Skip to main content

Microdialysis in CNS PKPD Research: Unraveling Unbound Concentrations

  • Chapter
  • First Online:
Microdialysis in Drug Development

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 4))

Abstract

The pharmacokinetic (PK) processes of drug movements between blood and tissues and the drug concentration profiles within a tissue over time can be described with the help of microdialysis sampling. In addition, microdialysis uniquely allows measurement of the concentrations of unbound, pharmacologically active drug; it is not possible to obtain these directly with any other method. These are the most valuable outcomes of the microdialysis technique for pharmacokinetic/pharmacodynamic (PKPD) studies, and are the basis of the principles of drug distribution and PKPD in the central nervous system (CNS) presented in this chapter. This chapter will cover microdialysis studies investigating the PK and PKPD relationships of drugs in the CNS, and will also summarize alternative methods of achieving these results when microdialysis does not work or is too slow, for example in drug discovery processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5-OH-DPAT:

5-hydroxy-2-(N,N,-di-n-propylamino)tetralin

Atot,brain :

Total amount of drug in brain tissue per g tissue

AUC:

Area under the concentration–time curve in blood, plasma, or brain

AUCu,blood :

Unbound AUC in blood

AUCu,brain :

Unbound AUC in brain ISF

BBB:

Blood–brain barrier

BCRP:

Breast cancer resistance protein

Cblood :

Concentration of drug in blood

CLin :

Influx clearance from blood to brain across the BBB

CLout :

Efflux clearance from brain to blood across the BBB

CNS:

Central nervous system

Cu,blood :

Unbound concentration of a drug in blood

Cu,brain :

Unbound concentration of a drug in brain ISF

EC50:

Concentration resulting in half-maximal effect

ECF:

Extracellular fluid (same use as ISF here)

f u :

Fraction of unbound to total drug concentration in plasma

fu,brain :

Fraction of unbound to total drug concentration in brain tissue

GHB:

Gamma-hydroxybutyric acid

hCMEC:

Human brain endothelial capillary cell line

ISF:

Interstitial fluid (same use as ECF here)

Km:

Michaelis Menten constant (substrate concentration at half-maximal rate of metabolism)

Ki:

Equilibrium dissociation constant

K p :

Ratio of total brain to total plasma concentrations

Kp,uu :

Unbound concentration ratio between brain ISF and blood

Kp,uu,cell :

Ratio of unbound intracellular concentration (including lysosomal and other organelle distribution) to unbound ISF concentration

LC–MS/MS:

Liquid chromatography mass spectrometry

MPTP:

N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine

MPP+:

1-methyl-4-phenylpyridinium

NMDA:

N-methyl-D-aspartate

PET:

Positron emission tomography

P-gp:

P-glycoprotein

PD:

Pharmacodynamic

PK:

Pharmacokinetic

PKPD:

Pharmacokinetic/pharmacodynamic

pKa:

−10logKa, the acid dissociation constant

PS:

Permeability surface area product

Vblood :

Physiological volume of blood in brain per g tissue

Vu,brain :

Unbound volume of distribution in the brain, in ml × g_brain−1 tissue

References

  • Ackaert OW, De Graan J, Shi S, Vreeken R, Pasqua OE, Dijkstra D, Westerink BH, Danhof M, Bouwstra JA (2011) The pharmacokinetics and pharmacological effect of (S)-5-OH-DPAT following controlled delivery with transdermal iontophoresis. J Pharm Sci 100:2996–3009

    Article  PubMed  CAS  Google Scholar 

  • Bengtsson J, Ederoth P, Ley D, Hansson S, Amer-Wahlin I, Hellstrom-Westas L, Marsal K, Nordstrom CH, Hammarlund-Udenaes M (2009) The influence of age on the distribution of morphine and morphine-3-glucuronide across the blood-brain barrier in sheep. Br J Pharmacol 157:1085–1096

    Article  PubMed  CAS  Google Scholar 

  • Bostrom E, Hammarlund-Udenaes M, Simonsson US (2008) Blood-brain barrier transport helps to explain discrepancies in in vivo potency between oxycodone and morphine. Anesthesiology 108:495–505

    Article  PubMed  Google Scholar 

  • Bostrom E, Simonsson US, Hammarlund-Udenaes M (2006) In vivo blood-brain barrier transport of oxycodone in the rat: indications for active influx and implications for pharmacokinetics/pharmacodynamics. Drug Metab Dispos: Biol Fate Chem 34:1624–1631

    Article  Google Scholar 

  • Bouw MR, Gardmark M, Hammarlund-Udenaes M (2000) Pharmacokinetic-pharmacodynamic modelling of morphine transport across the blood-brain barrier as a cause of the antinociceptive effect delay in rats–a microdialysis study. Pharm Res 17:1220–1227

    Article  PubMed  CAS  Google Scholar 

  • Chaurasia CS, Muller M, Bashaw ED, Benfeldt E, Bolinder J, Bullock R, Bungay PM, DeLange EC, Derendorf H, Elmquist WF, Hammarlund-Udenaes M, Joukhadar C, Kellogg DL Jr, Lunte CE, Nordstrom CH, Rollema H, Sawchuk RJ, Cheung BW, Shah VP, Stahle L, Ungerstedt U, Welty DF, Yeo H (2007) AAPS-FDA workshop white paper: microdialysis principles, application and regulatory perspectives. Pharm Res 24:1014–1025

    Article  PubMed  CAS  Google Scholar 

  • Clinckers R, Smolders I, Michotte Y, Ebinger G, Danhof M, Voskuyl RA, Della Pasqua O (2008) Impact of efflux transporters and of seizures on the pharmacokinetics of oxcarbazepine metabolite in the rat brain. Br J Pharmacol 155:1127–1138

    Article  PubMed  CAS  Google Scholar 

  • Clinckers R, Smolders I, Vermoesen K, Michotte Y, Danhof M, Voskuyl R, Della Pasqua O (2009) Prediction of antiepileptic drug efficacy: the use of intracerebral microdialysis to monitor biophase concentrations. Expert Opin Drug Metab Toxicol 5:1267–1277

    Article  PubMed  CAS  Google Scholar 

  • Dagenais C, Rousselle C, Pollack GM, Scherrmann JM (2000) Development of an in situ mouse brain perfusion model and its application to mdr1a P-glycoprotein-deficient mice. J Cereb Blood Flow Metab 20:381–386

    Article  PubMed  CAS  Google Scholar 

  • Dahyot-Fizelier C, Timofeev I, Marchand S, Hutchinson P, Debaene B, Menon D, Mimoz O, Gupta A, Couet W (2010) Brain microdialysis study of meropenem in two patients with acute brain injury. Antimicrob Agents Chemother 54:3502–3504

    Article  PubMed  CAS  Google Scholar 

  • de Lange EC, de Bock G, Schinkel AH, de Boer AG, Breimer DD (1998) BBB transport and P-glycoprotein functionality using MDR1A (−/−) and wild-type mice. Total brain versus microdialysis concentration profiles of rhodamine-123. Pharm Res 15:1657–1665

    Article  PubMed  Google Scholar 

  • Ederoth P, Tunblad K, Bouw R, Lundberg CJ, Ungerstedt U, Nordstrom CH, Hammarlund-Udenaes M (2004) Blood-brain barrier transport of morphine in patients with severe brain trauma. Br J Clin Pharmacol 57:427–435

    Article  PubMed  CAS  Google Scholar 

  • Ferger B, Buck K, Shimasaki M, Koros E, Voehringer P, Buerger E (2010) Continuous dopaminergic stimulation by pramipexole is effective to treat early morning akinesia in animal models of Parkinson’s disease: a pharmacokinetic-pharmacodynamic study using in vivo microdialysis in rats. Synapse 64:533–541

    Article  PubMed  CAS  Google Scholar 

  • Friden M, Bergstrom F, Wan H, Rehngren M, Ahlin G, Hammarlund-Udenaes M, Bredberg U (2011) Measurement of unbound drug exposure in brain: modeling of pH partitioning explains diverging results between the brain slice and brain homogenate methods. Drug Metab Dispos: Biol Fate Chem 39:353–362

    Article  CAS  Google Scholar 

  • Friden M, Ducrozet F, Middleton B, Antonsson M, Bredberg U, Hammarlund-Udenaes M (2009a) Development of a high-throughput brain slice method for studying drug distribution in the central nervous system. Drug Metab Dispos: Biol Fate Chem 37:1226–1233

    Article  CAS  Google Scholar 

  • Friden M, Gupta A, Antonsson M, Bredberg U, Hammarlund-Udenaes M (2007) In vitro methods for estimating unbound drug concentrations in the brain interstitial and intracellular fluids. Drug Metab Dispos: Biol Fate Chem 35:1711–1719

    Article  CAS  Google Scholar 

  • Friden M, Ljungqvist H, Middleton B, Bredberg U, Hammarlund-Udenaes M (2010) Improved measurement of drug exposure in the brain using drug-specific correction for residual blood. J Cereb Blood Flow Metab 30:150–161

    Article  PubMed  CAS  Google Scholar 

  • Friden M, Winiwarter S, Jerndal G, Bengtsson O, Wan H, Bredberg U, Hammarlund-Udenaes M, Antonsson M (2009b) Structure-brain exposure relationships in rat and human using a novel data set of unbound drug concentrations in brain interstitial and cerebrospinal fluids. J Med Chem 52:6233–6243

    Article  PubMed  CAS  Google Scholar 

  • Geldof M, Freijer JI, van Beijsterveldt L, Langlois X, Danhof M (2008) Pharmacokinetic-pharmacodynamic modelling of fluvoxamine 5-HT transporter occupancy in rat frontal cortex. Br J Pharmacol 154:1369–1378

    Article  PubMed  CAS  Google Scholar 

  • Gupta A, Chatelain P, Massingham R, Jonsson EN, Hammarlund-Udenaes M (2006) Brain distribution of cetirizine enantiomers: comparison of three different tissue-to-plasma partition coefficients: K(p), K(p, u), and K(p, uu). Drug Metab Dispos: Biol Fate Chem 34:318–323

    Article  CAS  Google Scholar 

  • Hammarlund-Udenaes M (2010) Active-site concentrations of chemicals—are they a better predictor of effect than plasma/organ/tissue concentrations? Basic Clin Pharmacol Toxicol 106:215–220

    Article  PubMed  CAS  Google Scholar 

  • Hammarlund-Udenaes M, Friden M, Syvanen S, Gupta A (2008) On the rate and extent of drug delivery to the brain. Pharm Res 25:1737–1750

    Article  PubMed  CAS  Google Scholar 

  • Joosen MJ, van der Schans MJ, van Dijk CG, Kuijpers WC, Wortelboer HM, van Helden HP (2011) Increasing oxime efficacy by blood-brain barrier modulation. Toxicol Lett 206:67–71

    Article  PubMed  CAS  Google Scholar 

  • Kakee A, Terasaki T, Sugiyama Y (1997) Selective brain to blood efflux transport of para-aminohippuric acid across the blood-brain barrier: in vivo evidence by use of the brain efflux index method. J Pharmacol Exp Ther 283:1018–1025

    PubMed  CAS  Google Scholar 

  • Kalvass JC, Maurer TS (2002) Influence of nonspecific brain and plasma binding on CNS exposure: implications for rational drug discovery. Biopharm Drug Dispos 23:327–338

    Article  PubMed  CAS  Google Scholar 

  • Kalvass JC, Olson ER, Cassidy MP, Selley DE, Pollack GM (2007) Pharmacokinetics and pharmacodynamics of seven opioids in P-glycoprotein-competent mice: assessment of unbound brain EC50, u and correlation of in vitro, preclinical, and clinical data. J pharmacol exp ther 323:346–355

    Article  PubMed  CAS  Google Scholar 

  • Kielbasa W, Kalvass JC, Stratford R (2009) Microdialysis evaluation of atomoxetine brain penetration and central nervous system pharmacokinetics in rats. Drug Metab Dispo: Biol Fate Chem 37:137–142

    Article  CAS  Google Scholar 

  • Kielbasa W, Stratford RE (2012) Exploratory translational modeling approach in drug development to predict human brain pharmacokinetics and pharmacologically relevant clinical doses. Drug Metab Dispo: Biol Fate Chem

    Google Scholar 

  • Large CH, Kalinichev M, Lucas A, Carignani C, Bradford A, Garbati N, Sartori I, Austin NE, Ruffo A, Jones DN, Alvaro G, Read KD (2009) The relationship between sodium channel inhibition and anticonvulsant activity in a model of generalised seizure in the rat. Epilepsy Res 85:96–106

    Article  PubMed  CAS  Google Scholar 

  • Lin CJ, Tai Y, Huang MT, Tsai YF, Hsu HJ, Tzen KY, Liou HH (2010) Cellular localization of the organic cation transporters, OCT1 and OCT2, in brain microvessel endothelial cells and its implication for MPTP transport across the blood-brain barrier and MPTP-induced dopaminergic toxicity in rodents. J Neurochem 114:717–727

    Article  PubMed  CAS  Google Scholar 

  • Lindberger M, Tomson T, Wallstedt L, Stahle L (2001) Distribution of valproate to subdural cerebrospinal fluid, subcutaneous extracellular fluid, and plasma in humans: a microdialysis study. Epilepsia 42:256–261

    PubMed  CAS  Google Scholar 

  • Mano Y, Higuchi S, Kamimura H (2002) Investigation of the high partition of YM992, a novel antidepressant, in rat brain—in vitro and in vivo evidence for the high binding in brain and the high permeability at the BBB. Biopharm Drug Dispos 23:351–360

    Article  PubMed  CAS  Google Scholar 

  • O’Brien FE, Clarke G, Fitzgerald P, Dinan TG, Griffin BT, Cryan JF (2012) Inhibition of P-glycoprotein enhances transport of the antidepressant imipramine across the blood-brain barrier: microdialysis studies in the conscious freely moving rat. Brit J pharmacol

    Google Scholar 

  • Olson Cosford RJ, Vinson AP, Kukoyi S, Justice JB (1996) Quantitative microdialysis of serotonin and norepinephrine: pharmacological influences on in vivo extraction fraction. J Neurosci Meth 68:39–47

    Article  Google Scholar 

  • Olson R, Justice J (1993) Quantitative microdialysis under transient conditions. Anal Chem 65:1017–1022

    Article  PubMed  CAS  Google Scholar 

  • Poeppl W, Zeitlinger M, Donath O, Wurm G, Muller M, Botha F, Illievich UM, Burgmann H (2012) Penetration of doripenem in human brain: an observational microdialysis study in patients with acute brain injury. Int J Antimicrob Agents 39:343–345

    Article  PubMed  CAS  Google Scholar 

  • Prins J, Westphal KG, Korte-Bouws GA, Quinton MS, Schreiber R, Olivier B, Korte SM (2011) The potential and limitations of DOV 216,303 as a triple reuptake inhibitor for the treatment of major depression: a microdialysis study in olfactory bulbectomized rats. Pharmacol Biochem Behav 97:444–452

    Article  PubMed  CAS  Google Scholar 

  • Ravenstijn PG, Drenth HJ, O’Neill MJ, Danhof M, De Lange EC (2012) Evaluation of blood-brain barrier transport and CNS drug metabolism in diseased and control brain after intravenous L-DOPA in a unilateral rat model of Parkinson’s disease. Fluids Barriers CNS 9:4

    Article  PubMed  CAS  Google Scholar 

  • Roiko SA, Felmlee MA, Morris ME (2012) Brain uptake of the drug of abuse gamma-hydroxybutyric acid in rats. Drug Metab Dispos: Biol Fate Chem 40:212–218

    Article  CAS  Google Scholar 

  • Sadiq MW, Borgs A, Okura T, Shimomura K, Kato S, Deguchi Y, Jansson B, Bjorkman S, Terasaki T, Hammarlund-Udenaes M (2011a) Diphenhydramine active uptake at the blood-brain barrier and its interaction with oxycodone in vitro and in vivo. J Pharm Sci 100:3912–3923

    Article  PubMed  CAS  Google Scholar 

  • Sadiq MW, Salehpour M, Forsgard N, Possnert G, Hammarlund-Udenaes M (2011b) Morphine brain pharmacokinetics at very low concentrations studied with accelerator mass spectrometry and liquid chromatography-tandem mass spectrometry. Drug Metab Dispos: Biol Fate Chem 39:174–179

    Article  CAS  Google Scholar 

  • Sheu WH, Chuang HC, Cheng SM, Lee MR, Chou CC, Cheng FC (2011) Microdialysis combined blood sampling technique for the determination of rosiglitazone and glucose in brain and blood of gerbils subjected to cerebral ischemia. J Pharm Biomed Anal 54:759–764

    Article  PubMed  CAS  Google Scholar 

  • Syvanen S, Schenke M, van den Berg DJ, Voskuyl RA, de Lange EC (2012) Alteration in P-glycoprotein functionality affects intrabrain distribution of quinidine more than brain entry-a study in rats subjected to status epilepticus by kainate. AAPS J 14:87–96

    Article  PubMed  Google Scholar 

  • Tunblad K, Ederoth P, Gardenfors A, Hammarlund-Udenaes M, Nordstrom CH (2004a) Altered brain exposure of morphine in experimental meningitis studied with microdialysis. Acta Anaesthesiol Scand 48:294–301

    Article  PubMed  CAS  Google Scholar 

  • Tunblad K, Hammarlund-Udenaes M, Jonsson EN (2004b) An integrated model for the analysis of pharmacokinetic data from microdialysis experiments. Pharm Res 21:1698–1707

    Article  PubMed  CAS  Google Scholar 

  • Tunblad K, Jonsson EN, Hammarlund-Udenaes M (2003) Morphine blood-brain barrier transport is influenced by probenecid co-administration. Pharm Res 20:618–623

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Welty DF (1996) The simultaneous estimation of the influx and efflux blood-brain barrier permeabilities of gabapentin using a microdialysis-pharmacokinetic approach. Pharm Res 13:398–403

    Article  PubMed  CAS  Google Scholar 

  • Watson J, Wright S, Lucas A, Clarke KL, Viggers J, Cheetham S, Jeffrey P, Porter R, Read KD (2009) Receptor occupancy and brain free fraction. Drug Metab Dispos: Biol Fate Chem 37:753–760

    Article  CAS  Google Scholar 

  • Wegener N, Nagel J, Gross R, Chambon C, Greco S, Pietraszek M, Gravius A, Danysz W (2011) Evaluation of brain pharmacokinetics of (+)MK-801 in relation to behaviour. Neurosci Lett 503:68–72

    Article  PubMed  CAS  Google Scholar 

  • Welty DF, Schielke GP, Vartanian MG, Taylor CP (1993) Gabapentin anticonvulsant action in rats: disequilibrium with peak drug concentrations in plasma and brain microdialysate. Epilepsy Res 16:175–181

    Article  PubMed  CAS  Google Scholar 

  • Xie R, Bouw MR, Hammarlund-Udenaes M (2000) Modelling of the blood-brain barrier transport of morphine-3-glucuronide studied using microdialysis in the rat: involvement of probenecid-sensitive transport. Br J Pharmacol 131:1784–1792

    Article  PubMed  CAS  Google Scholar 

  • Xie R, Hammarlund-Udenaes M, de Boer AG, de Lange EC (1999) The role of P-glycoprotein in blood-brain barrier transport of morphine: transcortical microdialysis studies in mdr1a (−/−) and mdr1a (+/+) mice. Br J Pharmacol 128:563–568

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margareta Hammarlund-Udenaes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Hammarlund-Udenaes, M. (2013). Microdialysis in CNS PKPD Research: Unraveling Unbound Concentrations. In: Müller, M. (eds) Microdialysis in Drug Development. AAPS Advances in the Pharmaceutical Sciences Series, vol 4. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4815-0_5

Download citation

Publish with us

Policies and ethics