Skip to main content

Proteomic Perspectives on Understanding and Improving Jatropha curcas L.

  • Chapter
  • First Online:

Abstract

Ninety percent of the world’s energy demands are met by non-renewable fossil fuels. The limited supply, high prices and non-sustainability of fossil fuels has led to exploring new resources for energy. Among all the available sources of renewable energy, biodiesel is viewed as one of the best alternatives, particularly for transport fuel, because it can provide a secure and economically viable source of energy. Biodiesel can be used directly or as an additive to petro-fuels as it can lessen harmful vehicle emissions which cause adverse environmental effects. Recent studies have shown non-edible oilseed crops such as Jatropha curcas to be suitable for biodiesel production. The by-products of J. curcas-based biodiesel production have numerous industrial applications. The different parts of the plant and its extracts can be used in medicinal, cosmetic, plastics and insecticide/pesticide industries. If realistic returns are expected, J. curcas can be grown on marginal and wastelands promoting effective land use and generating employment, thus strengthening local communities both socially and economically. However, neither J. curcas nor any other potentially useful non-edible oilseed plant is currently grown commercially. Genotypic characterization of the global accessions of J. curcas have shown limited genetic diversity despite appreciable variability in important phenotypic, physiological and biochemical traits. Further genetic improvement of J. curcas is desirable for improved oil quality and quantity, either through conventional breeding or molecular engineering, for a number of reasons. These include unpredictable yield patterns, varying but often low oil content, the presence of toxic and carcinogenic compounds, multiple asynchronous flowering flushes, plant height and problems associated with seed germination. Knowledge of the nuclear and chloroplast genome of J. curcas and standardization of plant transformation and gene silencing in this plant provide opportunities for rapid progress in understanding and improving the J. curcas potential as a biodiesel crop. This chapter reviews information specifically on proteins and proteome analysis based approaches to identify useful components in critical biochemical pathways or traits such as fatty acid metabolism, phorbol ester synthesis and stress tolerance. Identification of spatio-temporally specific and environmentally responsive proteins as the reactive component can compliment and fast-track other genomic and transcriptomic approaches for improving J. curcas.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abigor RD, Uadia PO, Foglia TA, Haas MJ, Scott K, Savary BJ (2002) Partial purification and properties of lipase from germinating seeds of Jatropha curcas L. J Am Oil Chem Assoc 79(11):1123–1126

    Article  CAS  Google Scholar 

  • Achten WMJ, Aerts R, Mathijs E, Verchot L, Singh VP, Muys B (2007) Jatropha biodiesel fueling sustainability? Biofuels Bioprod Biorefin 1:283–291

    Article  CAS  Google Scholar 

  • Allison SP, Go VLW (2004) Nutrition and genomics in metabolic issues of clinical importance. Nestle nutrition workshop series – clinical and performance program 9: 243–271. Karger Publishers

    Google Scholar 

  • Asif MH, Mantri SS, Sharma A, Srivastava A, Trivedi I, Gupta P et al (2010) Complete sequence and organisation of the Jatropha curcas (Euphorbiaceae) chloroplast genome. Tree Genet Genom 6:941–952

    Article  Google Scholar 

  • Azam MM, Waris A, Nahar NM (2005) Prospects and potential of fatty acid methyl esters of some non-traditional seed oils for use as biodiesel in India. Biomass Bioenergy 29:293–302

    Article  Google Scholar 

  • Basha SD, Sujatha M (2007) Inter and intra-population variability of Jatropha curcas (L.) characterized by RAPD and ISSR markers and development of population-specific SCAR markers. Euphytica 156:375–386

    Article  CAS  Google Scholar 

  • Berkowitz O, Jost R, Pollmann S, Masle J (2008) Characterization of TCTP, the translationally controlled tumor protein, from Arabidopsis thaliana. Plant Cell 12:3430–3447

    Article  Google Scholar 

  • BIODIESEL 2020: 2008 Global market survey, feedstock trends and forecasts. Multi-client Study, 2 685 pages Published by Emerging Markets Online

    Google Scholar 

  • Brittaine RA, Lutaladio N (2010) Jatropha: a smallholder bioenergy crop. The potential for pro-poor development. Food and Agriculture Organisation, Rome

    Google Scholar 

  • Cans C, Passer BJ, Shalak V, Nancy-Portebois V, Crible V, Amzallag N et al (2003) Translationally controlled tumor protein acts as a guanine nucleotide dissociation inhibitor on the translation elongation factor eEF1A. Proc Natl Acad Sci (USA) 100:13892–13897

    Article  CAS  Google Scholar 

  • Chhetri AB, Tango MS, Budge SM, Watts KC, Islam MR (2008) Non-edible plant oils as new sources for biodiesel production. Int J Mol Sci 9:169–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coemans B, Takahashi Y, Berberich T, Ito A, Kanzaki H, Matsumura H et al (2008) High-throughput in planta expression screening identifies an ADP-ribosylation factor (ARF1) involved in non-host resistance and R gene-mediated resistance. Mol Plant Pathol 9(1):25–36

    CAS  PubMed  Google Scholar 

  • Costa GGL, Cardoso KC, Del Bem LEV, Lima AC, Cunha MAS, de Campos-Leite L et al (2010) Transcriptome analysis of the oil-rich seed of the bioenergy crop Jatropha curcas L. BMC Genom 11:462

    Article  Google Scholar 

  • Dani KGS, Hatti KS, Ravikumar P, Kush A (2011) Structural and functional analyses of a saturated acyl ACP thioesterase, type B from immature seed tissue of Jatropha curcas. Plant Biol 13(3):453–461

    Article  CAS  PubMed  Google Scholar 

  • Demirbas A (2007) Progress and recent trends in biofuels. Prog Energ Combust Sci 33:1–18

    Article  CAS  Google Scholar 

  • Demirbas A (2008a) Biomethanol production from organic waste materials. Energ Sources Part A Recov Util Environ Effects 30:565–572

    Article  CAS  Google Scholar 

  • Demirbas A (2008b) The importance of bioethanol and biodiesel from biomass. Energy Sources Part B Econ Plann Policy 3:177–185

    Article  CAS  Google Scholar 

  • Deore AC, Johnson TS (2008) High-frequency plant regeneration from leaf-disc cultures of Jatropha curcas L: an important biodiesel plant. Plant Biotechnol Rep 2:7–11

    Article  Google Scholar 

  • Devappa RK, Swamylingappa B (2008) Biochemical and nutritional evaluation of Jatropha protein isolate prepared by steam injection heating for reduction of toxic and antinutritional factors. J Sci Food Agric 88:911–919

    Article  CAS  Google Scholar 

  • Eastmond PJ (2006) Sugar-dependent 1 encodes a patatin domain triacylglycerol lipase that initiates storage oil breakdown in germinating Arabidopsis seeds. Plant Cell 18:665–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gatehouse JA (2002) Plant resistance towards insect herbivores: a dynamic interaction. Tansley review number 140. New Phytol 156:145–169

    Article  CAS  Google Scholar 

  • Genomeweb (2010) http://www.genomeweb.com/sequencing/life-technologies-and-sg-biofuels-sequence-Jatropha-genome-solid-4. Accessed 29 May 2011

  • Gohil RH, Pandya JB (2008) Genetic diversity assessment in physic nut (Jatropha curcas L.). Intl J Plant Prod 2:321–326

    Google Scholar 

  • Gu KY, Chiam H, Tian DS, Yin ZC (2011) Molecular cloning and expression of heteromeric ACCase subunit genes from Jatropha curcas. Plant Sci 180(4):642–649

    Article  CAS  PubMed  Google Scholar 

  • Gupta S, Srivastava M, Mishra GP, Naik PK, Chauhan RS, Tiwari SK et al (2008) Analogy of ISSR and RAPD markers for comparative analysis of genetic diversity among different Jatropha curcas genotypes. Afr J Biotechnol 7:4230–4243

    CAS  Google Scholar 

  • Heller J (1996) Physic nut (Jatropha curcas L.) promoting the conservation and use of underutilized and neglected crops. leben/International Plant Genetic Resources Institute, Rome, pp 1–66

    Google Scholar 

  • Jongschaap REE, Corre WJ, Bindraban PS, Brandenburg WA (2007) Claims and facts on Jatropha curcas L: global Jatropha curcas evaluation breeding and propagation programme. Plant Research International, Wageningen report 158

    Google Scholar 

  • Joshi M, Mishra A, Jha B (2011) Efficient genetic transformation of Jatropha curcas L. by microprojectile bombardment using embryo axes. Ind Crops Prod 33:67–77

    Article  CAS  Google Scholar 

  • Kohli A, Raorane M, Popluechai S, Kannan U, Syers JK, O’Donnell AG (2009) Biofuels: Jatropha curcas as a novel, non-edible oilseed plant for biodiesel. In: Ferry N, Gatehouse AMR (eds) Environmental impact of genetically modified novel crops. CABI, Wallingford, pp 294–322

    Google Scholar 

  • Komatsu S, Yamada E, Furukawa K (2009) Cold stress changes the concanavalin A-positive glycosylation pattern of proteins expressed in the basal parts of rice leaf sheaths. Amino Acids 36(1):115–123

    Article  CAS  PubMed  Google Scholar 

  • Kumar N, Anand KGV, Pamidimarri DVNS, Sarkar T, Reddy MP, Radhakrishnan T et al (2010) Stable genetic transformation of Jatropha curcas via Agrobacterium tumefaciens-mediated gene transfer using leaf explants. Ind Crops Prod 32:41–47

    Article  CAS  Google Scholar 

  • Kumar N, Anand KGV, Reddy MP (2011) In vitro regeneration from petiole explants of non-toxic Jatropha curcas. Ind Crops Prod 33:146–151

    Article  CAS  Google Scholar 

  • Lee JR, Lee SS, Jang HH, Lee YM, Park JH, Park SC et al (2009) Heat-shock dependent oligomeric status alters the function of a plant-specific thioredoxin-like protein, AtTDX. Proc Natl Acad Sci USA 106:5978–5983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Li MR, Wu PZ, Tian CE, Jiang HW, Wu GJ (2008) Molecular cloning and expression analysis of a gene encoding a putative beta-ketoacyl-acyl carrier protein (ACP) synthase III (KAS III) from Jatropha curcas. Tree Physiol 28(6):921–927

    Article  CAS  PubMed  Google Scholar 

  • Liang Y, Chen H, Tang MJ, Yang PF, Shen SH (2007) Responses of Jatropha curcas seedlings to cold stress: photosynthesis-related proteins and chlorophyll fluorescence characteristics. Physiol Planta 131(3):508–517

    Article  CAS  Google Scholar 

  • Lin J, Li YX, Zhou XW, Tang KX, Chen F (2003) Cloning and characterization of a curcin gene encoding a ribosome inactivating protein from Jatropha curcas. DNA Seq 14(4):311–317

    Article  CAS  PubMed  Google Scholar 

  • Lin J, Jin YJ, Zhou MQ, Zhou X, Wang JY (2009) Molecular cloning, characterization and functional analysis of a 3-hydroxy-3-methylglutaryl coenzyme A reductase gene from Jatropha curcas. Afr J Biotechnol 8(15):3455–3462

    CAS  Google Scholar 

  • Lin J, Jin Y, Zhou X, Wang JY (2010a) Molecular cloning and functional analysis of the gene encoding geranylgeranyl diphosphate synthase from Jatropha curcas. Afr J Biotechnol 9:3342–3351

    CAS  Google Scholar 

  • Lin J, Zhou X, Wang JY, Jiang PH, Tang KX (2010b) Purification and characterization of curcin, a toxic lectin from the seed of Jatropha curcas. Prep Biochem Biotechnol 40(2):107–118

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Liu YJ, Yang MF, Shen SH (2009) A comparative analysis of embryo and endosperm proteome from seeds of Jatropha curcas. J Integr Plant Biol 51(9):850–857

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Wang WG, Gao JH, Chen F, Wang SH, Xu Y et al (2010a) Molecular cloning and characterization of a jasmonate biosynthetic pathway gene for allene oxide cyclase from Jatropha curcas. Acta Physiol Plant 32(3):531–539

    Article  CAS  Google Scholar 

  • Liu B, Yao L, Wang WG, Gao JH, Chen F, Wang SH et al (2010b) Molecular cloning and characterization of phospholipase D from Jatropha curcas. Mol Biol Rep 37(2):939–946

    Article  CAS  PubMed  Google Scholar 

  • Maciel FM, Laberty MA, Oliveira ND, Felix SP, Soares AMD, Vericimo MA et al (2009) A new 2 S albumin from Jatropha curcas L. seeds and assessment of its allergenic properties. Peptides 30(12):2103–2107

    Article  PubMed  Google Scholar 

  • Makkar H, Maes J, De Greyt W, Becker K (2009a) Removal and degradation of phorbol pretreatment and transesterification of Jatropha. J Am Oil Chem Soc 86:173–181

    Article  CAS  Google Scholar 

  • Makkar H et al (2009b) Removal and degradation of phorbol esters during pre-treatment and transesterification of Jatropha curcas oil. J Am Oil Chem Soc 86:173–181

    Article  CAS  Google Scholar 

  • Makkar H, Kumar V, Oyeleye O, Akinleye AO, Angulo-Escalante M, Becker K (2010) Traditional wisdom confirmed by scientific research: Jatropha species from Mexico is non-toxic in nature. Nat Preced. http://hdl.handle.net/10101/npre.2010.4155.1

  • Makkar HPS, Kumar V, Oyeleye OO, Akinleye AO, Angulo-Escalante MA, Becker K (2011) Jatropha platyphylla, a new non-toxic Jatropha species: physical properties and chemical constituents including toxic and antinutritional factors of seeds. Food Chem 125:63–71

    Article  CAS  Google Scholar 

  • Mandal R (2005) The Indian biofuels programme–national mission on bio-diesel. Presentation at the international conference and expo, Biofuels 2012: vision to reality, New Delhi, 17–18 Oct 2005

    Google Scholar 

  • Martin G, Mayeux A (1985) Curcas oil (Jatropha curcas L.) a possible fuel. Agric Trop 9:73–75

    Google Scholar 

  • Natarajan P, Kanagasabapathy D, Gunadayalan G, Panchalingam J, Shree N, Sugantham PA et al (2010) Gene discovery from Jatropha curcas by sequencing of ESTs from normalized and full-length enriched cDNA library from developing seeds. BMC Genomics 11:606

    Article  Google Scholar 

  • Nunez-Colin C, Goytia-Jimenez MA (2009) Distribution and agronomic characterization of potential cultivations regions of physic nut in Mexico. Pesqui Agropecu Bras 44:1078–1085

    Article  Google Scholar 

  • O’Leary B, Park J, William C, Plaxton WC (2011) The remarkable diversity of plant PEPC (phosphoenolpyruvate carboxylase): recent insights into the physiological functions and post-translational controls of non-photosynthetic PEPCs. Biochem J 436:15–34

    Article  PubMed  Google Scholar 

  • Pecina-Quintero V, Anaya-Lopez JL, Colmenero AZ, Garcia NM, Colin CAN, Bonilla JLS et al (2011) Molecular characterization of Jatropha curcas L. genetic resources from Chiapas, Mexico through AFLP markers. Biomass Bioenergy 35:1897–1905

    Article  CAS  Google Scholar 

  • Popluechai S (2010) Molecular characterisation of Jatropha curcas, towards an understanding of its potential as a non-edible oilseed-based source of biodiesel. Ph.D. thesis, University of Newcastle, NewcastleuponTyne. https://theses.ncl.ac.uk/dspace/bitstream/10443/992/1/Popluechai%2010.pdf

  • Popluechai S, Breviario D, Mulpuri S, Makkar H, Raorane M, Reddy A et al (2009) Narrow genetic and apparent phenetic diversity in Jatropha curcas: initial success with generating low phorbol ester interspecific hybrids. Nat Preced. http://hdl.handle.net/10101/npre.2009.2782.1

  • Popluechai S, Froissard M, Jolivet P, Breviario D, Gatehouse AMR, O’Donnell AG et al (2011) Jatropha curcas oil body proteome and oleosins: L-form JcOle3 as a potential phylogenetic marker. Plant Physiol Biochem 49(3):352–356

    Article  CAS  PubMed  Google Scholar 

  • Purkayastha J, Sugla T, Paul A, Solleti SK, Mazumdar P, Basu A et al (2010) Efficient in vitro plant regeneration from shoot apices and gene transfer by particle bombardment in Jatropha curcas. Biol Plant 54:13–20

    Article  CAS  Google Scholar 

  • Qin XB, Gao F, Zhang JP, Gao JH, Lin S, Wang Y et al (2011a) Molecular cloning, characterization and expression of cDNA encoding translationally controlled tumor protein (TCTP) from Jatropha curcas L. Mol Biol Rep 38(5):3107–3112

    Article  CAS  PubMed  Google Scholar 

  • Qin XB, Lin FR, Li Y, Gou CB, Chen F (2011b) Molecular analysis of ARF1 expression profiles during development of physic nut (Jatropha curcas L.). Mol Biol Rep 38(3):1681–1686

    Article  CAS  PubMed  Google Scholar 

  • Raorane ML (2010) Genotypic and phenotypic relationships in Jatropha: genome and gene analysis. Ph.D. thesis, University of Newcastle, Newcastle upon Tyne

    Google Scholar 

  • Sahia C, Singha A, Blumwaldb E, Grover A (2006) Beyond osmolytes and transporters: novel plant salt-stress tolerance-related genes from transcriptional profiling data. Physiol Plant 127:1–9

    Article  Google Scholar 

  • Sato S, Hirakawa H, Isobe S, Fukai E, Watanabe A, Kato M et al (2011) Sequence analysis of the genome of an oil-bearing tree, Jatropha curcas L. DNA Res 18:65–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen JL, Jia XN, Ni HG, Sun PG, Niu SH, Chen XY (2010) AFLP analysis of genetic diversity of Jatropha curcas grown in Hainan, China. Trees Struc Func 24:455–462

    Article  Google Scholar 

  • Shuit SH, Lee KT, Kamaruddin AH, Yusup S (2010) Reactive extraction and in situ esterification of Jatropha curcas L. seeds for the production of biodiesel. Fuel 89:527–530

    Article  CAS  Google Scholar 

  • Sirisomboon P, Kitchaiya P, Pholpho T, Mahuttanyavanitch W (2007) Physical and mechanical properties of Jatropha curcas L. fruits, nuts and kernels. Biosyst Eng 97:201–207

    Article  Google Scholar 

  • Sudha G, Ravishankar GA (2002) Involvement and interaction of various signaling compounds on the plant metabolic events during defense response, resistance to stress factors, formation of secondary metabolites and their molecular aspects. Plant Cell Tissue Org Cult 71:181–212

    Article  CAS  Google Scholar 

  • Sudheer-Pamidimarri DV, Mastan SG, Rahman H, Reddy MP (2009) Molecular characterization and genetic diversity analysis of Jatropha curcas L. in India using RAPD and AFLP analysis. Mol Biol Rep 37:2249–2257

    Article  Google Scholar 

  • Sun QB, Li LF, Li Y, Wu GJ, Ge XJ (2008) SSR and AFLP markers reveal low genetic diversity in the biofuel plant Jatropha curcas in China. Crop Sci 48:1865–1871

    Article  CAS  Google Scholar 

  • Tang MJ, Sun JW, Liu Y, Chen F, Shen SH (2007) Isolation and functional characterization of the JcERF gene, a putative AP2/EREBP domain-containing transcription factor, in the woody oil plant Jatropha curcas. Plant Mol Biol 63(3):419–428

    Article  CAS  PubMed  Google Scholar 

  • Tatikonda L, Wani SP, Kannan S, Beerelli N, Sreedevi TK, Hoisington DA et al (2009) AFLP-based molecular characterization of an elite germplasm collection of Jatropha curcas L., a biofuel plant. Plant Sci 176:505–513

    Article  CAS  PubMed  Google Scholar 

  • Tong L, Shu-Ming P, Wu-Yuan D, Dan-Wei M, Ying X, Meng X et al (2006) Characterization of a new stearoyl-acyl carrier protein desaturase gene from Jatropha curcas. Biotechnol Lett 28(9):657–662

    Article  PubMed  Google Scholar 

  • Wang ZY, Lin JM, Xu ZF (2008) Oil contents and fatty acid composition in Jatropha curcas seeds collected from different regions. Nan Fang Yi Ke Da Xue Xue Bao 28:1045–1046

    CAS  PubMed  Google Scholar 

  • Wei Q, Liao Y, Chen Y, Wang SH, Xu Y, Tang L et al (2005) Isolation, characterisation and antifungal activity of beta-1,3-glucanase from seeds of Jatropha curcas. South Afr J Bot 71(1):95–99

    Article  CAS  Google Scholar 

  • Wu PZ, Li J, Wei Q, Zeng L, Chen YP, Li MR (2009) Cloning and functional characterization of an acyl-acyl carrier protein thioesterase (JcFATB1) from Jatropha curcas. Tree Physiol 29(10):1299–1305

    Article  CAS  PubMed  Google Scholar 

  • Xiao JH, Zhang H, Niu LY, Wang XG (2011) Efficient screening of a novel antimicrobial peptide from Jatropha curcas by cell membrane affinity chromatography. J Agric Food Chem 59(4):1145–1151

    Article  CAS  PubMed  Google Scholar 

  • Yang MF, Liu YJ, Liu Y, Chen H, Chen F, Shen SH (2009) Proteomic analysis of oil mobilization in seed germination and post germination development of Jatropha curcas. J Proteome Res 8(3):1441–1451

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Yang MF, Wang D, Chen F, Shen SH (2010) JcDof1, a Dof transcription factor gene, is associated with the light-mediated circadian clock in Jatropha curcas. Physiol Plant 139(3): 324–334

    CAS  PubMed  Google Scholar 

  • Yang J, Yang MF, Zhang WO, Chen F, Shen SH (2011) A putative flowering-time-related Dof transcription factor gene, JcDof3, is controlled by the circadian clock in Jatropha curcas. Plant Sci 6:667–674

    Article  Google Scholar 

  • Ye J, Qu J, Bui HTN, Chua NH (2009) Rapid analysis of Jatropha curcas gene functions by virus-induced gene silencing. Plant Biotechnol J 7(9):964–976

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Wang YX, Jiang LD, Xu Y, Wang YC, Lu DH et al (2007) Aquaporin JcPIP2 is involved in drought responses in Jatropha curcas. Acta Biochim Biophys Sin 39(10):787–794

    Article  CAS  PubMed  Google Scholar 

  • Zhang FL, Niu B, Wang YC, Chen F, Wang SH, Xu Y et al (2008) A novel betaine aldehyde dehydrogenase gene from Jatropha curcas, encoding an enzyme implicated in adaptation to environmental stress. Plant Sci 174(5):510–518

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay Kohli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Raorane, M., Popluechai, S., Gatehouse, A.M.R., Kohli, A. (2013). Proteomic Perspectives on Understanding and Improving Jatropha curcas L.. In: Bahadur, B., Sujatha, M., Carels, N. (eds) Jatropha, Challenges for a New Energy Crop. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4915-7_19

Download citation

Publish with us

Policies and ethics