Skip to main content

General Description

  • Chapter
  • First Online:
  • 2404 Accesses

Abstract

Soft tissue sarcomas are an unusual group of tumors deriving their name from the Greek term for a fleshy excrescence. As early as Galen (130–200  ce), it was suggested they were a cancerous tumor and caution was advised against any surgical intervention [1]. Early reports of myxoid liposarcoma by Severinius (1580–1637) and retroperitoneal liposarcoma by Morgagni (1682–1771) have been recorded [2]. Wardrop (1782–1869), an Edinburgh surgeon who had studied in Vienna, introduced the term soft cancer. In his book Surgical Observations, published in 1816, Charles Bell (1772–1842) has been credited with the utilization of the term soft tissue sarcoma to differentiate them from carcinoma [3]. The first classification of sarcoma has been attributed to Abernethy in 1804. Johannes Müller (1801–1858) has been credited with coining the term desmoid in 1838 [3]. Stout (1885–1967) published a seminal monograph in 1932 on the pathology and treatment of sarcomas [4].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Long ER. History of pathology. Baltimore: Williams & Wilkins; 1928.

    Google Scholar 

  2. Morgagni JB. The seats and causes of disease investigated by anatomy, vol. 2. London: Millen & Cadell; 1769.

    Google Scholar 

  3. Hajdu SI. Differential diagnosis of soft tissue and bone tumors. Philadelphia: Lea & Febiger; 1986.

    Google Scholar 

  4. Stout AP. Human cancer: etiologic factors, precancerous lesions, growth, spread, symptoms, diagnosis, prognosis, principles of treatment. Philadelphia: Lea & Febiger; 1932.

    Google Scholar 

  5. Ewing J. Further report on endothelial myeloma of bone. Proc NY Pathol Soc. 1924;24:93–101.

    Google Scholar 

  6. Stout AP. Tumors of the soft tissues. In: Atlas of tumor pathology. Washington, DC: Armed Forces Institute of Pathology; 1953.

    Google Scholar 

  7. Brennan MF, Lewis JJ. Diagnosis and management of soft tissue sarcoma. London: Martin Dunitz; 1998.

    Google Scholar 

  8. Stewart FW, Treves N. Lymphangiosarcoma in postmastectomy lymphedema: a report of six cases of elephantiasis chirurgica. Cancer. 1948;1:64–81.

    Article  PubMed  CAS  Google Scholar 

  9. Turc-Carel C, Lizard-Nacol S, Justrabo E, et al. Consistent chromosomal translocation in alveolar rhabdomyosarcoma. Cancer Genet Cytogenet. 1986;19(3–4):361–2.

    Article  PubMed  CAS  Google Scholar 

  10. Seidal T, Mark J, Hagmar B, et al. Alveolar rhabdomyosarcoma: a cytogenetic and correlated cytological and histological study. Acta Pathol Microbiol Immunol Scand A. 1982;90(5):345–54.

    PubMed  CAS  Google Scholar 

  11. Douglass EC, Valentine M, Etcubanas E, et al. A specific chromosomal abnormality in rhabdomyosarcoma. Cytogenet Cell Genet. 1987;45(3–4):148–55.

    Article  PubMed  CAS  Google Scholar 

  12. Ladanyi M, Lui MY, Antonescu CR, et al. The der(17)t(X;17)(p11;q25) of human alveolar soft part sarcoma fuses the TFE3 transcription factor gene to ASPL, a novel gene at 17q25. Oncogene. 2001;20(1):48–57.

    Article  PubMed  CAS  Google Scholar 

  13. Antonescu CR, Dal Cin P, Nafa K, et al. EWSR1-CREB1 is the predominant gene fusion in angiomatoid fibrous histiocytoma. Genes Chromosomes Cancer. 2007;46(12):1051–60.

    Article  PubMed  CAS  Google Scholar 

  14. Tanas MR, Rubin BP, Montgomery EA, et al. Utility of FISH in the diagnosis of angiomatoid fibrous histiocytoma: a series of 18 cases. Mod Pathol. 2010;23(1):93–7.

    Article  PubMed  CAS  Google Scholar 

  15. Peulve P, Michot C, Vannier JP, et al. Clear cell sarcoma with t(12;22) (q13-14;q12). Genes Chromosomes Cancer. 1991;3(5):400–2.

    Article  PubMed  CAS  Google Scholar 

  16. Fletcher JA. Translocation (12;22)(q13-14;q12) is a nonrandom aberration in soft-tissue clear-cell sarcoma. Genes Chromosomes Cancer. 1992;5(2):184.

    Article  PubMed  CAS  Google Scholar 

  17. Stenman G, Kindblom LG, Angervall L. Reciprocal translocation t(12;22)(q13;q13) in clear-cell sarcoma of tendons and aponeuroses. Genes Chromosomes Cancer. 1992;4(2):122–7.

    Article  PubMed  CAS  Google Scholar 

  18. Antonescu CR, Nafa K, Segal NH, et al. EWS-CREB1: a recurrent variant fusion in clear cell sarcoma–association with gastrointestinal location and absence of melanocytic differentiation. Clin Cancer Res. 2006;12(18):5356–62.

    Article  PubMed  CAS  Google Scholar 

  19. Hisaoka M, Ishida T, Kuo TT, et al. Clear cell sarcoma of soft tissue: a clinicopathologic, immunohistochemical, and molecular analysis of 33 cases. Am J Surg Pathol. 2008;32(3):452–60.

    Article  PubMed  Google Scholar 

  20. Italiano A, Sung YS, Zhang L, et al. High prevalence of CIC fusion with double-homeobox (DUX4) transcription factors in EWSR1-negative undifferentiated small blue round cell sarcomas. Genes Chromosomes Cancer. 2012;51(3):207–18.

    Google Scholar 

  21. Graham C, Chilton-Macneill S, Zielenska M, et al. The CIC-DUX4 fusion transcript is present in a subgroup of pediatric primitive round cell sarcomas. Hum Pathol. 2012;43(2):180–9.

    Google Scholar 

  22. Yoshimoto M, Graham C, Chilton-MacNeill S, et al. Detailed cytogenetic and array analysis of pediatric primitive sarcomas reveals a recurrent CIC-DUX4 fusion gene event. Cancer Genet Cytogenet. 2009;195(1):1–11.

    Article  PubMed  CAS  Google Scholar 

  23. Kawamura-Saito M, Yamazaki Y, Kaneko K, et al. Fusion between CIC and DUX4 up-regulates PEA3 family genes in Ewing-like sarcomas with t(4;19)(q35;q13) translocation. Hum Mol Genet. 2006;15(13):2125–37.

    Article  PubMed  CAS  Google Scholar 

  24. Pierron G, Tirode F, Lucchesi C, et al. A new subtype of bone sarcoma defined by BCOR-CCNB3 gene fusion. Nat Genet. 2012;44(4):461–6.

    Article  PubMed  CAS  Google Scholar 

  25. Knezevich SR, McFadden DE, Tao W, et al. A novel ETV6-NTRK3 gene fusion in congenital fibrosarcoma. Nat Genet. 1998;18(2):184–7.

    Article  PubMed  CAS  Google Scholar 

  26. Rubin BP, Chen CJ, Morgan TW, et al. Congenital mesoblastic nephroma t(12;15) is associated with ETV6-NTRK3 gene fusion: cytogenetic and molecular relationship to congenital (infantile) fibrosarcoma. Am J Pathol. 1998;153(5):1451–8.

    Article  PubMed  CAS  Google Scholar 

  27. Pedeutour F, Coindre JM, Sozzi G, et al. Supernumerary ring chromosomes containing chromosome 17 sequences. A specific feature of dermatofibrosarcoma protuberans? Cancer Genet Cytogenet. 1994;76(1):1–9.

    Article  PubMed  CAS  Google Scholar 

  28. Dal Cin P, Sciot R, de Wever I, et al. Cytogenetic and immunohistochemical evidence that giant cell fibroblastoma is related to dermatofibrosarcoma protuberans. Genes Chromosomes Cancer. 1996;15(1):73–5.

    Article  PubMed  CAS  Google Scholar 

  29. Linn SC, West RB, Pollack JR, et al. Gene expression patterns and gene copy number changes in dermatofibrosarcoma protuberans. Am J Pathol. 2003;163(6):2383–95.

    Article  PubMed  CAS  Google Scholar 

  30. Sawyer JR, Tryka AF, Lewis JM. A novel reciprocal chromosome translocation t(11;22)(p13;q12) in an intraabdominal desmoplastic small round-cell tumor. Am J Surg Pathol. 1992;16(4):411–6.

    Article  PubMed  CAS  Google Scholar 

  31. Gerald WL, Rosai J, Ladanyi M. Characterization of the genomic breakpoint and chimeric transcripts in the EWS-WT1 gene fusion of desmoplastic small round cell tumor. Proc Natl Acad Sci USA. 1995;92(4):1028–32.

    Article  PubMed  CAS  Google Scholar 

  32. Gerald WL, Ladanyi M, de Alava E, et al. Clinical, pathologic, and molecular spectrum of tumors associated with t(11;22)(p13;q12): desmoplastic small round-cell tumor and its variants. J Clin Oncol. 1998;16(9):3028–36.

    PubMed  CAS  Google Scholar 

  33. Shimizu Y, Mitsui T, Kawakami T, et al. Novel breakpoints of the EWS gene and the WT1 gene in a desmoplastic small round cell tumor. Cancer Genet Cytogenet. 1998;106(2):156–8.

    Article  PubMed  CAS  Google Scholar 

  34. Dal Cin P, Aly MS, De Wever I, et al. Endometrial stromal sarcoma t(7;17)(p15-21;q12-21) is a nonrandom chromosome change. Cancer Genet Cytogenet. 1992;63(1):43–6.

    Article  PubMed  CAS  Google Scholar 

  35. Koontz JI, Soreng AL, Nucci M, et al. Frequent fusion of the JAZF1 and JJAZ1 genes in endometrial stromal tumors. Proc Natl Acad Sci USA. 2001;98(11):6348–53.

    Article  PubMed  CAS  Google Scholar 

  36. Nucci MR, Harburger D, Koontz J, et al. Molecular analysis of the JAZF1-JJAZ1 gene fusion by RT-PCR and fluorescence in situ hybridization in endometrial stromal neoplasms. Am J Surg Pathol. 2007;31(1):65–70.

    Article  PubMed  Google Scholar 

  37. Lee CH, Ou WB, Marino-Enriquez A, et al. 14-3-3 fusion oncogenes in high-grade endometrial stromal sarcoma. Proc Natl Acad Sci USA. 2012;109(3):929–34.

    Google Scholar 

  38. Errani C, Zhang L, Sung YS, et al. A novel WWTR1-CAMTA1 gene fusion is a consistent abnormality in epithelioid hemangioendothelioma of different anatomic sites. Genes Chromosomes Cancer. 2011;50(8):644–53.

    Article  PubMed  CAS  Google Scholar 

  39. Chbani L, Guillou L, Terrier P, et al. Epithelioid sarcoma: a clinicopathologic and immunohistochemical analysis of 106 cases from the French sarcoma group. Am J Clin Pathol. 2009;131(2):222–7.

    Article  PubMed  Google Scholar 

  40. Hornick JL, Dal Cin P, Fletcher CD. Loss of INI1 expression is characteristic of both conventional and proximal-type epithelioid sarcoma. Am J Surg Pathol. 2009;33(4):542–50.

    Article  PubMed  Google Scholar 

  41. Modena P, Lualdi E, Facchinetti F, et al. SMARCB1/INI1 tumor suppressor gene is frequently inactivated in epithelioid sarcomas. Cancer Res. 2005;65(10):4012–9.

    Article  PubMed  CAS  Google Scholar 

  42. Lee MW, Jee KJ, Han SS, et al. Comparative genomic hybridization in epithelioid sarcoma. Br J Dermatol. 2004;151(5):1054–9.

    Article  PubMed  CAS  Google Scholar 

  43. Quezado MM, Middleton LP, Bryant B, et al. Allelic loss on chromosome 22q in epithelioid sarcomas. Hum Pathol. 1998;29(6):604–8.

    Article  PubMed  CAS  Google Scholar 

  44. Orndal C, Carlen B, Akerman M, et al. Chromosomal abnormality t(9;22)(q22;q12) in an extraskeletal myxoid chondrosarcoma characterized by fine needle aspiration cytology, electron microscopy, immunohistochemistry and DNA flow cytometry. Cytopathology. 1991;2(5):261–70.

    Article  PubMed  CAS  Google Scholar 

  45. Kleinfinger P, Labelle Y, Melot T, et al. Localization of TEC to 9q22.3-q31 by fluorescence in situ hybridization. Ann Genet. 1996;39(4):233–5.

    PubMed  CAS  Google Scholar 

  46. Wang WL, Mayordomo E, Czerniak BA, et al. Fluorescence in situ hybridization is a useful ancillary diagnostic tool for extraskeletal myxoid chondrosarcoma. Mod Pathol. 2008;21(11):1303–10.

    Article  PubMed  CAS  Google Scholar 

  47. Turc-Carel C, Philip I, Berger MP, et al. Chromosomal translocation (11; 22) in cell lines of Ewing’s sarcoma. C R Seances Acad Sci III. 1983;296(23):1101–3.

    PubMed  CAS  Google Scholar 

  48. Turc-Carel C, Philip I, Berger MP, et al. Chromosome study of Ewing’s sarcoma (ES) cell lines. Consistency of a reciprocal translocation t(11;22)(q24;q12). Cancer Genet Cytogenet. 1984;12(1):1–19.

    Article  PubMed  CAS  Google Scholar 

  49. Panagopoulos I, Storlazzi CT, Fletcher CD, et al. The chimeric FUS/CREB3l2 gene is specific for low-grade fibromyxoid sarcoma. Genes Chromosomes Cancer. 2004;40(3):218–28.

    Article  PubMed  CAS  Google Scholar 

  50. Mertens F, Fletcher CD, Antonescu CR, et al. Clinicopathologic and molecular genetic characterization of low-grade fibromyxoid sarcoma, and cloning of a novel FUS/CREB3L1 fusion gene. Lab Invest. 2005;85(3):408–15.

    Article  PubMed  CAS  Google Scholar 

  51. Guillou L, Benhattar J, Gengler C, et al. Translocation-positive low-grade fibromyxoid sarcoma: clinicopathologic and molecular analysis of a series expanding the morphologic spectrum and suggesting potential relationship to sclerosing epithelioid fibrosarcoma: a study from the French Sarcoma Group. Am J Surg Pathol. 2007;31(9):1387–402.

    Article  PubMed  Google Scholar 

  52. Hirota S, Isozaki K, Moriyama Y, et al. Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science. 1998;279(5350):577–80.

    Article  PubMed  CAS  Google Scholar 

  53. Nishida T, Hirota S, Taniguchi M, et al. Familial gastrointestinal stromal tumours with germline mutation of the KIT gene. Nat Genet. 1998;19(4):323–4.

    Article  PubMed  CAS  Google Scholar 

  54. Sakurai S, Fukasawa T, Chong JM, et al. C-kit gene abnormalities in gastrointestinal stromal tumors (tumors of interstitial cells of Cajal). Jpn J Cancer Res. 1999;90(12):1321–8.

    Article  PubMed  CAS  Google Scholar 

  55. Hirota S, Isozaki K, Nishida T, et al. Effects of loss-of-function and gain-of-function mutations of c-kit on the gastrointestinal tract. J Gastroenterol. 2000;35 Suppl 12:75–9.

    PubMed  CAS  Google Scholar 

  56. Miettinen M, Lasota J. Gastrointestinal stromal tumors–definition, clinical, histological, immunohistochemical, and molecular genetic features and differential diagnosis. Virchows Arch. 2001;438(1):1–12.

    Article  PubMed  CAS  Google Scholar 

  57. Heinrich MC, Corless CL, Demetri GD, et al. Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J Clin Oncol. 2003;21(23):4342–9.

    Article  PubMed  CAS  Google Scholar 

  58. Nilsson M, Hoglund M, Panagopoulos I, et al. Molecular cytogenetic mapping of recurrent chromosomal breakpoints in tenosynovial giant cell tumors. Virchows Arch. 2002;441(5):475–80.

    Article  PubMed  CAS  Google Scholar 

  59. Bridge JA, Kanamori M, Ma Z, et al. Fusion of the ALK gene to the clathrin heavy chain gene, CLTC, in inflammatory myofibroblastic tumor. Am J Pathol. 2001;159(2):411–5.

    Article  PubMed  CAS  Google Scholar 

  60. Griffin CA, Hawkins AL, Dvorak C, et al. Recurrent involvement of 2p23 in inflammatory myofibroblastic tumors. Cancer Res. 1999;59(12):2776–80.

    PubMed  CAS  Google Scholar 

  61. Coffin CM, Hornick JL, Fletcher CD. Inflammatory myofibroblastic tumor: comparison of clinicopathologic, histologic, and immunohistochemical features including ALK expression in atypical and aggressive cases. Am J Surg Pathol. 2007;31(4):509–20.

    Article  PubMed  Google Scholar 

  62. Antonescu CR, Zhang L, Chang NE, et al. EWSR1-POU5F1 fusion in soft tissue myoepithelial tumors. A molecular analysis of sixty-six cases, including soft tissue, bone, and visceral lesions, showing common involvement of the EWSR1 gene. Genes Chromosomes Cancer. 2010;49(12):1114–24.

    Article  PubMed  CAS  Google Scholar 

  63. Tallini G, Akerman M, Dal Cin P, et al. Combined morphologic and karyotypic study of 28 myxoid liposarcomas. Implications for a revised morphologic typing, (a report from the CHAMP Group). Am J Surg Pathol. 1996;20(9):1047–55.

    Article  PubMed  CAS  Google Scholar 

  64. Knight JC, Renwick PJ, Dal Cin P, et al. Translocation t(12;16)(q13;p11) in myxoid liposarcoma and round cell liposarcoma: molecular and cytogenetic analysis. Cancer Res. 1995;55(1):24–7.

    PubMed  CAS  Google Scholar 

  65. Turc-Carel C, Limon J, Dal Cin P, et al. Cytogenetic studies of adipose tissue tumors. II. Recurrent reciprocal translocation t(12;16)(q13;p11) in myxoid liposarcomas. Cancer Genet Cytogenet. 1986;23(4):291–9.

    Article  PubMed  CAS  Google Scholar 

  66. Dahlen A, Mertens F, Mandahl N, et al. Molecular genetic characterization of the genomic ACTB-GLI fusion in pericytoma with t(7;12). Biochem Biophys Res Commun. 2004;325(4):1318–23.

    Article  PubMed  CAS  Google Scholar 

  67. Dahlen A, Fletcher CD, Mertens F, et al. Activation of the GLI oncogene through fusion with the beta-actin gene (ACTB) in a group of distinctive pericytic neoplasms: pericytoma with t(7;12). Am J Pathol. 2004;164(5):1645–53.

    Article  PubMed  CAS  Google Scholar 

  68. Biegel JA, Zhou JY, Rorke LB, et al. Germ-line and acquired mutations of INI1 in atypical teratoid and rhabdoid tumors. Cancer Res. 1999;59(1):74–9.

    PubMed  CAS  Google Scholar 

  69. Raisanen J, Biegel JA, Hatanpaa KJ, et al. Chromosome 22q deletions in atypical teratoid/rhabdoid tumors in adults. Brain Pathol. 2005;15(1):23–8.

    Article  PubMed  CAS  Google Scholar 

  70. Versteege I, Sevenet N, Lange J, et al. Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature. 1998;394(6689):203–6.

    Article  PubMed  CAS  Google Scholar 

  71. Turc-Carel C, Dal Cin P, Limon J, et al. Translocation X;18 in synovial sarcoma. Cancer Genet Cytogenet. 1986;23(1):93.

    Article  PubMed  CAS  Google Scholar 

  72. Kawai A, Woodruff J, Healey JH, et al. SYT-SSX gene fusion as a determinant of morphology and prognosis in synovial sarcoma. N Engl J Med. 1998;338(3):153–60.

    Article  PubMed  CAS  Google Scholar 

  73. Clark J, Rocques PJ, Crew AJ, et al. Identification of novel genes, SYT and SSX, involved in the t(X;18)(p11.2;q11.2) translocation found in human synovial sarcoma. Nat Genet. 1994;7(4):502–8.

    Article  PubMed  CAS  Google Scholar 

  74. Shipley JM, Clark J, Crew AJ, et al. The t(X;18)(p11.2;q11.2) translocation found in human synovial sarcomas involves two distinct loci on the X chromosome. Oncogene. 1994;9(5):1447–53.

    PubMed  CAS  Google Scholar 

  75. de Leeuw B, Balemans M, Weghuis DO, et al. Molecular cloning of the synovial sarcoma-specific translocation (X;18)(p11.2;q11.2) breakpoint. Hum Mol Genet. 1994;3(5):745–9.

    Article  PubMed  Google Scholar 

  76. Smith S, Reeves BR, Wong L, et al. A consistent chromosome translocation in synovial sarcoma. Cancer Genet Cytogenet. 1987;26(1):179–80.

    Article  PubMed  CAS  Google Scholar 

  77. Pedeutour F, Forus A, Coindre JM, et al. Structure of the supernumerary ring and giant rod chromosomes in adipose tissue tumors. Genes Chromosomes Cancer. 1999;24(1):30–41.

    Article  PubMed  CAS  Google Scholar 

  78. Dei Tos AP, Doglioni C, Piccinin S, et al. Coordinated expression and amplification of the MDM2, CDK4, and HMGI-C genes in atypical lipomatous tumours. J Pathol. 2000;190(5):531–6.

    Article  PubMed  CAS  Google Scholar 

  79. Micci F, Teixeira MR, Bjerkehagen B, et al. Characterization of supernumerary rings and giant marker chromosomes in well-differentiated lipomatous tumors by a combination of G-banding, CGH, M-FISH, and chromosome- and locus-specific FISH. Cytogenet Genome Res. 2002;97(1–2):13–9.

    Article  PubMed  CAS  Google Scholar 

  80. Italiano A, Bianchini L, Keslair F, et al. HMGA2 is the partner of MDM2 in well-differentiated and dedifferentiated liposarcomas whereas CDK4 belongs to a distinct inconsistent amplicon. Int J Cancer. 2008;122(10):2233–41.

    Article  PubMed  CAS  Google Scholar 

  81. Weaver J, Downs-Kelly E, Goldblum JR, et al. Fluorescence in situ hybridization for MDM2 gene amplification as a diagnostic tool in lipomatous neoplasms. Mod Pathol. 2008;21(8):943–9.

    Article  PubMed  CAS  Google Scholar 

  82. Coindre JM, Pedeutour F, Aurias A. Well-differentiated and dedifferentiated liposarcomas. Virchows Arch. 2010;456(2):167–79.

    Article  PubMed  CAS  Google Scholar 

  83. Li FP, Fraumeni Jr JF. Soft-tissue sarcomas, breast cancer, and other neoplasms. A familial syndrome? Ann Intern Med. 1969;71(4):747–52.

    PubMed  CAS  Google Scholar 

  84. D’Agostino AN, Soule EH, Miller RH. Sarcomas of the peripheral nerves and somatic soft tissues associated with multiple neurofibromatosis (Von Recklinghausen’s Disease). Cancer. 1963;16:1015–27.

    Article  PubMed  Google Scholar 

  85. Fraumeni Jr JF, Vogel CL, Easton JM. Sarcomas and multiple polyposis in a kindred. A genetic variety of hereditary polyposis? Arch Intern Med. 1968;121(1):57–61.

    Article  PubMed  Google Scholar 

  86. Sorensen SA, Mulvihill JJ, Nielsen A. Long-term follow-up of von Recklinghausen neurofibromatosis. Survival and malignant neoplasms. N Engl J Med. 1986;314(16):1010–5.

    Article  PubMed  CAS  Google Scholar 

  87. Abramson DH, Melson MR, Dunkel IJ, et al. Third (fourth and fifth) nonocular tumors in survivors of retinoblastoma. Ophthalmology. 2001;108(10):1868–76.

    Article  PubMed  CAS  Google Scholar 

  88. Abramson DH, Dunkel IJ, Brodie SE, et al. A phase I/II study of direct intraarterial (ophthalmic artery) chemotherapy with melphalan for intraocular retinoblastoma initial results. Ophthalmology. 2008;115(8):1398–404. 1404 e1391.

    Article  PubMed  Google Scholar 

  89. Brady MS, Gaynor JJ, Brennan MF. Radiation-associated sarcoma of bone and soft tissue. Arch Surg. 1992;127(12):1379–85.

    Article  PubMed  CAS  Google Scholar 

  90. Kirova YM, Vilcoq JR, Asselain B, et al. Radiation-induced sarcomas after radiotherapy for breast carcinoma: a large-scale single-institution review. Cancer. 2005;104(4):856–63.

    Article  PubMed  Google Scholar 

  91. Gladdy RA, Qin LX, Moraco N, et al. Do radiation-associated soft tissue sarcomas have the same prognosis as sporadic soft tissue sarcomas? J Clin Oncol. 2010;28(12):2064–9.

    Article  PubMed  Google Scholar 

  92. Muller R, Hajdu SI, Brennan MF. Lymphangiosarcoma associated with chronic filarial lymphedema. Cancer. 1987;59(1):179–83.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Brennan, M.F., Antonescu, C.R., Maki, R.G. (2013). General Description. In: Management of Soft Tissue Sarcoma. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5004-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5004-7_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5003-0

  • Online ISBN: 978-1-4614-5004-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics