Skip to main content

Exploring Surfaces of Materials with Atomic Force Microscopy

  • Chapter
  • First Online:

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Several aspects of Atomic Force Microscopy (AFM) are considered in this chapter. Theoretical backgrounds of AFM, which are based on the asymptotic solution of tip–sample interactions, lead to the classification of modes and computer simulations of images and force curves. Visualization of surface morphology with high resolution is the main AFM application. The practical issues of the high-resolution imaging, tracking of corrugated surfaces, and compositional mapping of multicomponent polymers are illustrated in several examples. The components of heterogeneous systems are recognized by their specific shape or by their different mechanical and electric properties revealed in the AFM-based methods. The challenges of the quantitative nanomechanical studies of soft materials are discussed. The multifrequency examination of local electric/dielectric properties is presented by the single-pass studies of surface potential and dielectric response on various samples.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The phase contrast is defined differently in the scanning probe microscopes of different manufacturers. In the NTEGRA microscope made by NT-MDT (Zelenograd, Russia), which was used for most of the measurements presented in this chapter, the phase changes through the resonance from −90° to +90°.

References

  1. G. Binnig, H. Rohrer, C. Gerber, E. Weibel, Surface studies by scanning tunneling microscopy. Phys. Rev. Lett. 49, 57–61 (1982)

    Article  Google Scholar 

  2. R. Young, J. Ward, F. Scire, The topographiner: An instrument for measuring surface microtopography. Rev. Sci. Instrum. 43, 999–1011 (1972)

    Article  Google Scholar 

  3. G. Binnig, C.F. Quate, C. Gerber, Atomic force microscope. Phys. Rev. Lett. 56, 930–933 (1986)

    Article  Google Scholar 

  4. G. Schmalz, Uber Glätte und Ebenheit als physikalisches und physiologishes problem. Z. Vereines Deutscher Ingenieure. Oct 12, 1461–1467 (1929)

    Google Scholar 

  5. J.E. Sader, S.P. Jarvis, Accurate formulas for interaction force and energy in frequency modulation force spectroscopy. Appl. Phys. Lett. 84, 1801–1803 (2004)

    Article  CAS  Google Scholar 

  6. R. Garcia, P. Perez, Dynamic atomic force microscopy methods. Surf. Sci. Rep. 47, 197–301 (2002)

    Article  CAS  Google Scholar 

  7. R.W. Stark, W.M. Heckl, Rev. Sci. Instrum. 74, 5111 (2003)

    Article  CAS  Google Scholar 

  8. S. Timoshenko, Vibration Problems in Engineering, 3rd edn. (D van Nostrand, New York, 1955)

    Google Scholar 

  9. N. Krylov, N. Bogolubov, Introduction to Non-Linear Mechanics (Princeton University Press, Princeton, NJ, 1949)

    Google Scholar 

  10. T. Fukuma, T. Ichii, K. Kobayashi, H. Yamada, K. Matsushige, True-molecular resolution imaging by frequency modulation atomic force microscopy in various environments. Appl. Phys. Lett. 86, 034103–034105 (1995)

    Article  Google Scholar 

  11. D. Maugis, Contact, Adhesion and Rupture of Elastic Solids (Springer, Berlin, 2000)

    Google Scholar 

  12. S. Belikov, S. Magonov, Classification of dynamic atomic force microscopy control modes based on asymptotic nonlinear mechanics, in Proceedings of American Control Society, St. Louis, pp. 979–985 (2009)

    Google Scholar 

  13. S. Belikov, S. Magonov, Tip-sample interaction force modeling for AFM simulation, control design, and material property measurement, in Proceedings of American Control Conference, pp. 2867–2872 (2011)

    Google Scholar 

  14. S. Belikov, N. Erina, S. Magonov, Interplay between an experiment and theory in probing mechanical properties and phase imaging of heterogeneous polymer materials. J. Phys. Conf. Ser. 6, 765–769 (2007)

    Article  Google Scholar 

  15. S. Belikov, S. Magonov, True molecular-scale imaging in atomic force microscopy: Experiment and modeling. Jpn. J. Appl. Phys. 45, 2158–2165 (2006)

    Article  CAS  Google Scholar 

  16. Q. Zhong, D. Innis, K. Kjoller, V. Elings, Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy. Surf. Sci. Lett. 290, L688–L692 (1993)

    Article  CAS  Google Scholar 

  17. B. Mesa, S. Magonov, Novel diamond/sapphire probes for scanning probe microscopy applications. J. Phys. Conf. Ser. 61, 770–774 (2007)

    Article  CAS  Google Scholar 

  18. S.N. Magonov, AFM in Analysis of Polymers, in Encyclopedia of Analytical Chemistry, ed. by R.A. Meyers (Wiley, Chichester, 2000), pp. 7432–7491

    Google Scholar 

  19. S.N. Magonov, V. Elings, J. Cleveland, D. Denley, M.-H. Whangbo, Tapping-mode atomic force microscopy study of the near-surface composition of a styrene-butadiene-styrene triblock copolymer film. Surf. Sci. 389, 201–211 (1997)

    Article  CAS  Google Scholar 

  20. W. Stocker, G. Bar, M. Kunz, M. Möller, S.N. Magonov, H.-J. Cantow, Atomic force Microscopy on polymers and polymer related compounds 2. Monocrystals of normal and cyclic alkanes C33H68, C36H74, C48H96, C72H144. Polym. Bull. 26, 215–222 (1991)

    Article  CAS  Google Scholar 

  21. C.C. McGonigal, R.H. Bernhardt, D.J. Thomson, Imaging alkane layers at the liquid/graphite interface with the scanning tunneling microscope. Appl. Phys. Lett. 57, 28–30 (1990)

    Article  CAS  Google Scholar 

  22. W. Hofbauer, R.J. Ho, R. Hairulnizam, N.N. Gosvami, S.J. O’Shea, Crystalline structure and squeeze-out dissipation of liquid solvation layers observed by small-amplitude dynamic AFM. Phys. Rev. B 80, 134104–134109 (2009)

    Article  Google Scholar 

  23. D. Klinov, S. Magonov, True molecular resolution in tapping mode atomic force microscopy. Appl. Phys. Lett. 84, 2697–2699 (2004)

    Article  CAS  Google Scholar 

  24. R.I. Gearba, A.I. Bondar, M. Lehmann, B. Goderis, W. Bras, M.H.J. Koch, D.A. Ivanov, Templating crystal growth at the nano-scale with a thermotropic columnar mesophase. Adv. Mater. 17, 671–676 (2005)

    Article  CAS  Google Scholar 

  25. S.M. Lindsay, T. Thundat, L. Nagahara, U. Knipping, R.L. Rill, Images of the DNA double helix in water. Science 244, 1063–1064 (1989)

    Article  CAS  Google Scholar 

  26. J. Kumaki, T. Hashimoto, Conformational change in an isolated single synthetic polymer chain on a mica surface observed by atomic force microscopy. J. Am. Chem. Soc. 125, 4907–4917 (2003)

    Article  CAS  Google Scholar 

  27. I.S. Yermolenko, V.K. Lishko, T.P. Ugarova, S.N. Magonov, High-resolution visualization of fibrinogen molecules and fibrin fibrils with atomic force microscopy. Biomacromolecules 12, 370–379 (2011)

    Article  CAS  Google Scholar 

  28. A.L. Weisenhorn, P.K. Hansma, T.R. Albrecht, C.F. Quate, Forces in atomic force microscopy in air and water. Appl. Phys. Lett. 54, 2651–2653 (1989)

    Article  Google Scholar 

  29. B.V. Derjaguin, The force between the molecules. Sci. Am. 203, 47–53 (1960)

    Article  Google Scholar 

  30. D. Tabor, R.H.S. Winterton, Surface forces: Direct measurement of normal and retarded van der Waals forces. Nature 219, 1120–1128 (1968)

    Article  CAS  Google Scholar 

  31. S.I. Bulychev, S.I. Alekhin, M.K. Shorshorov, A.P. Ternovskii, G.D. Shnyrev, Determination of Young’s modulus according to the indentation diagram. Ind. Lab. 41, 1409–1412 (1975)

    Google Scholar 

  32. N.A. Burnham, R.J. Colton, Measuring the nanomechanical properties and surface forces of materials using an atomic force microscope. J. Vac. Sci. Technol. A 7, 2906–2913 (1989)

    Article  CAS  Google Scholar 

  33. H.-U. Krotil, T. Stifter, H. Waschipky, K. Weishaupt, S. Hild, O. Marti, Pulsed force mode: A new method for the investigation of surface properties. Surf. Interface Anal. 27, 336–340 (1999)

    Article  CAS  Google Scholar 

  34. O. Sahin, S. Magonov, C. Su, C.F. Quate, O. Solgaard, An atomic force microscopy tip designed to measure time-varying nanomechanical forces. Nat. Nanotechnol. 2, 507–514 (2007)

    Article  Google Scholar 

  35. A.F. Sarioglu, O. Solgaard, Cantilevers with integrated sensor for time-resolved force measurements in tapping-mode atomic force microscopy. Appl. Phys. Lett. 93, 023114–023116 (2008)

    Article  Google Scholar 

  36. J.L. Hutter, J. Bechhoefer, Calibration of atomic-force microscope tips. Rev. Sci. Instrum. 64, 1868–1873 (1993)

    Article  CAS  Google Scholar 

  37. H. Hertz, Uber die Beruhrung fester elasticher Korper. J. Reine Angew. Math. 92, 156–171 (1882)

    Google Scholar 

  38. I. Sneddon, The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47–57 (1965)

    Article  Google Scholar 

  39. S. Belikov et al., J. Phys. Conf. Ser. 61, 1303–1307 (2007)

    Article  CAS  Google Scholar 

  40. S. Belikov, N. Erina, L. Huang, C. Su, C. Prater, S. Magonov, V. Ginzburg, B. McIntyre, H. Lakrout, G. Meyers, Parametrization of atomic force microscopy tip shape models for quantitative nanomechanical measurements. J. Vac. Sci. Technol. B 27, 984–992 (2009)

    Article  CAS  Google Scholar 

  41. W. Oliver, G. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19, 3–20 (2004)

    Article  CAS  Google Scholar 

  42. S.N. Magonov, D.H. Reneker, Characterization of polymer surfaces with atomic force microscopy. Annu. Rev. Mater. Sci. 27, 175–222 (1997)

    Article  CAS  Google Scholar 

  43. B.V. Derjaguin, V.M. Miller, Y.P. Toporov, Effect of contact deformations on the adhesion of particles. J. Colloid. Interface Sci. 53, 314–326 (1975)

    Article  CAS  Google Scholar 

  44. K.L. Johnson, K. Kendall, A.D. Roberts, Surface energy and the contact of elastic solids. Proc. R. Soc. Lond. A 324, 301–313 (1971)

    Article  CAS  Google Scholar 

  45. S.N. Magonov, N.A. Yerina, Scanning Probe Microscopy of Elastomers and Rubbery Materials, Chap. 23, ed. by A. Bhowmick. Current Topics of Elastomers Research (Taylor & Francis Group, Oxford, 2008)

    Google Scholar 

  46. Y. Martin, D.A. Abraham, H.K. Wickramasinghe, High-resolution capacitance measurement and potentiometry by force microscopy. Appl. Phys. Lett. 52, 1103–10005 (1988)

    Article  Google Scholar 

  47. K. Kobayashi, H. Yamada, K. Matsushige, Dopant profiling on semiconducting sample by scanning capacitance force microscopy. Appl. Phys. Lett. 81, 2629 (2002)

    Article  CAS  Google Scholar 

  48. V.B. Elings, J.A. Gurley, Scanning probe microscope using stored data for vertical probe positioning. U.S. Patent 5,308,974 (1994)

    Google Scholar 

  49. J. Alexander, S. Magonov, M. Moeller, Topography and surface potential in Kelvin force microscopy of perfluoroalkyl alkanes self-assemblies. J. Vac. Sci. Technol. B 27, 903–911 (2009)

    Article  CAS  Google Scholar 

  50. S. Magonov, J. Alexander, Beilstein J. Nanotechnol. 2, 15–27 (2011)

    Article  CAS  Google Scholar 

  51. U. Zerweck, C. Loppacher, T. Otto, S. Grafstroem, L.M. Eng, Accuracy and resolution limits of Kelvin probe force microscopy. Phys. Rev. B 71, 125424–125433 (2005)

    Article  Google Scholar 

  52. F. Krok, K. Sajewicz, J. Konior, M. Goryl, P. Piatkowski, M. Szymonski, Lateral resolution and potential sensitivity in Kelvin probe force microscopy: Towards understanding of the sub-nanometer resolution. Phys. Rev. B 77, 235427–235429 (2008)

    Article  Google Scholar 

  53. J. Colchero, A. Gil, A.M. Baro, Resolution enhancement and improved data interpretation in electrostatic force microscopy. Phys. Rev. B 64, 245403–14 (2001)

    Article  Google Scholar 

  54. S. Magonov, J. Alexander, J. Belikov, Single-Pass Measurements in Atomic Force Microscopy: Kelvin Force Microscopy and Local Dielectric Studies. Application Note, January 2012, NT-MDT Development Inc. (2012)

    Google Scholar 

  55. F. Giessibl, Forces and frequency shifts in atomic-resolution dynamic-force microscopy. Phys. Rev. B 56, 16010–16015 (1997)

    Article  CAS  Google Scholar 

  56. S. Magonov, J. Alexander, S.-H. Jeoung, N. Kotov, High-resolution imaging of molecular and nanoparticles self-assemblies with Kelvin force microscopy. J. Nanosci. Nanotechnol. 10, 1–5 (2010)

    Article  Google Scholar 

  57. A. Mourran, B. Tartsch, M. Gallyamov, S. Magonov, D. Lambreva, B.I. Ostrovskii, I.P. Dolbnya, W.H. de Jeu, M. Moeller, Self-assembly of the perfluoroalkyl-alkane F14H20 in ultrathin films. Langmuir 21, 2308–2316 (2005)

    Article  CAS  Google Scholar 

  58. A. El Abed, M.-C. Faure, E. Pouzet, O. Abilon, Experimental evidence for an original two-dimensional phase structure: An antiparallel semifluorinated monolayer at the air-water interface. Phys. Rev. E 5, 051603–051604 (2002)

    Article  Google Scholar 

  59. S. Magonov, J. Alexander, S. Wu, Advancing Characterization of Materials with Atomic Force Microscopy – Based Electric Techniques, in Scanning Probe Microscopy of Functional Materials: Nanoscale Imaging and Spectroscopy, ed. by S.V. Kalinin, A. Gruverman (Springer, Berlin, 2010), pp. 233–300

    Chapter  Google Scholar 

  60. P.S. Crider, M.R. Majewski, J. Zhang, H. Oukris, N.E. Israeloff, Local dielectric spectroscopy of near-surface glassy polymer dynamics. J. Chem. Phys. 128, 044908–5 (2008)

    Article  CAS  Google Scholar 

  61. C. Riedel, R. Arinero, P. Tordjeman, G. Lévêque, G.A. Schwartz, A. Alegria, J. Colmenero, Nanodielectric mapping of a model polystyrene-poly(vinyl acetate) blend by electrostatic force microscopy. Phys. Rev. E 81, 010801–010804 (2010)

    Article  CAS  Google Scholar 

  62. G. Gomila, J. Toset, L. Fumagali, Nanoscale capacitance microscopy of thin dielectric films. J. Appl. Phys. 104(024315), 1–8 (2008)

    Google Scholar 

  63. S. Belilkov, J. Alexander, S. Magonov, I. Yermolenko, Atomic force microscopy control system for electrostatic measurements based on mechanical and electrical modulation. American Control Conference, Montreal 3228–3233 (2012)

    Google Scholar 

  64. L. Xue, W. Li, G.G. Hoffmann, J.G.P. Goossens, J. Loos, G. de With, High-resolution chemical identification of polymer blend thin films using tip-enhanced Raman mapping. Macromolecules 44, 2852–2858 (2011)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Magonov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Magonov, S., Alexander, J., Belikov, S. (2013). Exploring Surfaces of Materials with Atomic Force Microscopy. In: Korkin, A., Lockwood, D. (eds) Nanoscale Applications for Information and Energy Systems. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5016-0_7

Download citation

Publish with us

Policies and ethics