Skip to main content

Crossroads of Science and Therapy

  • Chapter
  • First Online:
  • 2706 Accesses

Abstract

Endovascular therapy now ranges across the spectrum of arterial and venous disease. This chapter will examine the changing basic science considerations RELEVANT endovascular therapy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lam RC, Shah S, Faries PL, McKinsey JF, Kent KC, Morrissey NJ. Incidence and clinical significance of distal embolization during percutaneous interventions involving the superficial femoral artery. J Vasc Surg. 2007;46(6): 1155–9.

    Article  PubMed  Google Scholar 

  2. Al-Hamali S, Baskerville P, Fraser S, Walters H, Markus HS. Detection of distal emboli in patients with peripheral arterial stenosis before and after iliac angioplasty: a prospective study. J Vasc Surg. 1999;29(2):345–51.

    Article  PubMed  CAS  Google Scholar 

  3. Shammas NW, Dippel EJ, Coiner D, Shammas GA, Jerin M, Kumar A. Preventing lower extremity distal embolization using embolic filter protection: results of the PROTECT registry. J Endovasc Ther. 2008;15(3):270–6.

    Article  PubMed  Google Scholar 

  4. Suri R, Wholey MH, Postoak D, Hagino RT, Toursarkissian B. Distal embolic protection during femoropopliteal atherectomy. Catheter Cardiovasc Interv. 2006;67(4):417–22.

    Article  PubMed  Google Scholar 

  5. Karnabatidis D, Katsanos K, Kagadis GC, Ravazoula P, Diamantopoulos A, Nikiforidis GC, et al. Distal embolism during percutaneous revascularization of infra-aortic arterial occlusive disease: an underestimated phenomenon. J Endovasc Ther. 2006;13(3):269–80.

    Article  PubMed  Google Scholar 

  6. Perlman HM, Krasinski L, Walsh K. Evidence for the rapid onset of apoptosis in medial smooth muscle cells after balloon injury. Circulation. 1997;95: 981–7.

    Article  PubMed  CAS  Google Scholar 

  7. Clowes AW, Reidy MA, Clowes MM. Kinetics of cellular proliferation after arterial injury. I: Smooth muscle cell growth in the absence of endothelium. Lab Invest. 1983;49:327–33.

    PubMed  CAS  Google Scholar 

  8. Clowes AW, Schwartz SM. Significance of quiescent smooth muscle cell migration in the injured rat carotid artery. Circ Res. 1985;56:139–45.

    Article  PubMed  CAS  Google Scholar 

  9. Hanke H, Strohschneider T, Oberhoff M, Betz E, Karsch KR. Time course of smooth muscle cell proliferation in the intima and media of arteries following experimental angioplasty. Circ Res. 1990;67:651–9.

    Article  PubMed  CAS  Google Scholar 

  10. Majesky MW, Schwartz SM, Clowes MM, Clowes AW. Heparin regulates smooth muscle S phase entry in the injured rat carotid artery. Circ Res. 1987;61:296–300.

    Article  PubMed  CAS  Google Scholar 

  11. More RS, Rutty G, Underwood MJ, Brack MJ, Gershlick AH. Assessment of myointimal cellular kinetics in a model of angioplasty by means of proliferating cell nuclear antigen expression. Am Heart J. 1994;128:681–6.

    Article  PubMed  CAS  Google Scholar 

  12. Sata M, Saiura A, Kunisato A, Tojo A, Okada S, Tokuhisa T, et al. Hematopoietic stem cells differentiate into vascular cells that participate in the pathogenesis of atherosclerosis. Nat Med. 2002;8:403–9.

    Article  PubMed  CAS  Google Scholar 

  13. Sata M. Molecular strategies to treat vascular diseases. Circ J. 2003;67: 983–91.

    Article  PubMed  Google Scholar 

  14. Tanaka K, Sata M, Hirata Y, Nagai R. Diverse contribution of bone marrow cells to neointimal hyperplasia after mechanical vascular injuries. Circ Res. 2003;93:783–90.

    Article  PubMed  CAS  Google Scholar 

  15. Scott NA, Martin F, Simonet L, Dunn B, Ross CE, Wilcox JN. Contribution of adventitial myofibroblasts to vascular remodelling and lesion formation after experimental angioplasty in pig coronaries. FASEB J. 1995;9:A845. abstract.

    Google Scholar 

  16. Ferrer P, Valentine M, Jenkins-West T, Gale T, Gu K, Havens C, et al. Periadventitial changes in the balloon injured rat crotid artery. FASEB J. 1996;10:A618. abstract.

    Google Scholar 

  17. Sarembock IJ, LaVeau PJ, Sigal SL, Timms I, Sussman J, Haudenschild C, et al. Influence of inflation pressure and balloon size on the development of intimal hyperplasia after balloon angioplasty. A study in the atherosclerotic rabbit. Circulation. 1989;80:1029–40.

    Article  PubMed  CAS  Google Scholar 

  18. Cwikiel W. Restenosis after balloon angioplasty and/or stent insertion – origin and prevention. Acta Radiol. 2002;43:442–54.

    Article  PubMed  CAS  Google Scholar 

  19. Lowe HC, Oesterle SN, Khachigan LM. Coronary In stent restenosis: current status and future strategies. J Am Coll Cardiol. 2002;39(2):183–93.

    Article  PubMed  Google Scholar 

  20. Hoffman R, Mintz GS, Dussaillant RG, Popma JJ, Pichard AD, Satler LF, et al. Patterns and mechanisms of in stent restenosis: a serial intravascular ultrasound study. Circulation. 1996;94:1247–54.

    Article  Google Scholar 

  21. Moreno PR, Palacios IF, Leon MN, Rhodes J, Fuster V, Fallon JT. Histopathologic comparison of human coronary in stent and post balloon angioplasty restenotic tissue. Am J Cardiol. 1999;84:462–6.

    Article  PubMed  CAS  Google Scholar 

  22. Virmani R, Farb A. Pathology of instent restenosis. Curr Opin Lipidol. 1999; 10:499–506.

    Article  PubMed  CAS  Google Scholar 

  23. Baier RE, Dutton RC. Initial events in interaction of blood with a foreign surface. J Biomed Mater Res. 1969;3:191.

    Article  PubMed  CAS  Google Scholar 

  24. Emneus H, Stenram U. Metal implants in the human body. Acta Orthop Scand. 1965;36:116.

    Google Scholar 

  25. Parsson H, Cwikiel W, Johansson K, Swartbol P, Norgren L. Deposition of platelets and neitrophils on porcine iliac arteries and angioplasty and Wallstent placement compared with angioplasty alone. Cardiovasc Intervent Radiol. 1994;17:190.

    Article  PubMed  CAS  Google Scholar 

  26. Bai H, Masuda J, Sawa Y, et al. Neointima formation after vascular stent implantation: spatial and chronological distribution of smooth muscle cell proliferation and phenotypic modulation. Arterioscler Thromb. 1994;14:1846.

    Article  PubMed  CAS  Google Scholar 

  27. Schwartz RS, Huber KC, Murphy JG, et al. Restenosis and the porportional neointimal response to coronary artery injury: results in a porcine model. J Am Coll Cardiol. 1992;19:267–74.

    Article  PubMed  CAS  Google Scholar 

  28. Kornowski R, Hong MK, Fermin OT, Bramwell O, Wu H, Leon MB. In-stent restenosis: contributions of inflammatory responses and arterial injury to neointima hyperplasia. J Am Coll Cardiol. 1998;31:224–30.

    Article  PubMed  CAS  Google Scholar 

  29. Sanada JL, Matsui O, Yoshikawa J, Matsuoka T. An experimental study of endovascular stenting with special reference to the effects on the aortic vasa vasorum. Cardiovasc Intervent Radiol. 1998;21:45.

    Article  PubMed  CAS  Google Scholar 

  30. Gertler JP, Abbott WM. Prothrombotic and fibrinolytic functions of normal and perturbed endothelium. J Surg Res. 1992;52:89–52.

    Article  PubMed  CAS  Google Scholar 

  31. Henkin K, Marcotte P, Yang H. The plasminogen-plasmin system. Prog Cardiovasc Dis. 1991;34:135–62.

    Article  PubMed  CAS  Google Scholar 

  32. Robbins K. The plasminogen-plasmin enzyme system. New York: Lippincott; 1995.

    Google Scholar 

  33. Schaefer AV, Leslie BA, Rischke JA, Stafford AR, Fredenburgh JC, Weitz JI. Incorporation of fragment X into fibrin clots renders them more susceptible to lysis by plasmin. Biochemistry. 2006;45(13):4257–65.

    Article  PubMed  CAS  Google Scholar 

  34. Weitz JI. Limited fibrin specificity of tissue-type plasminogen activator and its potential link to bleeding. J Vasc Interv Radiol. 1995;6(Pt 2 Suppl): 19S–23S.

    Article  PubMed  CAS  Google Scholar 

  35. Grunwald MR, Hofmann LV. Comparison of urokinase, alteplase, and reteplase for catheter-directed thrombolysis of deep venous thrombosis. J Vasc Interv Radiol. 2004;15(4):347–52.

    Article  PubMed  Google Scholar 

  36. Longstaff C, Williams S, Thelwell C. Fibrin binding and the regulation of plasminogen activators during thrombolytic therapy. Cardiovasc Hematol Agents Med Chem. 2008;6(3):212–23.

    Article  PubMed  CAS  Google Scholar 

  37. Verstraete M. Third-generation thrombolytic drugs. Am J Med. 2000;109(1): 52–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark G. Davies M.D., Ph.D., M.B.A .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vykoukal, D., Davies, M.G. (2013). Crossroads of Science and Therapy. In: Kumar, A., Ouriel, K. (eds) Handbook of Endovascular Interventions. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5013-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5013-9_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5012-2

  • Online ISBN: 978-1-4614-5013-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics