Skip to main content

Recovery and Calibration Techniques: Toward Quantitative Microdialysis

  • Chapter
  • First Online:
Book cover Microdialysis in Drug Development

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 4))

Abstract

One of the most important questions in microdialysis is how to relate the concentrations in the microdialysate to the true concentrations outside the probe as in vitro recovery was not equal per se to the recovery in vivo. Many calibration techniques and approaches have been proposed, with different levels of practicality and usefulness, to obtain quantitative information on extracellular concentrations as a function of time. Today, we have build up enough experience to know how to obtain quantitative data using the microdialysis technique. With that, it is the only technique that provides data on the unbound concentration of compounds in extracellular fluid spaces in the body, being highly important information in drug development as the unbound concentrations are the drivers for the effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ao X, Stenken JA (2006) No delayed temporal response to sample concentration changes during enhanced microdialysis sampling using cyclodextrins and antibody-immobilized microspheres. Analyst 131(1):62–67. Epub 2005 Oct 27

    Google Scholar 

  • Bouw MR, Hammarlund-Udenaes M (1998) Methodological aspects of the use of a calibrator in in vivo microdialysis- further improvement of the retrodialysis method. Pharm Res 15:1673–1679

    Article  PubMed  CAS  Google Scholar 

  • Brunner M, Joukhadar C, Schmid R, Erovic B, Eichler HG, Müller M (2000) Validation of urea as an endogenous reference compound for the in vivo calibration of microdialysis probes. Life Sci 67(8):977–984

    Article  PubMed  CAS  Google Scholar 

  • Bungay PM, Morrison PF, Dedrick RL (1990) Steady-state theory for quantitative microdialysis of solutes and water in vivo and in vitro. Life Sci 46:105–119

    Article  PubMed  CAS  Google Scholar 

  • Carneheim C, Stahle L (1991) Microdialysis of lipophilic compounds a methodological study. Pharmacol Toxicol 69:378–380

    Article  PubMed  CAS  Google Scholar 

  • Clough GF, Boutsiouki P, Church MK, Michel CC (2002) Effects of blood flow on the in vivo recovery of a small diffusible molecule by microdialysis in human skin. J Pharmacol Exp Ther 302(2):681–686

    Article  PubMed  CAS  Google Scholar 

  • Cremers TI, de Vries MG, Huinink KD, van Loon JP, v d Hart M, Ebert B, Westerink BH, De Lange EC (2009) Quantitative microdialysis using modified ultraslow microdialysis: direct rapid and reliable determination of free brain concentrations with the MetaQuant technique. J Neurosci Methods 178(2):249–254 Epub 2008

    Google Scholar 

  • De Lange EC, Danhof M, de Boer AG, Breimer DD (1997) Methodological considerations of intracerebral microdialysis in pharmacokinetic studies on drug transport across the blood-brain barrier. Brain Res Brain Res Rev 25(1):27–49

    Article  PubMed  Google Scholar 

  • De Lange EC, Marchand S, van den Berg D, van der Sandt IC, de Boer AG, Delon A, Bouquet S, Couet W (2000) In vitro and in vivo investigations on fluoroquinolones; effects of the P-glycoprotein efflux transporter on brain distribution of sparfloxacin. Eur J Pharm Sci 12(2):85–93

    Article  PubMed  Google Scholar 

  • De Lange EC, Ravenstijn PG, Groenendaal D, van Steeg TJ (2005) Toward the prediction of CNS drug-effect profiles in physiological and pathological conditions using microdialysis and mechanism-based pharmacokinetic-pharmacodynamic modeling. AAPS J 7(3):E532–E543

    Article  PubMed  Google Scholar 

  • De Lange ECM, Danhof M, De Boer AG, Breimer DD (1994) Critical factors of intracerebral microdialysis as a technique to determine the pharmacokinetics of drugs in rat brain. Brain Res 666:1–8

    Article  PubMed  Google Scholar 

  • De Lange ECM, De Bock G, Schinkel AH, De Boer AG, Breimer DD (1998) BBB transport of rhodamine-123 in mdr1a(-/-) and wild-type mice. Total brain versus microdialysis concentration profiles. Pharm Res 15:1657–1665

    Article  PubMed  Google Scholar 

  • De Lange ECM, Zurcher C, Danhof M, De Boer AG, Breimer DD (1995) Repeated microdialysis perfusions: periprobe tissue reactions and BBB permeability. Brain Res 702:261–265

    Article  PubMed  Google Scholar 

  • Duo J, Fletcher H, Stenken JA (2006) Natural and synthetic affinity agents as microdialysis sampling mass transport enhancers: current progress and future perspectives. Biosens Bioelectron 22(3):449–457 Epub

    Google Scholar 

  • Georgieva J, Luthman J, Mohringe B, Magnusson O (1993) Tissue and microdialysate changes after repeated and permanent probe implantation in the striatum of freely moving rats. Brain Res Bull 31(5):463–470

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto Y, Murakami T, Kumasa C, Higashi Y, Yata N, Takano M (1998) In vivo calibration of microdialysis probe by use of endogenous glucose as an internal recovery marker: measurement of skin distribution of tranilast in rats. J Pharm Pharmacol 50(6):621–626

    Article  PubMed  CAS  Google Scholar 

  • Hsiao JK, Ball BA, Morrison PF, Mefford IN, Bungay PM (1990) Effects of different semipermeable membranes on in vitro and in vivo performance of microdialysis probes. J Neurochem 54:1449–1452

    Article  PubMed  CAS  Google Scholar 

  • Jensen SM, Hansen HS, Johansen T, Malmlöf K (2007) In vivo and in vitro microdialysis sampling of free fatty acids. J Pharm Biomed Anal 43(5):1751–1756. Epub 2006

    Google Scholar 

  • Jacobson I, Sandberg M, Hamberger A (1985) Mass transfer in brain dialysis devices- a new method for the estimation of extracellular amino acids concentration. J Neurosci Meth 15:263–268

    Article  CAS  Google Scholar 

  • Kaptein WA, Zwaagstra JJ, Venema K, Korf J (1998) Continuous ultraslow microdialysis and ultrafiltration for subcutaneous sampling as demonstrated by glucose and lactate measurements in rats. Anal Chem 70(22):4696–4700

    Article  PubMed  CAS  Google Scholar 

  • Kurosawa M, Hallström A, Ungerstedt U (1991) Changes in cerebral blood flow do not directly affect in vivo recovery of extracellular lactate through microdialysis probe. Neurosci Lett 126(2):123–126

    Article  PubMed  CAS  Google Scholar 

  • Larsson CI (1991) The use of an “internal standard” for control of the recovery in microdialysis. Life Sci 49:73–78

    Article  Google Scholar 

  • Le Quellec A, Dupin S, Genissel P, Saivin S, Marchand B, Houin G (1995) Microdialysis probes calibration: gradient and tissue dependent changes in no net flux and reverse dialysis methods. J Pharmacol Toxicol Methods 33(1):11–16

    Article  PubMed  Google Scholar 

  • Lindberger M, Tomson T, Lars S (2002) Microdialysis sampling of carbamazepine, phenytoin and phenobarbital in subcutaneous extracellular fluid and subdural cerebrospinal fluid in humans: an in vitro and in vivo study of adsorption to the sampling device. Pharmacol Toxicol 91(4):158–165

    Article  PubMed  CAS  Google Scholar 

  • Lonnroth P, Jansson PA, Smith U (1987) A microdialysis method allowing characterization of intercellular water space in humans. Am J Physiol 253:E228–E231 Endocrinol Metab 16

    PubMed  CAS  Google Scholar 

  • Menacherry S, Hubert W Jr (1992) In vivo calibration of microdialysis probes for exogenous compounds. Anal Chem 64(6):577–583

    Article  PubMed  CAS  Google Scholar 

  • Morrison PF, Bungay PM, Hsiao JK, Ball BA, Mefford IN, Dedrick RL (1991) Quantitative microdialysis: analysis of transients and application to pharmacokinetics in brain. J Neurochem 57:103–119

    Article  PubMed  CAS  Google Scholar 

  • Mou X, Lennartz MR, Loegering DJ, Stenken JA (2010) Long-term calibration considerations during subcutaneous microdialysis sampling in mobile rats. Biomaterials 31(16):4530–4539. Epub 2010

    Google Scholar 

  • Olson RJ, Justice JB (1993) Quantitative microdialysis under transient conditions. Anal Chem 65:1017–1022

    Article  PubMed  CAS  Google Scholar 

  • Pan WH, Lai YJ (1995) Anesthetics decreased the microdialysis extraction fraction of norepinephrine but not dopamine in the medial prefrontal cortex. Synapse 21(1):85–92

    Article  PubMed  CAS  Google Scholar 

  • Ross HA, van Gurp PJ, Willemsen JJ, Lenders JW, Tack CJ, Sweep FC (2006) Transport within the interstitial space, rather than membrane permeability, determines norepinephrine recovery in microdialysis. J Pharmacol Exp Ther 319(2):840–846. Epub 2006

    Google Scholar 

  • Scheller D, Kolb J (1991) The internal reference technique in microdialysis: a practical approach to monitoring dialysis efficiency and to calculating tissue concentration from dialysate samples. J. Neurosci. Meth 40:31–38

    Article  CAS  Google Scholar 

  • Scheyer RD, During MJ, Spencer DD, Cramer JA, Mattson RM (1994) Measurement of carbamazepine and carbamazepine epoxide in the human brain using in vivo microdialysis. Neurology 44:1469–1472

    Article  PubMed  CAS  Google Scholar 

  • Schwalbe O, Buerger C, Plock N, Joukhadar C, Kloft C (2006) Urea as an endogenous surrogate in human microdialysis to determine relative recovery of drugs: analytics and applications. J Pharm Biomed Anal 41(1):233–239. Epub 2005

    Google Scholar 

  • Siaghy EM, Oesterlé B, Kheiri A, Halejcio-Delophont P, Ungureanu-Longrois D, Villemot JP, Mertes PM (1999) Consequences of static and pulsatile pressure on transmembrane exchanges during in vitro microdialysis: implication for studies in cardiac physiology. Med Biol Eng Comput 37(2):196–201

    Article  PubMed  CAS  Google Scholar 

  • Ståhle L (1991) Drug distribution studies with microdialysis: I. Tissue dependent difference in recovery between caffein and theophylline. Life Sci 49:1835–1842

    Article  PubMed  Google Scholar 

  • Ståhle L (1992) Pharmacokinetic estimations from microdialysis data. Eur J Clin Pharmacol 43:289–294

    Article  PubMed  Google Scholar 

  • Stenken JA, Lunte CE, Southard MZ, Ståhle L (1997) Factors that influence microdialysis recovery. Comparison of experimental and theoretical microdialysis recoveries in rat liver. J Pharm Sci 86(8):958–966

    Article  PubMed  CAS  Google Scholar 

  • Strindberg L, Lönnroth P (2000) Validation of an endogenous reference technique for the calibration of microdialysis catheters. Scand J Clin Lab Invest 60(3):205–211

    Article  PubMed  CAS  Google Scholar 

  • Sun H, Bungay PM, Elmquist WF (2001) Effect of capillary efflux transport inhibition on the determination of probe recovery during in vivo microdialysis in the brain. J Pharmacol Exp Ther 297(3):991–1000

    PubMed  CAS  Google Scholar 

  • Tao R, Hjorth S (1992) Differences in the in vitro and in vivo 5-hydroxytryptamine extraction performance among three common microdialysis membranes. J Neurochem 59:1778–1785

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Wong SL, Sawchuck RJ (1991) Comparison of in vitro and in vivo calibration of microdialysis probes using retrodialysis. Curr Sep 10:87

    CAS  Google Scholar 

  • Wang Y, Wong SL, Sawchuck RJ (1993) Microdialysis calibration using retrodialysis and zero-net-flux: application to a study of the distribution of zidovudine to rabbit cerebrospinal fluid and thalamus. Pharm Res 10:1411–1419

    Article  PubMed  CAS  Google Scholar 

  • Ward KW, Medina SJ, Portelli ST, Mahar Doan KM, Spengler MD, Ben MM, Lundberg D, Levy MA, Chen EP (2003) Enhancement of in vitro and in vivo microdialysis recovery of SB-265123 using Intralipid and Encapsin as perfusates. Biopharm Drug Dispos 24(1):17–25

    Article  PubMed  CAS  Google Scholar 

  • Wisniewski N, Klitzman B, Miller B, Reichert WM (2001) Decreased analyte transport through implanted membranes: differentiation of biofouling from tissue effects. J Biomed Mater Res 57(4):513–521

    Article  PubMed  CAS  Google Scholar 

  • Wong SL, Van Belle K, Sawchuk RJ (1993) Distributional transport kinetics of zidovudine between plasma and brain extracellular fluid and cerebrospinal fluid blood-barriers in the rabbit: investigation on the inhibitory effect of probenecid utilizing microdialysis. J Pharmacol Exp Ther 265:R1205–R1211

    Google Scholar 

  • Xie R, Hammarlund-Udenaes M, de Boer AG, De Lange ECM. (1999) The role of P-glycoprotein in blood-brain barrier transport of morphine: transcortical microdialysis studies in mdr1a (−/−) and mdr1a (+/+) mice. Br J Pharmacol (in press)

    Google Scholar 

  • Yokel RA, Allen DD, Burgio DE, McNamara PJ (1992) Antipyrine as a dialyzable reference to correct differences in efficiency among and within sampling devices during in vivo microdialysis. J. Pharm. Meth 27:135–142

    Article  CAS  Google Scholar 

  • Zheng H, Shi LF, Hu JH (2007) Assessment of in vitro and in vivo recovery of sinomenine using microdialysis. Skin Res Technol 13(3):323–329

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth C. M. de Lange .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

de Lange, E.C.M. (2013). Recovery and Calibration Techniques: Toward Quantitative Microdialysis . In: Müller, M. (eds) Microdialysis in Drug Development. AAPS Advances in the Pharmaceutical Sciences Series, vol 4. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4815-0_2

Download citation

Publish with us

Policies and ethics