Skip to main content

AFM Visualization of Protein–DNA Interactions

  • Chapter
  • First Online:
Book cover Single-molecule Studies of Proteins

Part of the book series: Biophysics for the Life Sciences ((BIOPHYS,volume 2))

  • 1678 Accesses

Abstract

This chapter outlines the advances in AFM technology in studies of various types of protein–DNA complexes. The sample preparation methods are briefly described and recommendations for the selection of the appropriate methodology are provided. Studies of sequence-specific and non-sequence-specific DNA-binding proteins are limited to a few examples with a focus on recent publications. The AFM studies of complexes of DNA with architectural proteins are limited to SSB protein and chromatin. Special attention is given to time-lapse AFM imaging in aqueous solutions that enables direct observation of protein–DNA dynamics and interactions. A few examples of the application of time-lapse high-speed AFM are provided as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ando T, Uchihashi T, Kodera N, Yamamoto D, Taniguchi M, Miyagi A, Yamashita H (2007) High-speed atomic force microscopy for observing dynamic biomolecular processes. J Mol Recognit 20:448–458

    Article  PubMed  CAS  Google Scholar 

  • Bednar J, Dimitrov S (2011) Chromatin under mechanical stress: from single 30 nm fibers to single nucleosomes. FEBS J 278:2231–2243

    Article  PubMed  CAS  Google Scholar 

  • Bochkarev A, Bochkareva E (2004) From RPA to BRCA2: lessons from single-stranded DNA binding by the OB-fold. Curr Opin Struct Biol 14:36–42

    Article  PubMed  CAS  Google Scholar 

  • Bussiek M, Mucke N, Langowski J (2003) Polylysine-coated mica can be used to observe systematic changes in the supercoiled DNA conformation by scanning force microscopy in solution. Nucleic Acids Res 31:e137

    Article  PubMed  Google Scholar 

  • Bussiek M, Toth K, Brun N, Langowski J (2005) DNA-loop formation on nucleosomes shown by in situ scanning force microscopy of supercoiled DNA. J Mol Biol 345:695–706

    Article  PubMed  CAS  Google Scholar 

  • Bussiek M, Muller G, Waldeck W, Diekmann S, Langowski J (2007) Organisation of nucleosomal arrays reconstituted with repetitive African green monkey alpha-satellite DNA as analysed by atomic force microscopy. Eur Biophys J 37:81–93

    Article  PubMed  CAS  Google Scholar 

  • Bustamante C, Vesenka J, Tang CL, Rees W, Guthold M, Keller R (1992) Circular DNA molecules imaged in air by scanning force microscopy. Biochemistry 31:22–26

    Article  PubMed  CAS  Google Scholar 

  • Bustamante C, Rivetti C (1996) Visualizing protein-nucleic acid interactions on a large scale with the scanning force microscope. Annu Rev Biophys Biomol Struct 25:395–429

    Article  PubMed  CAS  Google Scholar 

  • Bustamante C, Zuccheri G, Leuba SH, Yang G, Samori B (1997) Visualization and analysis of chromatin by scanning force microscopy. Methods 12:73–83

    Article  PubMed  CAS  Google Scholar 

  • Chrysogelos S, Griffith J (1982) Escherichia coli single-strand binding protein organizes single-stranded DNA in nucleosome-like units. Proc Natl Acad Sci USA 79:5803–5807

    Article  PubMed  CAS  Google Scholar 

  • Crampton N, Yokokawa M et al (2007) Fast-scan atomic force microscopy reveals that the type III restriction enzyme EcoP15I is capable of DNA translocation and looping. Proc Natl Acad Sci USA 104:12755–12760

    Article  PubMed  CAS  Google Scholar 

  • Filenko NA, Palets DB, Lyubchenko YL (2012) Structure and dynamics of dinucleosomes assessed by atomic force microscopy. J Amino Acids 2012:650840

    PubMed  Google Scholar 

  • Gilmore JL, Suzuki Y, Tamulaitis G, Siksnys V, Takeyasu K, Lyubchenko YL (2009) Single-molecule dynamics of the DNA-EcoRII protein complexes revealed with high-speed atomic force microscopy. Biochemistry 48:10492–10498

    Article  PubMed  CAS  Google Scholar 

  • Gross L, Mohn F, Moll N, Meyer G, Ebel R, Abdel-Mageed WM, Jaspars M (2010) Organic structure determination using atomic resolution scanning probe microscopy. Nat Chem 2:821–825

    Article  PubMed  CAS  Google Scholar 

  • Guthold M, Bezanilla M, Erie DA, Jenkins B, Hansma HG, Bustamante C (1994) Following the assembly of RNA polymerase-DNA complexes in aqueous solutions with the scanning force microscope. Proc Natl Acad Sci USA 91:12927–12931

    Article  PubMed  CAS  Google Scholar 

  • Guthold M, Zhu X et al (1999) Direct observation of one-dimensional diffusion and transcription by Escherichia coli RNA polymerase. Biophys J 77:2284–2294

    Article  PubMed  CAS  Google Scholar 

  • Hamon L, Pastre D, Dupaigne P, Le Breton C, Le Cam E, Pietrement O (2007) High-resolution AFM imaging of single-stranded DNA-binding (SSB) protein–DNA complexes. Nucleic Acids Res 35:e58

    Article  PubMed  Google Scholar 

  • Jiang Y, Marszalek PE (2011) Atomic force microscopy captures MutS tetramers initiating DNA mismatch repair. EMBO J 30:2881–2893

    Article  PubMed  CAS  Google Scholar 

  • Jiao Y, Cherny DI, Heim G, Jovin TM, Schaffer TE (2001) Dynamic interactions of p53 with DNA in solution by time-lapse atomic force microscopy. J Mol Biol 314:233–243

    Article  PubMed  CAS  Google Scholar 

  • Kasas S, Thomson NH et al (1997) Escherichia coli RNA polymerase activity observed using atomic force microscopy. Biochemistry 36:461–468

    Article  PubMed  CAS  Google Scholar 

  • Kobryn K, Watson MA, Allison RG, Chaconas G (2002) The Mu three-site synapse: a strained assembly platform in which delivery of the L1 transposase binding site triggers catalytic commitment. Mol Cell 10:659–669

    Article  PubMed  CAS  Google Scholar 

  • Kur J, Olszewski M, Dlugolecka A, Filipkowski P (2005) Single-stranded DNA-binding proteins (SSBs) – sources and applications in molecular biology. Acta Biochim Pol 52:569–574

    PubMed  CAS  Google Scholar 

  • Lohman TM, Ferrari ME (1994) Escherichia coli single-stranded DNA-binding protein: multiple DNA-binding modes and cooperativities. Annu Rev Biochem 63:527–570

    Article  PubMed  CAS  Google Scholar 

  • Lushnikov AY, Potaman VN, Lyubchenko YL (2006a) Site-specific labeling of supercoiled DNA. Nucleic Acids Res 34:e111

    Article  PubMed  Google Scholar 

  • Lushnikov AY, Potaman VN, Oussatcheva EA, Sinden RR, Lyubchenko YL (2006b) DNA strand arrangement within the SfiI-DNA complex: atomic force microscopy analysis. Biochemistry 45:152–158

    Article  PubMed  CAS  Google Scholar 

  • Lyubchenko YL, Gall AA, Shlyakhtenko LS, Harrington RE, Jacobs BL, Oden PI, Lindsay SM (1992a) Atomic force microscopy imaging of double stranded DNA and RNA. J Biomol Struct Dyn 10:589–606

    Article  PubMed  CAS  Google Scholar 

  • Lyubchenko YL, Jacobs BL, Lindsay SM (1992b) Atomic force microscopy of reovirus dsRNA: a routine technique for length measurements. Nucleic Acids Res 20:3983–3986

    Article  PubMed  CAS  Google Scholar 

  • Lyubchenko YL, Jacobs BL, Lindsay SM, Stasiak A (1995) Atomic force microscopy of nucleoprotein complexes. Scanning Microsc 9:705–724, discussion 724–707

    PubMed  CAS  Google Scholar 

  • Lyubchenko YL (2004) DNA structure and dynamics: an atomic force microscopy study. Cell Biochem Biophys 41:75–98

    Article  PubMed  CAS  Google Scholar 

  • Lyubchenko YL, Shlyakhtenko LS (2009) AFM for analysis of structure and dynamics of DNA and protein-DNA complexes. Methods 47:206–213

    Article  PubMed  CAS  Google Scholar 

  • Lyubchenko YL, Shlyakhtenko LS, Gall AA (2009) Atomic force microscopy imaging and probing of DNA, proteins, and protein DNA complexes: silatrane surface chemistry. Methods Mol Biol 543:337–351

    Article  PubMed  CAS  Google Scholar 

  • Lyubchenko YL, Gall AA, Shlyakhtenko LS (2001) Atomic force microscopy of DNA and protein-DNA complexes using functionalized mica substrates. In: Moss T (ed) DNA-protein interactions; principles and protocols, vol 148, Methods in molecular biology. Humana, Totowa, NJ, pp 569–578

    Google Scholar 

  • Marsden MP, Laemmli UK (1979) Metaphase chromosome structure: evidence for a radial loop model. Cell 17:849–858

    Article  PubMed  CAS  Google Scholar 

  • Menshikova I, Menshikov E, Filenko N, Lyubchenko YL (2011) Nucleosomes structure and dynamics: effect of CHAPS. Int J Biochem Mol Biol 2:129–137

    PubMed  CAS  Google Scholar 

  • Merickel SK, Johnson RC (2004) Topological analysis of Hin-catalysed DNA recombination in vivo and in vitro. Mol Microbiol 51:1143–1154

    Article  PubMed  CAS  Google Scholar 

  • Miyagi A, Ando T, Lyubchenko YL (2011) Dynamics of nucleosomes assessed with time-lapse high-speed atomic force microscopy. Biochemistry 50:7901–7908

    Article  PubMed  CAS  Google Scholar 

  • Murphy PJ, Shannon M, Goertz J (2011) Visualization of recombinant DNA and protein complexes using atomic force microscopy. J Vis Exp: JoVE 53: pil: 3061. doi:10.3791/3061

  • Reuter M, Kupper D, Meisel A, Schroeder C, Kruger DH (1998) Cooperative binding properties of restriction endonuclease EcoRII with DNA recognition sites. J Biol Chem 273:8294–8300

    Article  PubMed  CAS  Google Scholar 

  • Rybenkov VV, Vologodskii AV, Cozzarelli NR (1997) The effect of ionic conditions on the conformations of supercoiled DNA I. Sedimentation analysis. J Mol Biol 267:299–311

    Article  PubMed  CAS  Google Scholar 

  • Ryzhikov M, Koroleva O, Postnov D, Tran A, Korolev S (2011) Mechanism of RecO recruitment to DNA by single-stranded DNA binding protein. Nucleic Acids Res 39:6305–6314

    Article  PubMed  CAS  Google Scholar 

  • Shereda RD, Kozlov AG, Lohman TM, Cox MM, Keck JL (2008) SSB as an organizer/mobilizer of genome maintenance complexes. Crit Rev Biochem Mol Biol 43:289–318

    Article  PubMed  CAS  Google Scholar 

  • Shlyakhtenko LS, Hsieh P, Grigoriev M, Potaman VN, Sinden RR, Lyubchenko YL (2000) A cruciform structural transition provides a molecular switch for chromosome structure and dynamics. J Mol Biol 296:1169–1173

    Article  PubMed  CAS  Google Scholar 

  • Shlyakhtenko LS, Gall AA, Filonov A, Cerovac Z, Lushnikov A, Lyubchenko YL (2003) Silatrane-based surface chemistry for immobilization of DNA, protein-DNA complexes and other biological materials. Ultramicroscopy 97:279–287

    Article  PubMed  CAS  Google Scholar 

  • Shlyakhtenko LS, Gilmore J, Portillo A, Tamulaitis G, Siksnys V, Lyubchenko YL (2007) Direct visualization of the EcoRII-DNA triple synaptic complex by atomic force microscopy. Biochemistry 46:11128–11136

    Article  PubMed  CAS  Google Scholar 

  • Shlyakhtenko LS, Lushnikov AY, Lyubchenko YL (2009) Dynamics of nucleosomes revealed by time-lapse atomic force microscopy. Biochemistry 48:7842–7848

    Article  PubMed  CAS  Google Scholar 

  • Shlyakhtenko LS, Lushnikov AY, Miyagi A, Lyubchenko YL (2012) Specificity of binding of the single stranded DNA binding protein to the target. Biochemistry 51(7):1500–1509

    Article  PubMed  CAS  Google Scholar 

  • Suzuki Y, Higuchi Y, Hizume K, Yokokawa M, Yoshimura SH, Yoshikawa K, Takeyasu K (2010) Molecular dynamics of DNA and nucleosomes in solution studied by fast-scanning atomic force microscopy. Ultramicroscopy 110(6):682–688

    Article  PubMed  CAS  Google Scholar 

  • Tamulaitis G, Sasnauskas G, Mucke M, Siksnys V (2006) Simultaneous binding of three recognition sites is necessary for a concerted plasmid DNA cleavage by EcoRII restriction endonuclease. J Mol Biol 358:406–419

    Article  PubMed  CAS  Google Scholar 

  • Tessmer I, Yang Y, Zhai J, Du C, Hsieh P, Hingorani MM, Erie DA (2008) Mechanism of MutS searching for DNA mismatches and signaling repair. J Biol Chem 283:36646–36654

    Article  PubMed  CAS  Google Scholar 

  • Thundat T, Allison DP, Warmack RJ, Brown GM, Jacobson KB, Schrick JJ, Ferrell TL (1992) Atomic force microscopy of DNA on mica and chemically modified mica. Scanning Microsc 6:911–918

    PubMed  CAS  Google Scholar 

  • van Noort SJ, van der Werf KO, Eker AP, Wyman C, de Grooth BG, van Hulst NF, Greve J (1998) Direct visualization of dynamic protein-DNA interactions with a dedicated atomic force microscope. Biophys J 74:2840–2849

    Article  PubMed  Google Scholar 

  • Vanamee ES, Viadiu H, Kucera R, Dorner L, Picone S, Schildkraut I, Aggarwal AK (2005) A view of consecutive binding events from structures of tetrameric endonuclease SfiI bound to DNA. EMBO J 24:4198–4208

    Article  PubMed  CAS  Google Scholar 

  • Vesenka J, Guthold M, Tang CL, Keller D, Delaine E, Bustamante C (1992) Substrate preparation for reliable imaging of DNA molecules with the scanning force microscope. Ultramicroscopy 42–44:1243–1249

    Article  PubMed  Google Scholar 

  • Wang H, Yang Y et al (2003) DNA bending and unbending by MutS govern mismatch recognition and specificity. Proc Natl Acad Sci USA 100:14822–14827

    Article  PubMed  CAS  Google Scholar 

  • Watson JD (2008) Molecular biology of the gene. Pearson/Benjamin Cummings, San Francisco, CA

    Google Scholar 

  • Watson MA, Chaconas G (1996) Three-site synapsis during Mu DNA transposition: a critical intermediate preceding engagement of the active site. Cell 85:435–445

    Article  PubMed  CAS  Google Scholar 

  • Widom J, Klug A (1985) Structure of the 300Å chromatin filament: X-ray diffraction from oriented samples. Cell 43:207–213

    Article  PubMed  CAS  Google Scholar 

  • Winter RB, Berg OG, von Hippel PH (1981) Diffusion-driven mechanisms of protein translocation on nucleic acids. 3. The Escherichia coli lac repressor–operator interaction: kinetic measurements and conclusions. Biochemistry 20:6961–6977

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Sass LE, Du C, Hsieh P, Erie DA (2005) Determination of protein-DNA binding constants and specificities from statistical analyses of single molecules: MutS-DNA interactions. Nucleic Acids Res 33:4322–4334

    Article  PubMed  CAS  Google Scholar 

  • Zhong Q, Inniss D, Kjoller K, Elings VB (1993) Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy. Surf Sci Lett 290:L688–L692

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I am grateful to Luda Shlyakhtenko for valuable comments and critical reading of the manuscript, and current and former members of the group for their contribution to works incorporated into the manuscript. The work was supported by grants from National Institutes of Health Grants (1P01GM091743-01A1 and 1 R01 GM096039-01A1), US Department of Energy (DE-FG02-08ER64579), National Science Foundation (EPS – 1004094), and Nebraska Research Initiative grant to Y.L.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri L. Lyubchenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lyubchenko, Y.L. (2012). AFM Visualization of Protein–DNA Interactions. In: Oberhauser, A. (eds) Single-molecule Studies of Proteins. Biophysics for the Life Sciences, vol 2. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4921-8_4

Download citation

Publish with us

Policies and ethics