Skip to main content

Translational Approaches for Predicting CNS Drug Effects Using Microdialysis

  • Chapter
  • First Online:
Microdialysis in Drug Development

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 4))

  • 1256 Accesses

Abstract

CNS drug efficacy is largely dependent on target site kinetics of the unbound drug that may be strongly influenced by transport across the blood–brain barrier (BBB) and intracerebral distribution. It is, therefore, essential to have information on the unbound CNS target site pharmacokinetics, as this may distinctively differ from (unbound) plasma pharmacokinetics. Microdialysis studies on morphine, M3G, and M6G have shown the impact of different conditions on BBB transport and/or PK–PD relationships. Such heterogeneity in BBB transport and PK–PD relationships should be encompassed in the development of translational models that include specific expressions of the processes on the causal path between drug administration and CNS drug effects. An example on the development of a preclinical data-based translational model on dopaminergic inhibition is presented showing that microdialysis may provide critical and quantitative information on rate and extent of mechanisms between drug administration and CNS effects of a drug in different settings, which, combined with PK–PD modeling approaches, serves as the basis for generic translational models for prediction of CNS effects in varying conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abott NJ, Revest PA (1991) Control of brain endothelial permeability. Cerebrovasc Brain Met Rev 3:39–72

    Google Scholar 

  • Aird RB (1984) A study of intrathecal, cerebrospinal fluid-to-brain exchange. Exp Neurol 86:342–358

    Article  PubMed  CAS  Google Scholar 

  • Begley DJ (2004) ABC transporters and the blood–brain barrier. Curr Pharm Des 10:1295–1312

    Article  PubMed  CAS  Google Scholar 

  • Ben Jonathan N, LaPensee CR, LaPensee EW (2008) What can we learn from rodents about prolactin in humans? Endocrin Rev 29:1–41

    Article  CAS  Google Scholar 

  • Bengtsson J, Ederoth P, Ley D, Hansson S, Amer-Wåhlin I, Hellström-Westas L, Marsál K, Nordström CH, Hammarlund-Udenaes M (2009) The influence of age on the distribution of morphine and morphine-3-glucuronide across the blood–brain barrier in sheep. Br J Pharmacol 157(6):1085–1096

    Article  PubMed  CAS  Google Scholar 

  • Bouw MR, Gardmark M, Hammarlund-Udenaes M (2000) Pharmacokinetic–pharmacodynamic modelling of morphine transport across the blood–brain barrier as a cause of the antinociceptive effect delay in rats—a microdialysis study. Pharm Res 17:1220–1227

    Article  PubMed  CAS  Google Scholar 

  • Bouw R, Ederoth P, Lundberg J, Ungerstedt U, Nordstrom CH, Hammarlund-Udenaes M (2001a) Increased blood–brain barrier permeability of morphine in a patient with severe brain lesions as determined by microdialysis. Acta Anest Scand 45:390–392

    Article  CAS  Google Scholar 

  • Bouw MR, Xie R, Tunblad K, Hammarlund-Udenaes M (2001b) Blood–brain barrier transport and brain distribution of morphine-6-glucuronide in relation to the antinociceptive effect in rats—pharmacokinetic/pharmacodynamic modelling. Br J Pharmacol 134:1796–1804

    Article  PubMed  CAS  Google Scholar 

  • Breimer DD, Danhof M (1997) Prediction of the time course of drug effects in vivo in health and disease (intensity and duration). Clin Pharmacokinet 32:259–267

    Article  PubMed  CAS  Google Scholar 

  • Brosman CF, Claudio L (1998) Brain microvasculature in multiple sclerosis. In: Pardridge WM (ed) Introduction to the blood–brain barrier; methodology, biology and pathology, Cambridge University Press, pp 386–400

    Google Scholar 

  • Collins JM, Dedrick LD (1983) Distributed model for drug delivery to CSF and brain tissue. J Am Physiol 14:R303–R310

    Google Scholar 

  • Cordon-Cardo B, O’Brien JP, Casals D, Rittman-Grauer L, Biedler JL, Melamed MR, Bertino JR (1989) Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood–brain barrier sites. Proc Natl Acad Sci U S A 86:689

    Article  Google Scholar 

  • Cornford EM (1985) The blood–brain barrier, a dynamic regulatory interface. Mol Physiol 7:219–260

    CAS  Google Scholar 

  • Costantino HR, Illum L, Brandt G, Johnson PH, Quay SC (2007) Intranasal delivery: physicochemical and therapeutic aspects. Int J Pharm 337:1–24

    Article  PubMed  CAS  Google Scholar 

  • Cox EH, Kerbusch T, van der Graaf PH, Danhof M (1998) Pharmacokinetic–pharmacodynamic modeling of the electroencephalogram effect of synthetic opioids in the rat. Correlation with binding at the μ-opioid receptor. J Pharmacol Exp Ther 284:1095–1103

    PubMed  CAS  Google Scholar 

  • Cremers TI, de Vries MG, Huinink KD, Loon JP, Hart MV, Ebert B, Westerink BH, de Lange EC (2009) Quantitative microdialysis using modified ultraslow microdialysis: direct rapid and reliable determination of free brain concentrations with the metaquant technique. J Neurosci Methods 178(2):249–254

    Article  PubMed  CAS  Google Scholar 

  • Cserr HF (1971) Physiology of the choroid plexus. Physiol Rev 51:273–311

    PubMed  CAS  Google Scholar 

  • Cserr HF (1984) Convection of brain interstitial fluid. In: Shapiro K, Marmarou A, Portnoy H (eds) Hydrocephalus. Raven Press, New York, pp 59–68

    Google Scholar 

  • Danhof M, Alvan G, Dahl SG, Kuhlmann J, Paintaud G (2005) Mechanism-based pharmacokinetic–pharmacodynamic modeling-a new classification of biomarkers. Pharm Res 22:1432–1437

    Article  PubMed  CAS  Google Scholar 

  • Danhof M, de Jongh J, de Lange EC, Della Pasqua O, Ploeger BA, Voskuyl RA (2007) Mechanism-based pharmacokinetic–pharmacodynamic modeling: biophase distribution, receptor theory, and dynamical systems analysis. Annu Rev Pharmacol Toxicol 47:357–400

    Article  PubMed  CAS  Google Scholar 

  • Danhof M, de Lange EC, Della Pasqua OE, Ploeger BA, Voskuyl RA (2008) Mechanism-based pharmacokinetic–pharmacodynamic (PKPD) modeling in translational drug research. Trends Pharmacol Sci 29:186–191

    Article  PubMed  CAS  Google Scholar 

  • de Boer AG, van der Sandt I, Gaillard PJ (2003) The role of drug transporters at the blood–brain barrier. Annu Rev Pharmacol Toxicol 43:629–656

    Article  PubMed  Google Scholar 

  • de Lange EC, Danhof M (2002) Considerations in the use of cerebrospinal fluid pharmacokinetics to predict brain target concentrations in the clinical setting: implications of the barriers between blood and brain. Clin Pharmacokinet 41:691–703

    Article  PubMed  Google Scholar 

  • de Lange EC, Danhof M, de Boer AG, Breimer DD (1994) Critical factors of intracerebral microdialysis as a technique to determine the pharmacokinetics of drugs in rat brain. Brain Res 666:1–8

    Article  PubMed  Google Scholar 

  • de Lange EC, Ravenstijn PGM, Groenendaal D, van Steeg TS (2005) Toward the prediction of CNS drug effect profiles in physiological and pathological conditions using microdialysis and mechanism-based pharmacokinetic–pharmacodynamic modeling. AAPS J 7(3), Article 54

    Google Scholar 

  • de Lange EC (2004) Potential role of ABC transporters as a detoxification system at the blood–cerebrospinal fluid-barrier. Adv Drug Del Rev 56(12):1793–1809

    Article  Google Scholar 

  • de Lange ECM, Danhof M, de Boer AG, Breimer DD (1997) Methodological considerations of intracerebral microdialysis in pharmacokinetic studies on blood–brain barrier transport of drugs. Brain Res Rev 25:27–49

    Article  PubMed  Google Scholar 

  • de Rick AF, Belpaire FM, Dello C, Bogaert MG (1987) Influence of enhanced AAG concentration on protein binding, pharmacokinetics and anti-arrhythmic effect of lidocaine in the dog. J Pharmacol Exp Ther 241:289–293

    Google Scholar 

  • Del Bigio MR (1995) The ependyma: a protective barrier between brain and cerebrospinal fluid. Glia 14:1–13

    Article  PubMed  Google Scholar 

  • Dhuria SV, Hanson LR, Frey WH (2009) Intranasal delivery to the central nervous system: mechanisms and experimental considerations. J Pharm Sci 99:1654–1673

    Google Scholar 

  • Ederoth P, Tunblad K, Bouw R, Lundberg CJ, Ungerstedt U, Nordström CH, Hammarlund-Udenaes M (2004) Blood–brain barrier transport of morphine in patients with severe brain trauma. Br J Clin Pharmacol 57(4):427–435

    Article  PubMed  CAS  Google Scholar 

  • Fenstermacher JD, Patlak CS, Blasberg RG (1974) Transport of material between brain extracellular fluid, brain cells and blood. Fed Proc 33:2070–2074

    PubMed  CAS  Google Scholar 

  • Freeman ME, Kanyicska B, Lerant A, Nagy G (2000) Prolactin: structure, function, and regulation of secretion. Physiol Rev 80:1523–1631

    PubMed  CAS  Google Scholar 

  • Fridén M, Gupta A, Antonsson M, Bredberg U, Hammarlund-Udenaes M (2007) In vitro methods for estimating unbound drug concentrations in the brain interstitial and intracellular fluids. Drug Metab Dispos 35:1711–1719

    Article  PubMed  Google Scholar 

  • Gabrielsson J, Green AR (2009) Quantitative pharmacology or pharmacokinetic pharmacodynamic integration should be a vital component in integrative pharmacology. J Pharmacol Exp Ther 331:767–774

    Article  PubMed  CAS  Google Scholar 

  • Garrido M, Gubbens-Stibbe J, Tukker E et al (2000) Pharmacokinetic–pharmacodynamic analysis of the EEG effect of alfentanil in rats following beta-funaltrexamine-induced mu-opioid receptor “knockdown” in vivo. Pharm Res 17:653–659

    Article  PubMed  CAS  Google Scholar 

  • Groenendaal D, Freijer J, de Mik D, Bouw MR, Danhof M, de Lange EC (2007a) Pharmacokinetic–pharmacodynamic modelling of the electroencephalogram effects of morphine: the influence of biophase equilibration and P-glycoprotein interaction. Br J Pharmacol 151(5):713–20. Epub Apr 30 2007

    Google Scholar 

  • Groenendaal D, Freijer J, de Mik D, Bouw MR, Danhof M, de Lange EC (2007) Population pharmacokinetic modelling of non-linear brain distribution of morphine: influence of active saturable influx and P-glycoprotein mediated efflux. Br J Pharmacol 151(5):701–12. Epub Apr 30 2007

    Google Scholar 

  • Hammarlund-Udenaes M, Fridén M, Syvänen S, Gupta A (2008) On the rate and extent of drug delivery to the brain. Pharm Res 25(8):1737–1750

    Article  PubMed  CAS  Google Scholar 

  • Hammarlund-Udenaes M, Paalzow LN, de Lange ECM (1997) Drug equilibration across the blood–brain-barrier—pharmacokinetic considerations based on the microdialysis method. Pharm Res 14:128–134

    Article  PubMed  CAS  Google Scholar 

  • Illum L (2000) Transport of drugs from the nasal cavity to the central nervous system. Eur J Pharm Sci 11:1–18

    Article  PubMed  CAS  Google Scholar 

  • Illum L (2004) Is nose-to-brain transport of drugs in man a reality? J Pharm Pharmacol 56:3–17

    Article  PubMed  CAS  Google Scholar 

  • Jeffrey P, Summerfield S (2010) Assessment of the blood–brain barrier in CNS drug discovery. Neurobiol Dis 37:33–37

    Article  PubMed  CAS  Google Scholar 

  • Jolliet P, Simon N, Bree F et al (1997) Blood-to-brain transfer of various oxicams: effects of plasma binding on their brain delivery. Pharm Res 14:650–656

    Article  PubMed  CAS  Google Scholar 

  • Kapur S, Zipursky R, Jones C, Remington G, Houle S (2000) Relationship between dopamine D2 occupancy, clinical response, and side effects: a double-blind PET study of first-episode schizophrenia. Am J Psychiatry 157:514–520

    Article  PubMed  CAS  Google Scholar 

  • Karssen AM, Meijer OC, van der Sandt ICJ, Lucassen PJ, de Lange ECM, de Boer AG, de Kloet ER (2001) Multidrug resistance P-glycoprotein hampers the access of cortisol but not of corticosterone to mouse and human brain. Endocrinology 142:2686–2694

    Article  PubMed  CAS  Google Scholar 

  • Kooij G, van Horssen J, de Lange EC, Reijerkerk A, van der Pol SM, van Het Hof B, Drexhage J, Vennegoor A, Killestein J, Scheffer G, Oerlemans R, Scheper R, van der Valk P, Dijkstra CD, de Vries HE. (2010). T lymphocytes impair P-glycoprotein function during neuroinflammation. J Autoimmun 34(4):416–425

    Article  PubMed  CAS  Google Scholar 

  • Kropf W, Kuschinsky K (1993) Effects of stimulation of dopamine D1 receptors on the cortical EEG in rats: different influences by a blockade of D2 receptors and by an activation of putative dopamine autoreceptors. Neuropharmacol 32:493–500

    Article  CAS  Google Scholar 

  • Kvernmo T, Hartter S and Burger E (2006) A review of the receptor-binding and pharmacokinetic properties of dopamine agonists. Clin Therapeutics 28:1065–1078

    Article  CAS  Google Scholar 

  • Kvernmo T, Houben J, Sylte I (2008) Receptor-binding and pharmacokinetic properties of dopaminergic agonists. Curr Top Med Chem 8(12):1049–1067

    Article  PubMed  CAS  Google Scholar 

  • Lee G, Dallas S, Hong M, Bendayan R (2001) Drug transporters in the central nervous system: brain barriers and brain parenchyma considerations. Pharmacol Rev 53:569–596

    PubMed  CAS  Google Scholar 

  • Letrent SP, Pollack GM, Brouwer KR, Brouwer KL (1998) Effect of GF120918, a potent P-glycoprotein inhibitor, on morphine pharmacokinetics and pharmacodynamics in the rat. Pharm Res 15:599–605

    Article  PubMed  CAS  Google Scholar 

  • Letrent SP, Pollack GM, Brouwer KR, Brouwer KL (1999) Effects of a potent and specific P-glycoprotein inhibitor on the blood-brain barrier distribution and antinociceptive effect of morphine in the rat. Drug Metab Dispos 27:827–834

    PubMed  CAS  Google Scholar 

  • Lin TH, Sawada Y, Sugiyama Y, Iga T, Hanano M (1987) Effects of albumin and alpha 1-acid glycoprotein on the transport of imipramine and desipramine through the blood-brain barrier in rats. Chem Pharm Bull (Tokyo) 35:294–301

    Article  CAS  Google Scholar 

  • Liu X, Smith BJ, Chen C, Callegari E, Becker SL, Chen X, Cianfrogna J, Doran AC, Doran SD, Gibbs JPN, Hosea J, Liu Nelson FR, Szewc MA, van Deusen J (2005) Use of a physiologically based pharmacokinetic model to study the time to reach brain equilibrium: an experimental analysis of the role of blood–brain barrier permeability, plasma protein binding, and brain tissue binding. J Pharmacol Exp Ther 313:1254–1262

    Article  PubMed  CAS  Google Scholar 

  • Malhotra BK, Lemaire M, Sawchuk RJ (1994) Investigation of the distribution of EAB 515 to cortical ECF and CSF in freely moving rats utilizing microdialysis. Pharm Res 11:1223–1231

    Article  PubMed  CAS  Google Scholar 

  • Mandema JW, Sansom LN, Dios-Viéitez MC, Hollander-Jansen M, Danhof M (1991) Pharmacokinetic–pharmacodynamic modelling of the EEG effects of benzodiazepines. Correlation with receptor binding and anticonvulsant activity. J Pharmacol Exp Ther 257:472–478

    PubMed  CAS  Google Scholar 

  • Mulder M, Blokland A, van den Berg DJ, Schulten H, Bakker AHF, Terwel D, Honig W, de Kloet ER, Havekes LM, Steinbusch HWM, de Lange ECM (2001) Apolipoprotein E protects against neuropathology induced by a high-fat diet and maintains the integrity of the blood–brain barrier during aging. Lab Invest 81:953–960

    Article  PubMed  CAS  Google Scholar 

  • Oldendorf WH (1974) Lipid solubility and drug penetration of the blood–brain barrier. Proc Exp Biol Med 14:813–816

    Google Scholar 

  • Ploeger BA, van der Graaf PH, Danhof M (2009) Incorporating receptor theory in mechanism-based pharmacokinetic–pharmacodynamic (PKPD) modeling. Drug Metab Pharmacokinet 24:3–15

    Article  PubMed  CAS  Google Scholar 

  • Ravenstijn PG, Merlini M, Hameetman M, Murray TK, Ward MA, Lewis H, Ball G, Mottart C, de Ville de Goyet C, Lemarchand T, van Belle K, O’Neill MJ, Danhof M, de Lange EC (2007) The exploration of rotenone as a toxin for inducing parkinson’s disease in rats, for application in BBB transport and pkpd experiments. J Pharmacol Toxicol Meth 57(2):114–130

    Google Scholar 

  • Ravenstijn PGM, Drenth H, O’Neill MJ, Danhof M, de Lange (2012) ECM evaluation of BBB transport and CNS drug metabolism in diseased and control brain side: application for L-DOPA in a unilateral rat model of Parkinson’s disease. FBCNS, accepted

    Google Scholar 

  • Rubin LL, Staddon JM (1999) The cell biology of the blood–brain barrier. Annu Rev Neurosci 22:11–28

    Article  PubMed  CAS  Google Scholar 

  • Schinkel AH, Wagenaar E, van Deemter L, Mol CAAM, Borst P (1995) Absence of the mdr1a p-glycoprotein in mice affects tissue distribution and pharmacokinetics of dexamethasone, digoxin, and cyclosporin A. J Clin Invest 96:1698–1705

    Article  PubMed  CAS  Google Scholar 

  • Scism JL, Powers KM, Artru AA, Chambers AC, Lewis L, Adkison KK, Kalhorn TF, Shen DD (1997) Effects of probenecid on brain–cerebrospinal fluid–blood distribution kinetics of E-Delta(2)-valproic acid in rabbits. Drug Metab Disp 25:1337–1346

    CAS  Google Scholar 

  • Segal MB (1998) The blood–CSF barrier and the choroid plexus. In: Pardridge MD (ed) Introduction to the blood–brain barrier, methodology, biology and pathology. Cambridge University Press, pp 251–258

    Google Scholar 

  • Stain-Texier F, Boschi G, Sandouk P, Scherrmann JM (1999) Elevated concentrations of morphine 6-beta-D-glucuronide in brain extracellular fluid despite low blood–brain barrier permeability. Br J Pharmacol 128:917–924

    Article  PubMed  CAS  Google Scholar 

  • Stevens J, Suidgeest J, van der Graaf PH, Danhof M, de Lange EC (2009) A new minimal-stress freely-moving rat model for preclinical studies on intranasal administration of CNS drugs. Pharm Res 26(8):1911–1917

    Article  PubMed  CAS  Google Scholar 

  • Stevens J, Ploeger B, van der Graaf PH, Danhof M, de Lange ECM (2011a) Systemic- and direct nose-to-brain transport in the rat; a mechanistic pharmacokinetic model for remoxipride after intravenous and intranasal administration. Drug Metab Disp 39(12):2275–2282

    Google Scholar 

  • Stevens J, Ploeger B, vd Graaf PH, Danhof M, and de lange ECM (2012). Translational pharmacology of intranasal administration of dopamine receptor agonists and antagonists. J Pharmacokin Pharmacodyn (in press)

    Google Scholar 

  • Suzuki H, Terasaki T, Sugiyama Y (1997) Role of efflux transport across the blood–brain barrier and blood–cerebrospinal fluid barrier on the disposition of xenobiotics in the central nervous system. Adv Drug del rev 25:257–285

    Article  CAS  Google Scholar 

  • Syvänen S, Schenke M, van den Berg DJ, Voskuyl RA and de Lange ECM (2012) Alteration in P-glycoprotein functionality affects intrabrain distribution of drugs more than brain entry—A study in rats subjected to status epilepticus by kainate. AAPS J 14(1): 87–96

    Article  PubMed  Google Scholar 

  • Tamai I, Yamashita J, Kido Y et al (2000) Limited distribution of new quinolone antibacterial agents into brain caused by multiple efflux transporters at the blood–brain barrier. J Pharmacol Exp Ther 295:146–152

    PubMed  CAS  Google Scholar 

  • Tunblad K, Hammarlund-Udenaes M, Jonsson EN (2005) Influence of probenecid on the delivery of morphine-6-glucuronide to the brain. Eur J Pharm Sci 24:49–57

    Article  PubMed  CAS  Google Scholar 

  • Tunblad K, Ederoth P, Gardenfors A, Hammarlund-Udenaes M, Nordstrom CH (2004) Altered brain exposure of morphine in experimental meningitis studied with microdialysis. Acta Anaesthesiol Scand 48:294–301

    Article  PubMed  CAS  Google Scholar 

  • Tunblad K, Jonsson EN, Hammarlund-Udenaes M (2003) Morphine blood–brain barrier transport is influenced by probenecid co-administration. Pharm Res 20:618–623

    Article  PubMed  CAS  Google Scholar 

  • van der Graaf PH, Danhof M (1997) Analysis of drug-receptor interactions in vivo: a new approach in pharmacokinetic–pharmacodynamic modelling. Int J Clin Pharmacol Ther 35:442–446

    PubMed  Google Scholar 

  • van Steeg TJ, Boralli VB, Krekels EHJ, Slijkerman P, Freijer J, Danhof M, de Lange EC (2009) Influence of plasma protein binding on pharmacodynamics: estimation of in vivo receptor affinities of b blockers using a new mechanism-based PK–PD modelling approach. J Pharm Sci 98(10):3816–3828

    Article  PubMed  Google Scholar 

  • Vorobyov VV, Schibaev NV, Morelli M, Carta AR (2003) EEG modifications in the cortex and striatum after dopaminergic priming in the 6-hydroxydopamine rat model of Parkinson’s disease. Brain Res 972:177–185

    Article  PubMed  CAS  Google Scholar 

  • Wang YF, Welty DF (1996) The simultaneous estimation of the influx and efflux blood–brain barrier permeabilities of gabapentin using a microdialysis–pharmacokinetic approach. Pharm Res 13:398–403

    Article  PubMed  CAS  Google Scholar 

  • Watson J, Wright S, Lucas A, Clarke KL, Viggers J, Cheetham S, Jeffrey P, Porter R, Read KD (2009) Receptor occupancy and brain free fraction. Drug Metab Dispos 37:753–760

    Article  PubMed  CAS  Google Scholar 

  • Welty DF, Schielke GP, Vartanian MG, Taylor CP (1993) Gabapentin anticonvulsant action in rats: disequilibrium with peak drug concentrations in plasma and brain microdialysate. Epilepsy Res 16:175–181

    Article  PubMed  CAS  Google Scholar 

  • Westerhout J, Danhof M, de Lange EC (2011) Preclinical prediction of human brain target site concentrations: considerations in extrapolating to the clinical setting. J Pharm Sci 100(9):3577–3593

    Article  PubMed  CAS  Google Scholar 

  • Wijnholds J, de Lange ECM, Scheffer GL, van den Berg DJ, Mol CAAM, van der Valk M, Schinkel AH, Scheper RJ, Breimer DD, Borst P (2000) Multidrug resistance protein 1 protects the choroid plexus epithelium and contributes to the blood–cerebrospinal fluid barrier. Clin Invest 105:279–285

    Article  CAS  Google Scholar 

  • Williams SA, Davson H, Segal MB (1995) Transport of the nucleoside thymidine, in the central nervous system: the blood–cerebrospinal fluid and blood–brain barriers. In: Greenwood J, Begley DJ, Segal MB (eds) New concepts of a blood–brain barrier. Plenum Press, New York

    Google Scholar 

  • Xie R, Hammarlund-Udenaes M, de Boer AG, de Lange ECM (1999) The role of P-glycoprotein in blood-brain barrier transport of morphine: transcortical microdialysis studies in mdr1a(−/−) and mdr1a(+/+) mice. Br J pharmacol 131(8):563–568

    Article  Google Scholar 

  • Xie R, Bouw MR and Hammarlund-Udenaes M (2000). Modelling of the blood-brain barrier transport of morphine-3-glucuronide studied using microdialysis in the rat: involvement of probenecid-sensitive transport. Br J Pharmacol 131(8):1784–1792

    Article  PubMed  CAS  Google Scholar 

  • Yassen A, Olofsen E, Kan J, Dahan A, Danhof M (2007) Animal-to-human extrapolation of the pharmacokinetic and pharmacodynamic properties of buprenorphine. Clin Pharmacokinet 46:433–447

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Schuetz JD, Elmquist WF, Miller DW (2004) Plasma membrane localization of multidrug resistance-associated protein homologs in brain capillary endothelial cells. J Pharmacol Exp Ther 311:449–455

    Article  PubMed  CAS  Google Scholar 

  • Zuideveld KP, van der Graaf PH, Peletier LA, Danhof M (2007) Allometric scaling of pharmacodynamic responses: application to 5-Ht1A receptor mediated responses from rat to man. Pharm Res 24:2031–2039

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth de Lange .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

de Lange, E. (2013). Translational Approaches for Predicting CNS Drug Effects Using Microdialysis. In: Müller, M. (eds) Microdialysis in Drug Development. AAPS Advances in the Pharmaceutical Sciences Series, vol 4. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4815-0_8

Download citation

Publish with us

Policies and ethics