Skip to main content

The Roles of Chaperones in RNA Folding

  • Chapter
  • First Online:

Part of the book series: Biophysics for the Life Sciences ((BIOPHYS,volume 3))

Abstract

Because of its limited structural diversity, RNA has a strong tendency to misfold, and the stability of local structure often causes misfolded conformations to be long-lived on the biological time scale. The effects of RNA misfolding are dealt with in vivo by chaperones. Some of these chaperones function by interacting strongly with unstructured RNA and do not depend on a source of energy for their activities, while a second group couples unfavorable RNA rearrangements to the favorable hydrolysis of ATP. This latter group is made up of RNA helicase ­proteins, with the largest group being the DEAD-box proteins. While some ATP-dependent RNA chaperone proteins are evolved to function on specific substrate RNAs or RNA–protein complexes, others function as general chaperones by interacting ­functionally with a broad range of RNA structures. Experimental studies using diverse approaches have begun to ­elucidate the mechanisms of RNA ­chaperones in rearranging RNAs. In this chapter, we describe the mechanistic ­features that are thought to underlie chaperone activity, with a focus on group I and group II introns as experimental systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adams A, Lindahl T, Fresco JR (1967) Conformational differences between the biologically active and inactive forms of a transfer ribonucleic acid. Proc Natl Acad Sci USA 57:1684–1691

    Article  PubMed  CAS  Google Scholar 

  • Andersen CB, Ballut L, Johansen JS, Chamieh H, Nielsen KH, Oliveira CL, Pedersen JS, Seraphin B, Le Hir H, Andersen GR (2006) Structure of the exon junction core complex with a trapped DEAD-box ATPase bound to RNA. Science 313:1968–1972

    Article  PubMed  CAS  Google Scholar 

  • Belisova A, Semrad K, Mayer O, Kocian G, Waigmann E, Schroeder R, Steiner G (2005) RNA chaperone activity of protein components of human Ro RNPs. RNA 11:1084–1094

    Article  PubMed  CAS  Google Scholar 

  • Bhaskaran H, Russell R (2007) Kinetic redistribution of native and misfolded RNAs by a DEAD-box chaperone. Nature 449:1014–1018

    Article  PubMed  CAS  Google Scholar 

  • Bokinsky G, Zhuang X (2005) Single-molecule RNA folding. Acc Chem Res 38:566–573

    Article  PubMed  CAS  Google Scholar 

  • Bono F, Ebert J, Lorentzen E, Conti E (2006) The crystal structure of the exon junction complex reveals how it maintains a stable grip on mRNA. Cell 126:713–725

    Article  PubMed  CAS  Google Scholar 

  • Cao W, Coman MM, Ding S, Henn A, Middleton ER, Bradley MJ, Rhoades E, Hackney DD, Pyle AM, De La Cruz EM (2011) Mechanism of Mss116 ATPase reveals functional diversity of DEAD-box proteins. J Mol Biol 409:399–414

    Article  PubMed  CAS  Google Scholar 

  • Caruthers JM, Johnson ER, McKay DB (2000) Crystal structure of yeast initiation factor 4A, a DEAD-box RNA helicase. Proc Natl Acad Sci USA 97:13080–13085

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Potratz JP, Tijerina P, Del Campo M, Lambowitz AM, Russell R (2008) DEAD-box tproteins can completely separate an RNA duplex using a single ATP. Proc Natl Acad Sci USA 105:20203–20208

    Article  PubMed  CAS  Google Scholar 

  • Dai L, Chai D, Gu SQ, Gabel J, Noskov SY, Blocker FJ, Lambowitz AM, Zimmerly S (2008) A three-dimensional model of a group II intron RNA and its interaction with the intron-encoded reverse transcriptase. Mol Cell 30:472–485

    Article  PubMed  CAS  Google Scholar 

  • Del Campo M, Lambowitz AM (2009) Structure of the yeast DEAD box protein Mss116p reveals two wedges that crimp RNA. Mol Cell 35:598–609

    Article  PubMed  Google Scholar 

  • Del Campo M, Mohr S, Jiang Y, Jia H, Jankowsky E, Lambowitz AM (2009) Unwinding by local strand separation is critical for the function of DEAD-box proteins as RNA chaperones. J Mol Biol 389:674–693

    Article  PubMed  Google Scholar 

  • Del Campo M, Tijerina P, Bhaskaran H, Mohr S, Yang Q, Jankowsky E, Russell R, Lambowitz AM (2007) Do DEAD-box proteins promote group II intron splicing without unwinding RNA? Mol Cell 28:159–166

    Article  PubMed  Google Scholar 

  • Fairman-Williams ME, Guenther UP, Jankowsky E (2010) SF1 and SF2 helicases: family matters. Curr Opin Struct Biol 20:313–324

    Article  PubMed  CAS  Google Scholar 

  • Fedorova O, Solem A, Pyle AM (2010) Protein-facilitated folding of group II intron ribozymes. J Mol Biol 397:799–813

    Article  PubMed  CAS  Google Scholar 

  • Gartland WJ, Sueoka N (1966) Two interconvertible forms of tryptophanyl sRNA in E. coli. Proc Natl Acad Sci USA 55:948–956

    Article  PubMed  CAS  Google Scholar 

  • Grohman JK, Del Campo M, Bhaskaran H, Tijerina P, Lambowitz AM, Russell R (2007) Probing the mechanisms of DEAD-box proteins as general RNA chaperones: the C-terminal domain of CYT-19 mediates general recognition of RNA. Biochemistry 46:3013–3022

    Article  PubMed  CAS  Google Scholar 

  • Hardin JW, Hu Y, McKay DB (2010) Structure of the RNA binding domain of a DEAD-box helicase bound to its ribosomal RNA target reveals a novel mode of recognition by an RNA recognition motif. J Mol Biol 402:412–427

    Article  PubMed  CAS  Google Scholar 

  • Henn A, Cao W, Hackney DD, De La Cruz EM (2008) The ATPase cycle mechanism of the DEAD-box rRNA helicase, DbpA. J Mol Biol 377:193–205

    Article  PubMed  CAS  Google Scholar 

  • Herschlag D (1995) RNA chaperones and the RNA folding problem. J Biol Chem 270:20871–20874

    PubMed  CAS  Google Scholar 

  • Holley RW, Apgar J, Everett GA, Madison JT, Marquisee M, Merrill SH, Penswick JR, Zamir A (1965) Structure of a ribonucleic acid. Science 147:1462–1465

    Article  PubMed  CAS  Google Scholar 

  • Huang HR, Rowe CE, Mohr S, Jiang Y, Lambowitz AM, Perlman PS (2005) The splicing of yeast mitochondrial group I and group II introns requires a DEAD-box protein with RNA chaperone function. Proc Natl Acad Sci USA 102:163–168

    Article  PubMed  CAS  Google Scholar 

  • Jarmoskaite I, Russell R (2011) DEAD-box proteins as RNA helicases and chaperones. WIREs RNA 2:135–152

    Article  PubMed  CAS  Google Scholar 

  • Karginov FV, Caruthers JM, Hu Y, McKay DB, Uhlenbeck OC (2005) YxiN is a modular protein combining a DEx(D/H) core and a specific RNA-binding domain. J Biol Chem 280:35499–35505

    Article  PubMed  CAS  Google Scholar 

  • Karpel RL, Miller NS, Fresco JR (1982) Mechanistic studies of ribonucleic acid renaturation by a helix-destabilizing protein. Biochemistry 21:2102–2108

    Article  PubMed  CAS  Google Scholar 

  • Karpel RL, Swistel DG, Miller NS, Geroch ME, Lu C, and Fresco JR (1975) Acceleration of RNA renaturation by nucleic acid unwinding proteins. Brookhaven Symp Biol 26:165–174

    Google Scholar 

  • Karunatilaka KS, Solem A, Pyle AM, Rueda D (2010) Single-molecule analysis of Mss116-mediated group II intron folding. Nature 467:935–939

    Article  PubMed  CAS  Google Scholar 

  • Kim SH, Suddath FL, Quigley GJ, McPherson A, Sussman JL, Wang AH, Seeman NC, Rich A (1974) Three-dimensional tertiary structure of yeast phenylalanine transfer RNA. Science 185:435–440

    Article  PubMed  CAS  Google Scholar 

  • Lambowitz AM, Zimmerly S (2010) Group II introns: mobile ribozymes that invade DNA. Cold Spring Harb Perspect Biol. doi:10.1101/cshperspect.a003616

  • Levin JG, Mitra M, Mascarenhas A, Musier-Forsyth K (2010) Role of HIV-1 nucleocapsid protein in HIV-1 reverse transcription. RNA Biol 7:754–774

    Article  PubMed  CAS  Google Scholar 

  • Lindahl T, Adams A, Fresco JR (1966) Renaturation of transfer ribonucleic acids through site binding of magnesium. Proc Natl Acad Sci USA 55:941–948

    Article  PubMed  CAS  Google Scholar 

  • Linder P, Lasko PF, Ashburner M, Leroy P, Nielsen PJ, Nishi K, Schnier J, Slonimski PP (1989) Birth of the D-E-A-D box. Nature 337:121–122

    Article  PubMed  CAS  Google Scholar 

  • Liu F, Putnam A, Jankowsky E (2008) ATP hydrolysis is required for DEAD-box protein recycling but not for duplex unwinding. Proc Natl Acad Sci USA 105:20209–20214

    Article  PubMed  CAS  Google Scholar 

  • Lorsch JR (2002) RNA chaperones exist and DEAD box proteins get a life. Cell 109:797–800

    Article  PubMed  CAS  Google Scholar 

  • Madore E, Florentz C, Giege R, Lapointe J (1999) Magnesium-dependent alternative foldings of active and inactive Escherichia coli tRNA(Glu) revealed by chemical probing. Nucleic Acids Res 27:3583–3588

    Article  PubMed  CAS  Google Scholar 

  • Mallam AL, Jarmoskaite I, Tijerina P, Del Campo M, Seifert S, Guo L, Russell R, Lambowitz AM (2011) Solution structures of DEAD-box RNA chaperones reveal conformational changes and nucleic acid tethering by a basic tail. Proc Natl Acad Sci USA 108:12254–12259

    Article  PubMed  CAS  Google Scholar 

  • Mikulecky PJ, Kaw MK, Brescia CC, Takach JC, Sledjeski DD, Feig AL (2004) Escherichia coli Hfq has distinct interaction surfaces for DsrA, rpoS and poly(A) RNAs. Nat Struct Mol Biol 11:1206–1214

    Article  PubMed  CAS  Google Scholar 

  • Mohr G, Del Campo M, Mohr S, Yang Q, Jia H, Jankowsky E, Lambowitz AM (2008) Function of the C-terminal domain of the DEAD-box protein Mss116p analyzed in vivo and in vitro. J Mol Biol 375:1344–1364

    Article  PubMed  CAS  Google Scholar 

  • Mohr G, Del Campo M, Turner KG, Gilman B, Wolf RZ, Lambowitz AM (2011) High-throughput genetic identification of functionally important regions of the yeast DEAD-box protein Mss116p. J Mol Biol 413:952–972

    Article  PubMed  CAS  Google Scholar 

  • Mohr S, Matsuura M, Perlman PS, Lambowitz AM (2006) A DEAD-box protein alone promotes group II intron splicing and reverse splicing by acting as an RNA chaperone. Proc Natl Acad Sci USA 103:3569–3574

    Article  PubMed  CAS  Google Scholar 

  • Mohr S, Stryker JM, Lambowitz AM (2002) A DEAD-box protein functions as an ATP-dependent RNA chaperone in group I intron splicing. Cell 109:769–779

    Article  PubMed  CAS  Google Scholar 

  • Pan C, Russell R (2010) Roles of DEAD-box proteins in RNA and RNP folding. RNA Biol 7:667–676

    Article  PubMed  CAS  Google Scholar 

  • Polach KJ, Uhlenbeck OC (2002) Cooperative binding of ATP and RNA substrates to the DEAD/H protein DbpA. Biochemistry 41:3693–3702

    Article  PubMed  CAS  Google Scholar 

  • Potratz JP, Del Campo M, Wolf RZ, Lambowitz AM, Russell R (2011) ATP-dependent roles of the DEAD-box protein Mss116p in group II intron splicing in vitro and in vivo. J Mol Biol 411:661–679

    Article  PubMed  CAS  Google Scholar 

  • Prenninger S, Schroeder R, Semrad K (2006) Assaying RNA chaperone activity in vivo in bacteria using a ribozyme folding trap. Nat Protoc 1:1273–1277

    Article  PubMed  Google Scholar 

  • Rajkowitsch L, Semrad K, Mayer O, Schroeder R (2005) Assays for the RNA chaperone activity of proteins. Biochem Soc Trans 33:450–456

    Article  PubMed  CAS  Google Scholar 

  • Rein A, Henderson LE, Levin JG (1998) Nucleic-acid-chaperone activity of retroviral nucleocapsid proteins: significance for viral replication. Trends Biochem Sci 23:297–301

    Article  PubMed  CAS  Google Scholar 

  • Robertus JD, Ladner JE, Finch JT, Rhodes D, Brown RS, Clark BF, Klug A (1974) Structure of yeast phenylalanine tRNA at 3 Å resolution. Nature 250:546–551

    Article  PubMed  CAS  Google Scholar 

  • Russell R (2008) RNA misfolding and the action of chaperones. Front Biosci 13:1–20

    Article  PubMed  CAS  Google Scholar 

  • Russell R, Das R, Suh H, Travers KJ, Laederach A, Engelhardt MA, Herschlag D (2006) The paradoxical behavior of a highly structured misfolded intermediate in RNA folding. J Mol Biol 363:531–544

    Article  PubMed  CAS  Google Scholar 

  • Russell R, Herschlag D (1999) New pathways in folding of the Tetrahymena group I RNA enzyme. J Mol Biol 291:1155–1167

    Article  PubMed  CAS  Google Scholar 

  • Russell R, Herschlag D (2001) Probing the folding landscape of the Tetrahymena ribozyme: commitment to form the native conformation is late in the folding pathway. J Mol Biol 308:839–851

    Article  PubMed  CAS  Google Scholar 

  • Schroeder R, Barta A, Semrad K (2004) Strategies for RNA folding and assembly. Nat Rev Mol Cell Biol 5:908–919

    Article  PubMed  CAS  Google Scholar 

  • Semrad K, Green R, Schroeder R (2004) RNA chaperone activity of large ribosomal subunit proteins from Escherichia coli. RNA 10:1855–1860

    Article  PubMed  CAS  Google Scholar 

  • Sengoku T, Nureki O, Nakamura A, Kobayashi S, Yokoyama S (2006) Structural basis for RNA unwinding by the DEAD-box protein Drosophila Vasa. Cell 125:287–300

    Article  PubMed  CAS  Google Scholar 

  • Seraphin B, Simon M, Boulet A, Faye G (1989) Mitochondrial splicing requires a protein from a novel helicase family. Nature 337:84–87

    Article  PubMed  CAS  Google Scholar 

  • Sigler PB (1975) An analysis of the structure of tRNA. Annu Rev Biophys Bioeng 4:477–527

    Article  PubMed  CAS  Google Scholar 

  • Sim S, Wolin SL (2011) Emerging roles for the Ro 60-kDa autoantigen in noncoding RNA metabolism. Wiley Interdiscip Rev RNA 2:686–699

    Article  PubMed  CAS  Google Scholar 

  • Solem A, Zingler N, Pyle AM (2006) A DEAD protein that activates intron self-splicing without unwinding RNA. Mol Cell 24:611–617

    Article  PubMed  CAS  Google Scholar 

  • Steiner M, Karunatilaka KS, Sigel RK, Rueda D (2008) Single-molecule studies of group II intron ribozymes. Proc Natl Acad Sci USA 105:13853–13858

    Article  PubMed  CAS  Google Scholar 

  • Story RM, Li H, Abelson JN (2001) Crystal structure of a DEAD box protein from the hyperthermophile Methanococcus jannaschii. Proc Natl Acad Sci USA 98:1465–1470

    Article  PubMed  CAS  Google Scholar 

  • Su LJ, Brenowitz M, Pyle AM (2003) An alternative route for the folding of large RNAs: apparent two-state folding by a group II intron ribozyme. J Mol Biol 334:639–652

    Article  PubMed  CAS  Google Scholar 

  • Swisher J, Duarte CM, Su LJ, Pyle AM (2001) Visualizing the solvent-inaccessible core of a group II intron ribozyme. EMBO J 20:2051–2061

    Article  PubMed  CAS  Google Scholar 

  • Swisher JF, Su LJ, Brenowitz M, Anderson VE, Pyle AM (2002) Productive folding to the native state by a group II intron ribozyme. J Mol Biol 315:297–310

    Article  PubMed  CAS  Google Scholar 

  • Tijerina P, Bhaskaran H, Russell R (2006) Nonspecific binding to structured RNA and preferential unwinding of an exposed helix by the CYT-19 protein, a DEAD-box RNA chaperone. Proc Natl Acad Sci USA 103:16698–16703

    Article  PubMed  CAS  Google Scholar 

  • Tinoco I Jr, Bustamante C (1999) How RNA folds. J Mol Biol 293:271–281

    Article  PubMed  CAS  Google Scholar 

  • Toor N, Keating KS, Fedorova O, Rajashankar K, Wang J, Pyle AM (2010) Tertiary architecture of the Oceanobacillus iheyensis group II intron. RNA 16:57–69

    Article  PubMed  CAS  Google Scholar 

  • Toor N, Keating KS, Taylor SD, Pyle AM (2008) Crystal structure of a self-spliced group II intron. Science 320:77–82

    Article  PubMed  CAS  Google Scholar 

  • Treiber DK, Rook MS, Zarrinkar PP, Williamson JR (1998) Kinetic intermediates trapped by native interactions in RNA folding. Science 279:1943–1946

    Article  PubMed  CAS  Google Scholar 

  • Treiber DK, Williamson JR (1999) Exposing the kinetic traps in RNA folding. Curr Opin Struct Biol 9:339–345

    Article  PubMed  CAS  Google Scholar 

  • Tsuchihashi Z, Khosla M, Herschlag D (1993) Protein enhancement of hammerhead ribozyme catalysis. Science 262:99–102

    Article  PubMed  CAS  Google Scholar 

  • Uhlenbeck OC, Chirikjian JG, Fresco JR (1974) Oligonucleotide binding to the native and ­denatured conformers of yeast transfer RNA-3 Lea. J Mol Biol 89:495–504

    Article  PubMed  CAS  Google Scholar 

  • Urbaneja MA, Wu M, Casas-Finet JR, Karpel RL (2002) HIV-1 nucleocapsid protein as a nucleic acid chaperone: spectroscopic study of its helix-destabilizing properties, structural binding specificity, and annealing activity. J Mol Biol 318:749–764

    Article  PubMed  CAS  Google Scholar 

  • Wagner EG, Altuvia S, Romby P (2002) Antisense RNAs in bacteria and their genetic elements. Adv Genet 46:361–398

    Article  PubMed  CAS  Google Scholar 

  • Waldsich C, Grossberger R, Schroeder R (2002) RNA chaperone StpA loosens interactions of the tertiary structure in the td group I intron in vivo. Genes Dev 16:2300–2312

    Article  PubMed  CAS  Google Scholar 

  • Waldsich C, Pyle AM (2007) A folding control element for tertiary collapse of a group II intron ribozyme. Nat Struct Mol Biol 14:37–44

    Article  PubMed  CAS  Google Scholar 

  • Waldsich C, Pyle AM (2008) A kinetic intermediate that regulates proper folding of a group II intron RNA. J Mol Biol 375:572–580

    Article  PubMed  CAS  Google Scholar 

  • Wan Y, Mitchell D, Russell R (2009) Catalytic activity as a probe of native RNA folding. Methods Enzymol 468:195–218

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Guthrie C (1998) PRP16, a DEAH-box RNA helicase, is recruited to the spliceosome primarily via its nonconserved N-terminal domain. RNA 4:1216–1229

    Article  PubMed  CAS  Google Scholar 

  • Woodside MT, Anthony PC, Behnke-Parks WM, Larizadeh K, Herschlag D, Block SM (2006) Direct measurement of the full, sequence-dependent folding landscape of a nucleic acid. Science 314:1001–1004

    Article  PubMed  CAS  Google Scholar 

  • Woodson SA (2010) Taming free energy landscapes with RNA chaperones. RNA Biol 7:677–686

    Article  PubMed  CAS  Google Scholar 

  • Zaug AJ, Grosshans CA, Cech TR (1988) Sequence-specific endoribonuclease activity of the Tetrahymena ribozyme: enhanced cleavage of certain oligonucleotide substrates that form ­mismatched ribozyme-substrate complexes. Biochemistry 27:8924–8931

    Article  PubMed  CAS  Google Scholar 

  • Zhuang X, Bartley LE, Babcock HP, Russell R, Ha T, Herschlag D, Chu S (2000) A single-molecule study of RNA catalysis and folding. Science 288:2048–2051

    Article  PubMed  CAS  Google Scholar 

  • Zhuang X, Rief M (2003) Single-molecule folding. Curr Opin Struct Biol 13:88–97

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Research in the Russell’s lab is supported by grants from the NIH (GM070456) and the Welch Foundation (F-1563).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rick Russell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tijerina, P., Russell, R. (2013). The Roles of Chaperones in RNA Folding. In: Russell, R. (eds) Biophysics of RNA Folding. Biophysics for the Life Sciences, vol 3. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4954-6_11

Download citation

Publish with us

Policies and ethics