding H, Schertzer M, Wu X, Gertsenstein M, Selig S, Kammori M, et al. Regulation of murine telomere length by Rtel: an essential gene encoding a helicase-like protein. Cell. 2004;117:873–86.

    Article  CAS  PubMed  Google Scholar 

  217. Opresko PL, Otterlei M, Graakjaer J, Bruheim P, Dawut L, Kolvraa S, et al. The Werner syndrome helicase and exonuclease cooperate to resolve telomeric D loops in a manner regulated by TRF1 and TRF2. Mol Cell. 2004;14:763–74.

    Article  CAS  PubMed  Google Scholar 

  218. Budd ME, Reis CC, Smith S, Myung K, Campbell JL. Evidence suggesting that Pif1 helicase functions in DNA replication with the Dna2 helicase/nuclease and DNA polymerase delta. Mol Cell Biol. 2006;26:2490–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Liao S, Toczylowski T, Yan H. Identification of the Xenopus DNA2 protein as a major nuclease for the 5′->3′ strand-specific processing of DNA ends. Nucleic Acids Res. 2008;36:6091–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Rossi ML, Pike JE, Wang W, Burgers PM, Campbell JL, Bambara RA. Pif1 helicase directs eukaryotic Okazaki fragments toward the two-nuclease cleavage pathway for primer removal. J Biol Chem. 2008;283:27483–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. London TB, Barber LJ, Mosedale G, Kelly GP, Balasubramanian S, Hickson ID, et al. FANCJ is a structure-specific DNA helicase associated with the maintenance of genomic G/C tracts. J Biol Chem. 2008;283:36132–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Wu Y, Shin-ya K, Brosh Jr RM. FANCJ helicase defective in Fanconia anemia and breast cancer unwinds G-quadruplex DNA to defend genomic stability. Mol Cell Biol. 2008;28:4116–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Pike JE, Burgers PM, Campbell JL, Bambara RA. Pif1 helicase lengthens some Okazaki fragment flaps necessitating Dna2 nuclease/helicase action in the two-nuclease processing pathway. J Biol Chem. 2009;284:25170–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Ghosh A, Rossi ML, Aulds J, Croteau D, Bohr VA. Telomeric D-loops containing 8-oxo-2′-deoxyguanosine are preferred substrates for Werner and Bloom syndrome helicases and are bound by POT1. J Biol Chem. 2009;284:31074–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Burgers PM. Polymerase dynamics at the eukaryotic DNA replication fork. J Biol Chem. 2009;284:4041–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Chakraborty P, Grosse F. WRN helicase unwinds Okazaki fragment-like hybrids in a reaction stimulated by the human DHX9 helicase. Nucleic Acids Res. 2010;38:4722–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. van de Putte P, van Sluis CA, van Dillewijn J, Rorsch A. The location of genes controlling radiation sensitivity in Escherichia coli. Mutat Res. 1965;2:97–110.

    Article  PubMed  Google Scholar 

  228. Ogawa H, Shimada K, Tomizawa J. Studies on radiation-sensitive mutants of E. coli. I. Mutants defective in the repair synthesis. Mol Gen Genet. 1968;101:227–44.

    Article  CAS  PubMed  Google Scholar 

  229. Arthur HM, Lloyd RG. Hyper-recombination in uvrD mutants of Escherichia coli K-12. Mol Gen Genet. 1980;180:185–91.

    Article  CAS  PubMed  Google Scholar 

  230. Jongeneel CV, Formosa T, Alberts BM. Purification and characterization of the bacteriophage T4 dda protein. A DNA helicase that associates with the viral helix-destabilizing protein. J Biol Chem. 1984;259:12925–32.

    Article  CAS  PubMed  Google Scholar 

  231. Jongeneel CV, Formosa T, Munn M, Alberts BM. Enzymological studies of the T4 replication proteins. Adv Exp Med Biol. 1984;179:17–33.

    Article  CAS  PubMed  Google Scholar 

  232. Bjornson KP, Hsieh J, Amaratunga M, Lohman TM. Kinetic mechanism for the sequential binding of two single-stranded oligodeoxynucleotides to the Escherichia coli Rep helicase dimer. Biochemistry. 1998;37:891–9.

    Article  CAS  PubMed  Google Scholar 

  233. Sikora B, Chen Y, Lichti CF, Harrison MK, Jennings TA, Tang Y, et al. Hepatitis C virus NS3 helicase forms oligomeric structures that exhibit optimal DNA unwinding activity in vitro. J Biol Chem. 2008;283:11516–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Tomko EJ, Fischer CJ, Lohman TM. Single-stranded DNA translocation of E. coli UvrD monomer is tightly coupled to ATP hydrolysis. J Mol Biol. 2012;418:32–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Lucius AL, Wong CJ, Lohman TM. Fluorescence stopped-flow studies of single turnover kinetics of E. coli RecBCD helicase-catalyzed DNA unwinding. J Mol Biol. 2004;339:731–50.

    Article  CAS  PubMed  Google Scholar 

  236. Lucius AL, Lohman TM. Effects of temperature and ATP on the kinetic mechanism and kinetic step-size for E. coli RecBCD helicase-catalyzed DNA unwinding. J Mol Biol. 2004;339:751–71.

    Article  CAS  PubMed  Google Scholar 

  237. Lucius AL, Vindigni A, Gregorian R, Ali JA, Taylor AF, Smith GR, et al. DNA unwinding step-size of E. coli RecBCD helicase determined from single turnover chemical quenched-flow kinetic studies. J Mol Biol. 2002;324:409–28.

    Article  CAS  PubMed  Google Scholar 

  238. Wu CG, Lohman TM. Influence of DNA end structure on the mechanism of initiation of DNA unwinding by the Escherichia coli RecBCD and RecBC helicases. J Mol Biol. 2008;382:312–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Dillingham MS, Webb MR, Kowalczykowski SC. Bipolar DNA translocation contributes to highly processive DNA unwinding by RecBCD enzyme. J Biol Chem. 2005;280:37069–77.

    Article  CAS  PubMed  Google Scholar 

  240. Yang Y, Dou SX, Ren H, Wang PY, Zhang XD, Qian M, et al. Evidence for a functional dimeric form of the PcrA helicase in DNA unwinding. Nucleic Acids Res. 2008;36:1976–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Eoff RL, Raney KD. Intermediates revealed in the kinetic mechanism for DNA unwinding by a monomeric helicase. Nat Struct Mol Biol. 2006;13:242–9.

    Article  CAS  PubMed  Google Scholar 

  242. Eoff RL, Raney KD. Kinetic mechanism for DNA unwinding by multiple molecules of Dda helicase aligned on DNA. Biochemistry. 2010;49:4543–53.

    Article  CAS  PubMed  Google Scholar 

  243. Lahue EE, Matson SW. Escherichia coli DNA helicase I catalyzes a unidirectional and highly processive unwinding reaction. J Biol Chem. 1988;263:3208–15.

    Article  CAS  PubMed  Google Scholar 

  244. Wu CG, Bradford C, Lohman TM. Escherichia coli RecBC helicase has two translocase activities controlled by a single ATPase motor. Nat Struct Mol Biol. 2010;17(10):1210–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Funding for this work was provided by NIH R01 GM098922 (K.D.R.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin D. Raney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Raney, K.D., Byrd, A.K., Aarattuthodiyil, S. (2013). Structure and Mechanisms of SF1 DNA Helicases. In: Spies, M. (eds) DNA Helicases and DNA Motor Proteins. Advances in Experimental Medicine and Biology, vol 767. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5037-5_2

Download citation

Publish with us

Policies and ethics