Skip to main content

Origin, Internal Structure and Evolution of 4 Vesta

  • Chapter
  • 2120 Accesses

Abstract

Asteroid 4 Vesta is the only preserved intact example of a large, differentiated protoplanet like those believed to be the building blocks of terrestrial planet accretion. Vesta accreted rapidly from the solar nebula in the inner asteroid belt and likely melted due to heat released due to the decay of 26Al. Analyses of meteorites from the howardite-eucrite-diogenite (HED) suite, which have been both spectroscopically and dynamically linked to Vesta, lead to a model of the asteroid with a basaltic crust that overlies a depleted peridotitic mantle and an iron core. Vesta’s crust may become more mafic with depth and might have been intruded by plutons arising from mantle melting. Constraints on the asteroid’s moments of inertia from the long-wavelength gravity field, pole position and rotation, informed by bulk composition estimates, allow tradeoffs between mantle density and core size; cores of up to half the planetary radius can be consistent with plausible mantle compositions. The asteroid’s present surface is expected to consist of widespread volcanic terrain, modified extensively by impacts that exposed the underlying crust or possibly the mantle. Hemispheric heterogeneity has been observed by poorly resolved imaging of the surface that suggests the possibility of a physiographic dichotomy as occurs on other terrestrial planets. Vesta might have had an early magma ocean but details of the early thermal structure are far from clear owing to model uncertainties and paradoxical observations from the HEDs. Petrological analysis of the eucrites coupled with thermal evolution modeling recognizes two possible mechanisms of silicate-metal differentiation leading to the formation of the basaltic achondrites: equilibrium partial melting or crystallization of residual liquid from the cooling magma ocean. A firmer understanding the plethora of complex physical and chemical processes that contribute to melting and crystallization will ultimately be required to distinguish among these possibilities. The most prominent physiographic feature on Vesta is the massive south polar basin, whose formation likely re-oriented the body axis of the asteroid’s rotation. The large impact represents the likely major mechanism of ejection of fragments that became the HEDs. Observations from the Dawn mission hold the promise of revolutionizing our understanding of 4 Vesta, and by extension, the nature of collisional, melting and differentiation processes in the nascent solar system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • C.M.O.D. Alexander, A.P. Boss, R.W. Carlson, Evolution of the inner solar system: A meteoritic perspective. Science 293, 64–68 (2001)

    Google Scholar 

  • Y. Amelin, A.N. Krot, I.D. Hutcheon, A.A. Ulyanov, Lead isotopic ages of chondrules and calcium-aluminum-rich inclusions. Science 297 (2002)

    Google Scholar 

  • G. Arrhenius, S.K. Asunmaa, Aggregation of grains in space. Moon 8, 368–391 (1973)

    Google Scholar 

  • J. Baer, S.R. Chesley, Astrometric masses of 21 asteroids, and an integrated asteroid ephemeris. Celest. Mech. Dyn. Astron. 100, 27–42 (2008)

    Google Scholar 

  • J.-A. Barrat, A. Yamaguchi, M. Benoit, J. Cotton, M. Bohn, Geochemistry of diogenites: Still more diversity in their parental melts. Meteorit. Planet. Sci. 43, 1759–1775 (2008)

    Google Scholar 

  • J.-A. Barrat, A. Yamaguchi, B. Zanda, C. Bollinger, M. Bohn, Relative chronology of crust formation on asteroid Vesta: Insights from the geochemistry of diogenites. Geochim. Cosmochim. Acta 74, 6218–6231 (2010)

    Google Scholar 

  • K.S. Bartels, T.L. Grove, High-pressure experiments on magnesian eucrite compositions: Constraints on magmatic processes in the eucrite parent body, in Proc. 21st Lunar Planet. Sci. Conf. (1991), pp. 351–365

    Google Scholar 

  • A.W. Beck, H.Y. McSween, Diogenites as polymict breccias composed of orthopyroxenite and harzburgite. Meteorit. Planet. Sci. 45, 850–872 (2010)

    Google Scholar 

  • S.V.W. Beckwith, A.I. Sarget, R.S. Chini, R. Guesten, A survey for circumstellar disks around young stellar objects. Astron. J. 99, 924–945 (1990)

    Google Scholar 

  • R.P. Binzel, S. Xu, Chips off of asteroid 4 Vesta: Evidence for the parent bodies of basaltic achondrites. Science 260, 186–191 (1993)

    Google Scholar 

  • R.P. Binzel, M.J. Gaffey, P.C. Thomas, B.H. Zellner, A.D. Storrs, E.N. Wells, Geologic mapping of Vesta from 1994 Hubble Space Telescope images. Icarus 128, 95–103 (1997)

    Google Scholar 

  • R.P. Binzel et al., Interiors of small bodies: Foundations and perspectives. Planet. Space Sci. 51, 443–454 (2003)

    Google Scholar 

  • J.S. Boesenberg, J.S. Delaney, A model composition of the basaltic achondrite planetoid. Geochim. Cosmochim. Acta 61, 3205–3225 (1997)

    Google Scholar 

  • A.P. Boss, Temperatures in protoplanetary disks. Annu. Rev. Earth Planet. Sci. 26, 53–80 (1998)

    Google Scholar 

  • W.F. Bottke, D. Nesvorny, R.E. Grimm, A. Morbidelli, D.P. O’Brien, Iron meteorites as remnants of planetesimals formed in the terrestrial planet region. Nature 439, 821–824 (2006)

    Google Scholar 

  • A. Bouvier, M. Wadhwa, The age of the solar system redefined by the oldest Pb-Pb age of a meteoritic inclusion. Nat. Geosci. 3, 637–641 (2010)

    Google Scholar 

  • L.E. Bowman, M.N. Spilde, J.J. Papike, Automated energy dispersive spectrometer modealanalysis applied to diogenites. Meteorit. Planet. Sci. 32, 869–875 (1997)

    Google Scholar 

  • T.H. Burbine et al., Vesta, Vestoids, and the howardite, eucrite, diogenite group: Relationships and the origin of spectral differences. Meteorit. Planet. Sci. 36, 761–781 (2001)

    Google Scholar 

  • A.G.W. Cameron, Origin of the solar system. Annu. Rev. Astron. Astrophys. 26, 441–472 (1988)

    Google Scholar 

  • J.E. Chambers, Planetary accretion in the inner solar system. Earth Planet. Sci. Lett. 224, 241–252 (2004)

    Google Scholar 

  • J.E. Chambers, G.W. Wetherill, Making the terrestrial planets: N-body integrations of planetary embryos in three dimensions. Icarus 136, 304–327 (1998)

    Google Scholar 

  • J. Connelly, Y. Amelin, A.N. Krot, M. Bizzarro, Chronology of the solar system’s oldest solids. Astophys. J. Lett. 675, 121–124 (2008)

    Google Scholar 

  • G.J. Consolmagno, M.J. Drake, Composition and evolution of the eucrite parent body: Evidence from rare Earth elements. Geochim. Cosmochim. Acta 41, 1271–1282 (1977)

    Google Scholar 

  • G.J. Consolmagno, D.T. Britt, The density and porosity of meteorites from the Vatican collection. Meteorit. Planet. Sci. 33, 1231–1241 (1998)

    Google Scholar 

  • J.N. Cuzzi, A.R. Dobrovolskis, J.M. Champney, Particle-gas dynamics in the midplane of a protoplanetary nebula. Icarus 106, 102–134 (1993)

    Google Scholar 

  • M.C. De Sanctis et al., The VIR spectrometer. Space Sci. Rev. (2011). doi:10.1007/s11214-010-9668-5

    Google Scholar 

  • M.J. Drake, The eucrite/Vesta story. Meteorit. Planet. Sci. 36, 501–513 (2001)

    Google Scholar 

  • G. Dreibus, H. Wanke, The bulk composition of the eucrite parent body and its bearing on planetary evolution. Z. Naturforsch. 35a, 204–216 (1980)

    Google Scholar 

  • J.D. Drummond, R.Q. Fugate, J.C. Christou, E.K. Hege, Full adaptive optics images of asteroids Ceres and Vesta; Rotational poles and triaxial ellipsoid dimensions. Icarus 132, 80–99 (1998)

    Google Scholar 

  • C.P. Dullemond, D. Hollenbach, I. Kamp, P. D’Alessio, Evolution of circumstellar disks around normal stars: Placing our solar system in context, in Protostars and Planets V, ed. by B. Reipurth, D. Jewitt, K. Keil (Univ. Ariz. Press, Tucson, 2007), pp. 555–572

    Google Scholar 

  • L.T. Elkins-Tanton, E. Maroon, M.J. Krawczynski, T.L. Grove, Magma ocean solidification processes on Vesta, in 39th Lunar Planet. Sci. Conf. (2008)

    Google Scholar 

  • C. Federico, A. Frigeri, C. Pauselli, A. Coradini, Vesta Thermal Evolution Revisited. Lunar Planet., Sci. Conf. XXXIX, #1719 (2008)

    Google Scholar 

  • A. Fienga et al., INPOP08, a 4-D planetary ephemeris: From asteroid and time-scale computations to ESA Mars Express and Venus Express contributions. Astron. Astrophys. 507, 279–289 (2009)

    Google Scholar 

  • A. Fujiwara, T. Kadono, A. Nakamura, Cratering experiments into curved surfaces and their implications for craters on small satellites. Icarus 105, 345–350 (1993)

    Google Scholar 

  • M.J. Gaffey, Surface lithologic heterogeneity of asteroid 4 Vesta. Icarus 127, 130–157 (1997)

    Google Scholar 

  • A. Ghosh, H.Y.J. McSween, A thermal model for the differentiation of asteroid 4 Vesta, based on radiogenic heating. Icarus 134, 187–206 (1998)

    Google Scholar 

  • R.C. Greenwood, I.A. Franchi, A. Jambon, P.C. Buchanan, Widespread magma oceans on asteroidal bodies in the early solar system. Nature 435, 916–918 (2005)

    Google Scholar 

  • G. Gupta, S. Sahijpal, Differentiation of Vesta and the parent bodies of other achondrites. J. Geophys. Res. 115 (2010). doi:10.1029/2009JE003525

  • K.E. Hainsch, E.A. Lada, C.J. Lada, Disk frequencies and lifetimes in young clusters. Astrophys. J. 553, L153–L156 (2001)

    Google Scholar 

  • A.N. Halliday, T. Kleine, Meteorites and the timing, mechanisms, and conditions of terrestrial planet accretion and early differentiation, in Meteorites and the Early Solar System II, ed. by D.S. Lauretta, H.Y. McSween (Univ. Ariz. Press, Tucson, 2006), pp. 775–801

    Google Scholar 

  • A.N. Halliday, D.-C. Lee, Tungsten isotopes and the early development of the Earth and Moon. Geochim. Cosmochim. Acta 63, 4157–4179 (1999)

    Google Scholar 

  • A.W. Harris, B.D. Warner, P. Praves, Asteroid Lightcurve Derived Data. NASA Planetary Data System (2006)

    Google Scholar 

  • L. Hartmann, Accretion Processes in Star Formation, Cambridge Astrophysics Series, vol. 32 (Cambridge Univ. Press, Cambridge, 2000), 239 pp.

    Google Scholar 

  • W.K. Hartmann, Planet formation: Mechanism of early growth. Icarus 33, 50–61 (1978)

    Google Scholar 

  • R.H. Hewins, H.E. Newsom, Igneous activity in the early solar system, in Meteorites and the Early Solar System, ed. by J.F. Kerridge, M.S. Matthews (Univ. Ariz. Press, Tucson, 1988), pp. 73–101

    Google Scholar 

  • K.A. Holsapple, The scaling of impact processes in planetary sciences. Annu. Rev. Earth Planet. Sci. 21, 333–373 (1993)

    Google Scholar 

  • Y. Ikeda, H. Takeda, A model for the origin of basaltic achondrites based on the Ysmsyo 7308 howardite. J. Geophys. Res. Suppl. 90, C649–C663 (1985)

    Google Scholar 

  • A. Johansen, J.S. Oishi, M.-M.M. Low, H. Klahr, T. Henning, A. Youdin, Rapid planetesimal formation in turbulent circumstellar disks. Nature 448, 1022–1025 (2007)

    Google Scholar 

  • J.H. Jones, The composition of the mantle of the eucrite parent body and the origin of eucrites. Geochim. Cosmochim. Acta 48, 641–648 (1984)

    Google Scholar 

  • JPL Small-body Data Browser, 4 Vesta: Jet Propulsion Laboratory, Pasadena, CA, 2003, http://ssd.jpl.nasa.gov/sbdb.cgi?sstr=4

  • M. Jutzi, E. Asphaug, Mega-ejecta on asteroid Vesta. Geophys. Res. Lett. 38 (2011). doi:10.1029/2010GL045517

  • Y.N. Kattoum, A.J. Dombard, Calculating the topography of a differentiated Vesta. Geophys. Res. Lett. 36 (2009). doi:10.1029/2009GL041155

  • K. Keil, Geological history of asteroid 4 Vesta: The “smallest terrestrial planet”, in Asteroids III, ed. by J.W.F. Bottke, A. Cellino, P. Paolicchi, R.P. Binzel (Univ. Ariz. Press, Tucson, 2002), pp. 573–584

    Google Scholar 

  • T. Kleine et al., Hf-W chronometry and the accretion and early evolution of asteroids and terrestrial planets. Geochim. Cosmochim. Acta 73, 5150–5188 (2009)

    Google Scholar 

  • E. Kokubo, S. Ida, Oligarchic growth of protoplanets. Icarus 131, 171–178 (1998)

    Google Scholar 

  • A.S. Konopliv et al., A global solution for the gravity field, rotation, landmarks, and ephemeris of Eros. Icarus 166, 289–299 (2002)

    Google Scholar 

  • A.S. Konopliv, C.F. Yoder, E.M. Standish, D.-N. Yuan, W.L. Sjogren, A global solution for the Mars static and seasonal gravity, Mars orientation, Phobos and Deimos masses, and Mars ephemeris. Icarus 182, 23–50 (2006)

    Google Scholar 

  • A.S. Konopliv et al., Mars high resolution gravity fields from MRO, Mars seasonal gravity, and other dynamical parameters. Icarus 111 (2011a). doi:10.1016/j.icarus.2010.10.004

  • A.S. Konopliv, S. Asmar, B.G. Bills, D.E. Smith, M.T. Zuber, Gravity investigation. Space Sci. Rev. (2011b). doi:10.1007/s11214-011-9794-8

    Google Scholar 

  • M. Kuzmanoski, G. Apostollovska, B. Novaković, The mass of (4) Vesta derived from its largest gravitational effects. Astron. J. 140, 880–886 (2010)

    Google Scholar 

  • W.A. Lawson, E.D. Feigelson, D.P. Huenemoerder, An improved H-R diagram for Chamaeleon I pre-main sequence stars. Mon. Not. R. Astron. Soc. 280, 335–354 (1996)

    Google Scholar 

  • Z.M. Leinhardt, D.C. Richardson, T. Quinn, Direct, N-body simulations of rubble pile collisions. Icarus 146, 133–151 (2000)

    Google Scholar 

  • J.S. Lewis, Physics and Chemistry of the Solar System (Academic Press, San Diego, 2004), 670 pp.

    Google Scholar 

  • J.J. Lissauer, Planet formation. Annu. Rev. Astron. Astrophys. 31, 129–174 (1993)

    Google Scholar 

  • J. Longhi, V. Pan, Phase equilibia constraints on the howardite-eucrite-diogenite association, in Proc. 18th Lunar Planet. Sci. Conf. (1988), pp. 459–470

    Google Scholar 

  • G.W. Lugmair, A. Shukolyukov, Early solar system time scales according to 53Mn-53Cr systematics. Geochim. Cosmochim. Acta 62, 2863–2886 (1998)

    Google Scholar 

  • G.W. Lugmair, A. Shukolyukov, Early solar system events and timescales. Meteorit. Planet. Sci. 36, 1017–1026 (2001)

    Google Scholar 

  • J.I. Lunine, Processing of material in the solar nebula, in From Stardust to Planetisemals, ed. by Y.J. Pendleton, A.G.G.M. Tielens. ASP Conference Series, vol. 122, pp. 271–279 (1997)

    Google Scholar 

  • J. Marshall, J.N. Cuzzi, Electrostatic enhancement of coagulation in protoplanetary nebulae, in XXXII Lunar Planet. Sci. Conf. (2001), p. 1262

    Google Scholar 

  • D.W.J. McCarthy, J.D. Freeman, J.D. Drummond, High resolution images of Vesta at 1.65 μm. Icarus 108, 285–297 (1994)

    Google Scholar 

  • M.U. McCaughrean, C.R. O’Dell, Direct imaging of circumstellar disks in the Orion nebula. Astron. J. 111, 1977–1987 (1996)

    Google Scholar 

  • T.B. McCord, J.B. Adams, T.V. Johnson, Asteroid Vesta: Spectral reflectivity and compositional implications. Science 168, 1445–1447 (1970)

    Google Scholar 

  • H.Y. McSween, A. Ghosh, R.E. Grimm, L. Wilson, E.D. Young, Thermal evolution models of asteroids, in Asteroids III, ed. by J.W.F. Bottke, A. Cellino, P. Paolicchi, R.P. Binzel (Univ. Ariz. Press, Tucson, 2003), pp. 559–571

    Google Scholar 

  • H.Y.J. McSween, D.W. Mittlefehldt, A.W. Beck, R.G. Mayne, T.J. McCoy, HED meteorites and their relationship to the geology of Vesta and the Dawn Mission. Space Sci. Rev. (2011)

    Google Scholar 

  • G. Michalak, Determination of asteroid masses I. (1) Ceres, (2) Pallas and (4) Vesta. Astron. Astrophys. 360, 363–374 (2000)

    Google Scholar 

  • R.L. Millis, J.L. Elliot, Direct determination of asteroid diameters from occultation observations, in Asteroids, ed. by T. Gehrels (Univ. Ariz. Press, Tucson, 1979), pp. 98–118

    Google Scholar 

  • D.W. Mittlefehldt, The genesis of diogenites and HED parent body petrogenesis. Geochim. Cosmochim. Acta 58, 1537–1552 (1994)

    Google Scholar 

  • D.W. Mittlefehldt, T.J. McCoy, C.A. Goodrich, A. Kracher, Non-chondritic meteorites from asteroidal bodies, in Planetary Materials, ed. by J.J. Papike. Rev. Mineral., vol. 36 (Mineral. Soc. Am., Chantilly, 1998), pp. 4-1–4-195

    Google Scholar 

  • H. Miyamoto, H. Takeda, Evidence for excavation of deep crustal material of a Vesta-like body from Ca compositional gradients in pyroxene. Earth Planet. Sci. Lett. 122, 343–349 (1994)

    Google Scholar 

  • H. Miyamoto, T. Mikouchi, K. Kaneda, Thermal history of the Ibitira noncumulate eucrite as inferred from pyroxene exsolution lamellae: Evidence for reheating and rapid cooling. Meteorit. Planet. Sci. 36, 231–237 (2001)

    Google Scholar 

  • H.E. Newsom, Molybdenum in eucrites: Evidence for a metal core in the eucrite parent body, in Proc. 15 Lunar Planet. Sci. Conf. (1985), pp. C613–C617

    Google Scholar 

  • D.P. O’Brien, A. Morbidelli, W.F. Bottke, The primordial excitation and clearing of the asteroid belt—Revisited. Icarus 191, 434–452 (2007)

    Google Scholar 

  • C.M. Pieters et al., Asteroid-meteorite links: The Vesta conundrum(s), in Asteroids, Comets, Meteors, ed. by C.M. Pieters et al. (Int. Astron. Un., Paris, 2005). doi:10.1017/S1743921305006794

    Google Scholar 

  • E.V. Pitjeva, High-precision ephemerides of planets—EPM and determination of some astronomical constants. Sol. Syst. Res. 39, 176–186 (2005)

    Google Scholar 

  • T.H. Prettyman et al., Dawn’s gamma ray and neutron detector (GRAND). Space Sci. Rev. (2011)

    Google Scholar 

  • C.A. Raymond, T. Roatsch, F. Preusker, D.E. Smith, M.T. Zuber, Topography investigation. Space Sci. Rev. (2011)

    Google Scholar 

  • K. Righter, M.J. Drake, Core formation in Earth’s Moon, Mars, and Vesta. Icarus 124, 513–529 (1996)

    Google Scholar 

  • K. Righter, M.J. Drake, A magma ocean on Vesta: Core formation and petrogenesis of eucrites and diogenites. Meteorit. Planet. Sci. 32, 929–944 (1997)

    Google Scholar 

  • C.T. Russell, C.A. Raymond, The Dawn Discovery mission to Vesta and Ceres. Space Sci. Rev. (2011)

    Google Scholar 

  • C.T. Russell et al., Dawn mission to Vesta and Ceres: Symbiosis between terrestrial observations and robotic exploration. Earth Moon, Planets 101, 65–91 (2007)

    Google Scholar 

  • A. Ruzicka, G.A. Snyder, L.A. Taylor, Vesta as the howardite, eucrite and diogenite parent body: Implications for the size of the coe and for large-scale differentiation. Meteorit. Planet. Sci. 32, 825–840 (1997)

    Google Scholar 

  • M. Schiller, J.A. Baker, M. Bizzarro, J. Creech, A.J. Irving, Timing and Mechanisms of the Evolution of the Magma Ocean on the HED Parent Body (Meteoritical Soc., New York, 2010)

    Google Scholar 

  • E.R.D. Scott, Chondrites and the protoplanetary disk. Annu. Rev. Earth Planet. Sci. 35, 577–620 (2007)

    Google Scholar 

  • E.R.D. Scott, R.C. Greenwood, I.A. Franchi, I.S. Sanders, Oxygen isotopic constraints on the origin and parent bodies of eucrites, diogenites, and howardites. Geochim. Cosmochim. Acta 73, 5835–5853 (2009)

    Google Scholar 

  • A. Shukolyukov, G.W. Langmuir, Chronology of asteroid accretion and differentiation, in Asteroids III, ed. by J.W.F. Bottke, A. Cellino, P. Paolicchi, R.P. Binzel (Univ. Ariz. Press, Tucson, 2002), pp. 687–695

    Google Scholar 

  • H. Sierks, et al., The dawn framing camera. Space Sci. Rev. (2011)

    Google Scholar 

  • E.M. Standish, Suggested GM values for Ceres, Pallas, and Vesta. IOM 312.F-01-006, Jet Propulsion Laboratory, Pasadena, 2001

    Google Scholar 

  • E. Stolper, Petrogenesis of eucrite, howardite and diogenite meteorites. Nature 258, 220–222 (1975)

    Google Scholar 

  • E.M. Stolper, Experimental petrology of eucrite meteorites. Geochim. Cosmochim. Acta 41, 587–611 (1977)

    Google Scholar 

  • S.E. Strom, S. Edwards, M.F. Skrutskie, Evolutionary time scales for circumstellar disks associated with intermediate and solar-type stars, in Protostars and Planets III, ed. by E.H. Levy, J.I. Lunine (Univ. Ariz. Press, Tucson, 1993), pp. 837–866

    Google Scholar 

  • H. Takeda, A layered-crust model of a howardite parent body. Icarus 40, 455–470 (1997)

    Google Scholar 

  • H. Takeda, H. Mori, J.S. Delaney, M. Prinz, G.E. Harlow, T. Ishii, Mineralogical comparison of Antarctic and non-Antarctic HED (howardites-eucrites-diogenites) achondrites. Mem. Nat. Inst. Polar Res. 30, 181–205 (1983) (Spec. Issue)

    Google Scholar 

  • P.C. Thomas, R.P. Binzel, M.J. Gaffey, B.H. Zellner, A.D. Storrs, E. Wells, Vesta: Spin pole, size, and shape from HST images. Icarus 128, 88–94 (1997a)

    Google Scholar 

  • P.C. Thomas, R.P. Binzel, M.J. Gaffey, A.D. Storrs, E.N. Wells, B.H. Zellner, Impact excavation on asteroid 4 Vesta: Hubble Space Telescope results. Science 277, 1492–1495 (1997b)

    Google Scholar 

  • M. Wadhwa, S.S. Russell, Timescales of accretion and differentiation in the early solar system: The meteoritic evidence, in Protostars and Planets IV, ed. by V. Mannings, A.P. Boss, S.S. Russell (Univ. Ariz. Press, Tucson, 2000), pp. 995–1018

    Google Scholar 

  • P.H. Warren, The magma ocean concept and lunar evolution. Annu. Rev. Earth Planet. Sci. 13, 201–240 (1985)

    Google Scholar 

  • P.H. Warren, G.W. Kallemeyn, H. Huber, F. Ulf-Møller, W. Choe, Geochim. Cosmochim. Acta 73, 5918 (2009)

    Google Scholar 

  • S.J. Weidenschilling, Dust to planetesimals. Icarus 44, 172–189 (1980)

    Google Scholar 

  • S.J. Weidenschilling, J.N. Cuzzi, Formation of planetesimals in the solar nebula, in Protostars and Planets III, ed. by E.H. Levy, J.I. Lunine (Univ. Ariz. Press, Tucson, 1993), pp. 1031–1060

    Google Scholar 

  • S.J. Weidenschilling, D. Spaute, D.R. Davis, F. Marzari, K. Phtsuki, Accretional evolution of a planetesimal swarm 2. The terrestrial zone. Icarus 127, 429–455 (1997)

    Google Scholar 

  • G.W. Wetherill, Origin of the asteroid belt, in Asteroids II, ed. by R.P. Binzel, T. Gehrels, M.S. Matthews (Univ. Ariz. Press, Tucson, 1989)

    Google Scholar 

  • G.W. Wetherill, An alternative model for the formation of the asteroids. Icarus 100, 307–325 (1992)

    Google Scholar 

  • G.W. Wetherill, Provenance of the terrestrial planets. Geochim. Cosmochim. Acta 58, 4513–4520 (1994)

    Google Scholar 

  • G. Wurm, J. Blum, J.E. Colwell, Aerodynamical sticking of dust aggregates. Phys. Res. E64, 46,301–46,309 (2001)

    Google Scholar 

  • B.D. Zellner, D.J. Tholen, E.F. Tedesco, The eight-color asteroid survey: Results for 589 minor planets. Icarus 61, 355–416 (1985)

    Google Scholar 

  • N.E.B. Zellner, S. Gibbard, I. de Pater, Near-IR imaging of asteroid 4 Vesta. Icarus 177, 190–195 (2005)

    Google Scholar 

  • M. Zema, M.C. Domeneghetti, G.M. Molin, V. Tazzoli, Cooling rates of diogenites: A study of Fe2+−Mg ordering in orthopyroxene by single-crystal x-ray diffraction. Meteorit. Planet. Sci. 32, 855–862 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria T. Zuber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Zuber, M.T. et al. (2011). Origin, Internal Structure and Evolution of 4 Vesta. In: Russell, C., Raymond, C. (eds) The Dawn Mission to Minor Planets 4 Vesta and 1 Ceres. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4903-4_6

Download citation

Publish with us

Policies and ethics