Skip to main content

New Insights into the Contribution of Arterial NCX to the Regulation of Myogenic Tone and Blood Pressure

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 961))

Abstract

Plasma membrane protein Na+/Ca2+ exchanger (NCX) in vascular smooth muscle (VSM) cells plays an important role in intracellular Ca2+ homeostasis, Ca2+ signaling, and arterial contractility. Recent evidence in intact animals reveals that VSM NCX type 1 (NCX1) is importantly involved in the control of arterial blood pressure (BP) in the normal state and in hypertension. Increased expression of vascular NCX1 has been implicated in human primary pulmonary hypertension and several salt-dependent hypertensive animal models. Our aim is to determine the molecular and physiological mechanisms by which vascular NCX influences vasoconstriction and BP normally and in salt-dependent hypertension. Here, we describe the relative contribution of VSM NCX1 to Ca2+ signaling and arterial contraction, including recent data from transgenic mice (NCX1smTg/Tg, overexpressors; NCX1sm−/−, knockouts) that has begun to elucidate the specific contributions of NCX to BP regulation. Arterial contraction and BP correlate with the level of NCX1 expression in smooth muscle: NCX1sm−/− mice have decreased arterial myogenic tone (MT), vasoconstriction, and low BP. NCX1smTg/Tg mice have high BP and are more sensitive to salt; their arteries exhibit upregulated transient receptor potential canonical channel 6 (TRPC6) protein, increased MT, and vasoconstriction. These observations suggest that NCX is a key component of certain distinct signaling pathways that activate VSM contraction in response to stretch (i.e., myogenic response) and to activation of certain G-protein-coupled receptors. Arterial NCX expression and mechanisms that control the local (sub-plasma membrane) Na+ gradient, including cation-selective receptor-operated channels containing TRPC6, regulate arterial Ca2+ and constriction, and thus BP.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • A. Arnon, J.M. Hamlyn, M.P. Blaustein, Na+ entry via store-operated channels modulates Ca2+ signaling in arterial myocytes. Am. J. Physiol. Cell Physiol. 278, C163–C173 (2000)

    PubMed  CAS  Google Scholar 

  • T. Ashida, H. Yoshimi, Y. Kawano, H. Matsuoka, T. Omae, Effect of cilazapril and salt on Ca2+ extrusion in arterial smooth muscle of Dahl rats. Am. J. Hypertens. 10, 107S–111S (1997)

    Article  PubMed  CAS  Google Scholar 

  • Y.M. Bae, A. Kim, Y.J. Lee, W. Lim, Y.H. Noh, E.J. Kim, J. Kim, T.K. Kim, S.W. Park, B. Kim, S.I. Cho, D.K. Kim, W.K. Ho, Enhancement of receptor-operated cation current and TRPC6 expression in arterial smooth muscle cells of deoxycorticosterone acetate-salt hypertensive rats. J. Hypertens. 25, 809–817 (2007)

    Article  PubMed  CAS  Google Scholar 

  • S.G. Baryshnikov, M.V. Pulina, A. Zulian, C.I. Linde, V.A. Golovina, Orai1, a critical component of store-operated Ca2+ entry, is functionally associated with Na+/Ca2+ exchanger and plasma membrane Ca2+ pump in proliferating human arterial myocytes. Am. J. Physiol. Cell Physiol. 297, C1103–C1112 (2009)

    Article  PubMed  CAS  Google Scholar 

  • M.P. Blaustein, W.J. Lederer, Sodium/calcium exchange: its physiological implications. Physiol. Rev. 79, 763–854 (1999)

    PubMed  CAS  Google Scholar 

  • M.P. Blaustein, M. Juhaszova, V.A. Golovina, P.J. Church, E.F. Stanley, Na/Ca exchanger and PMCA localization in neurons and astrocytes: functional implications. Ann. N. Y. Acad. Sci. 976, 356–366 (2002)

    Article  PubMed  CAS  Google Scholar 

  • M.P. Blaustein, J. Zhang, L. Chen, H. Song, H. Raina, S.P. Kinsey, M. Izuka, T. Iwamoto, M.I. Kotlikoff, J.B. Lingrel, K.D. Philipson, W.G. Wier, J.M. Hamlyn, The pump, the exchanger, and endogenous ouabain: signaling mechanisms that link salt retention to hypertension. Hypertension 53, 291–298 (2009)

    Article  PubMed  CAS  Google Scholar 

  • M.P. Blaustein, F.H. Leenen, L. Chen, V.A. Golovina, J.M. Hamlyn, T.L. Pallone, J.W. Van Huysse, J. Zhang, W.G. Wier, How NaCl raises blood pressure: a new paradigm for the pathogenesis of salt-dependent hypertension. Am. J. Physiol. Heart Circ. Physiol. 302, H1031–H1049 (2011)

    Article  PubMed  CAS  Google Scholar 

  • S. Chen, B.D. Roufogalis, Enhanced 45Ca2+ efflux in cultured vascular smooth muscle cells from spontaneously hypertensive rats. Am. J. Hypertens. 7, 597–602 (1994)

    PubMed  CAS  Google Scholar 

  • L. Chen, J. Zhang, X. Hu, K.D. Philipson, S.M. Scharf, The Na+/Ca2+ exchanger-1 mediates left ventricular dysfunction in mice with chronic intermittent hypoxia. J. Appl. Physiol. 109, 1675–1685 (2010)

    Article  PubMed  CAS  Google Scholar 

  • D.A. Coleman, R.A. Khalil, Physiologic increases in extracellular sodium salt enhance coronary vasoconstriction and Ca2+ entry. J. Cardiovasc. Pharmacol. 40, 58–66 (2002)

    Article  PubMed  CAS  Google Scholar 

  • G. D’Angelo, M.J. Davis, G.A. Meininger, Calcium and mechanotransduction of the myogenic response. Am. J. Physiol. Heart Circ. Physiol. 273, H175–H182 (1997)

    Google Scholar 

  • J.M. Dai, H. Syyong, J. Navarro-Dorado, S. Redondo, M. Alonso, C. van Breemen, T. Tejerina, A comparative study of alpha-adrenergic receptor mediated Ca2+ signals and contraction in intact human and mouse vascular smooth muscle. Eur. J. Pharmacol. 629, 82–88 (2010)

    Article  PubMed  CAS  Google Scholar 

  • M.J. Davis, M.A. Hill, Signaling mechanisms underlying the vascular myogenic response. Physiol. Rev. 79, 387–423 (1999)

    PubMed  CAS  Google Scholar 

  • H. Dong, Y. Jiang, C.R. Triggle, X. Li, J. Lytton, Novel role for K+-dependent Na+/Ca2+ exchangers in regulation of cytoplasmic free Ca2+ and contractility in arterial smooth muscle. Am. J. Physiol. Heart Circ. Physiol. 291, H1226–H1235 (2006)

    Article  PubMed  CAS  Google Scholar 

  • M.V. Donoso, M. Steiner, J.P. Huidobro-Toro, BIBP 3226, suramin and prazosin identify neuropeptide Y, adenosine 5’-triphosphate and noradrenaline as sympathetic cotransmitters in the rat arterial mesenteric bed. J. Pharmacol. Exp. Ther. 282, 691–698 (1997)

    PubMed  CAS  Google Scholar 

  • S. Earley, B.J. Waldron, J.E. Brayden, Critical role for transient receptor potential channel TRPM4 in myogenic constriction of cerebral arteries. Circ. Res. 95, 922–929 (2004)

    Article  PubMed  CAS  Google Scholar 

  • M. Esler, M. Rumantir, D. Kaye, G. Jennings, J. Hastings, F. Socratous, G. Lambert, Sympathetic nerve biology in essential hypertension. Clin. Exp. Pharmacol. Physiol. 28, 986–989 (2001)

    Article  PubMed  CAS  Google Scholar 

  • N. Fameli, K.H. Kuo, C. van Breemen, A model for the generation of localized transient [Na+] elevations in vascular smooth muscle. Biochem. Biophys. Res. Commun. 389, 461–465 (2009)

    Article  PubMed  CAS  Google Scholar 

  • S.K. Fellner, W.J. Arendshorst, Angiotensin II-stimulated Ca2+ entry mechanisms in afferent arterioles: role of transient receptor potential canonical channels and reverse Na+/Ca2+ exchange. Am. J. Physiol. Renal Physiol. 294, F212–F219 (2008)

    Article  PubMed  CAS  Google Scholar 

  • R. Floyd, S. Wray, Calcium transporters and signaling in smooth muscles. Cell Calcium 42, 467–476 (2007)

    Article  PubMed  CAS  Google Scholar 

  • V.A. Golovina, M.P. Blaustein, Spatially and functionally distinct Ca2+ stores in sarcoplasmic and endoplasmic reticulum. Science 275, 1643–1648 (1997)

    Article  PubMed  CAS  Google Scholar 

  • A.L. Gonzales, Z.I. Garcia, G.C. Amberg, S. Earley, Pharmacological inhibition of TRPM4 hyperpolarizes vascular smooth muscle. Am. J. Physiol. Cell Physiol. 299, C1195–C1202 (2010)

    Article  PubMed  CAS  Google Scholar 

  • G. Grassi, Sympathetic neural activity in hypertension and related diseases. Am. J. Hypertens. 23, 1052–1060 (2010)

    Article  PubMed  Google Scholar 

  • J.M. Hamlyn, R. Ringel, J. Schaeffer, P.D. Levinson, B.P. Hamilton, A.A. Kowarski, M.P. Blaustein, A circulating inhibitor of (Na+ + K+)ATPase associated with essential hypertension. Nature 300, 650–652 (1982)

    Article  PubMed  CAS  Google Scholar 

  • T. Hasegawa, F. Masugi, T. Ogihara, Y. Kumahara, Increase in plasma ouabain-like inhibitor of Na+, K+-ATPase with high sodium intake in patients with essential hypertension. J. Clin. Hypertens. 3, 419–429 (1987)

    PubMed  CAS  Google Scholar 

  • T. Hashimoto, M. Kihara, J. Ishida, N. Imai, S. Yoshida, Y. Toya, A. Fukamizu, H. Kitamura, S. Umemura, Apelin stimulates myosin light chain phosphorylation in vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 26, 1267–1272 (2006)

    Article  PubMed  CAS  Google Scholar 

  • S.A. Henderson, J.I. Goldhaber, J.M. So, T. Han, C. Motter, A. Ngo, C. Chantawansri, M.R. Ritter, M. Friedlander, D.A. Nicoll, J.S. Frank, M.C. Jordan, K.P. Roos, R.S. Ross, K.D. Philipson, Functional adult myocardium in the absence of Na+-Ca2+ exchange: cardiac-specific knockout of NCX1. Circ. Res. 95, 604–611 (2004)

    Article  PubMed  CAS  Google Scholar 

  • M.A. Hill, M.J. Davis, G.A. Meininger, S.J. Potocnik, T.V. Murphy, Arteriolar myogenic signalling mechanisms: Implications for local vascular function. Clin. Hemorheol. Microcirc. 34, 67–79 (2006)

    PubMed  Google Scholar 

  • G.D. Hirst, F.R. Edwards, Sympathetic neuroeffector transmission in arteries and arterioles. Physiol. Rev. 69, 546–604 (1989)

    PubMed  CAS  Google Scholar 

  • S. Horiguchi, J. Watanabe, H. Kato, S. Baba, T. Shinozaki, M. Miura, M. Fukuchi, Y. Kagaya, K. Shirato, Contribution of Na+/Ca2+ exchanger to the regulation of myogenic tone in isolated rat small arteries. Acta Physiol. Scand. 173, 167–173 (2001)

    Article  PubMed  CAS  Google Scholar 

  • T. Iwamoto, S. Kita, A. Uehara, I. Imanaga, T. Matsuda, A. Baba, T. Katsuragi, Molecular determinants of Na+/Ca2+ exchange (NCX1) inhibition by SEA0400. J. Biol. Chem. 279, 7544–7553 (2004a)

    Article  PubMed  CAS  Google Scholar 

  • T. Iwamoto, S. Kita, J. Zhang, M.P. Blaustein, Y. Arai, S. Yoshida, K. Wakimoto, I. Komuro, T. Katsuragi, Salt-sensitive hypertension is triggered by Ca2+ entry via Na+/Ca2+ exchanger type-1 in vascular smooth muscle. Nat. Med. 10, 1193–1199 (2004b)

    Article  PubMed  CAS  Google Scholar 

  • P.E. Jensen, M.J. Mulvany, C. Aalkjaer, H. Nilsson, H. Yamaguchi, Free cytosolic Ca2+ measured with Ca2+-selective electrodes and fura 2 in rat mesenteric resistance arteries. Am. J. Physiol. 265, H741–H746 (1993)

    PubMed  CAS  Google Scholar 

  • R.P. Johnson, A.F. El-Yazbi, K. Takeya, E.J. Walsh, M.P. Walsh, W.C. Cole, Ca2+ sensitization via phosphorylation of myosin phosphatase targeting subunit at threonine-855 by Rho kinase contributes to the arterial myogenic response. J. Physiol. 587, 2537–2553 (2009)

    Article  PubMed  CAS  Google Scholar 

  • M. Juhaszova, A. Ambesi, G.E. Lindenmayer, R.J. Bloch, M.P. Blaustein, Na+-Ca2+ exchanger in arteries: identification by immunoblotting and immunofluorescence microscopy. Am. J. Physiol. Cell Physiol. 266, C234–C242 (1994)

    CAS  Google Scholar 

  • T. Kashihara, K. Nakayama, T. Matsuda, A. Baba, T. Ishikawa, Role of Na+/Ca2+ exchanger-mediated Ca2+ entry in pressure-induced myogenic constriction in rat posterior cerebral arteries. J. Pharmacol. Sci. 110, 218–222 (2009)

    Article  PubMed  CAS  Google Scholar 

  • J.K. Kim, S.J. Kim, Y.C. Kim, I. So, K.W. Kim, Influence of extracellular Na+ removal on cytosolic Ca2+ concentration in smooth muscle cells of rabbit cerebral artery. J. Smooth Muscle Res. 35, 135–145 (1999)

    Article  PubMed  CAS  Google Scholar 

  • J. Kiraku, T. Sugiyama, T. Ashida, N. Takahashi, J. Fujii, M. Kuro-o, R. Nagai, Increases in intracellular calcium of arterial smooth muscle cells in transgenic mice overexpressing Na+/H+ exchanger. J. Cardiovasc. Pharmacol. 35, 511–513 (2000)

    Article  PubMed  CAS  Google Scholar 

  • H.J. Knot, M.T. Nelson, Regulation of arterial diameter and wall [Ca2+] in cerebral arteries of rat by membrane potential and intravascular pressure. J. Physiol. 508, 199–209 (1998)

    Article  PubMed  CAS  Google Scholar 

  • N. Kotecha, M.A. Hill, Myogenic contraction in rat skeletal muscle arterioles: smooth muscle membrane potential and Ca2+ signaling. Am. J. Physiol. Heart Circ. Physiol. 289, H1326–H1334 (2005)

    Article  PubMed  CAS  Google Scholar 

  • G.J. Lagaud, V. Randriamboavonjy, G. Roul, J.C. Stoclet, R. Andriantsitohaina, Mechanism of Ca2+ release and entry during contraction elicited by norepinephrine in rat resistance arteries. Am. J. Physiol. Heart Circ. Physiol. 276, H300–H308 (1999)

    CAS  Google Scholar 

  • C. Lamont, W.G. Wier, Evoked and spontaneous purinergic junctional Ca2+ transients (jCaTs) in rat small arteries. Circ. Res. 91, 454–456 (2002)

    Article  PubMed  CAS  Google Scholar 

  • C. Lamont, W.G. Wier, Different roles of ryanodine receptors and inositol (1,4,5)-trisphosphate receptors in adrenergically stimulated contractions of small arteries. Am. J. Physiol. Heart Circ. Physiol. 287, H617–H625 (2004)

    Article  PubMed  CAS  Google Scholar 

  • C. Lamont, E. Vainorius, W.G. Wier, Purinergic and adrenergic Ca2+ transients during neurogenic contractions of rat mesenteric small arteries. J. Physiol. 549, 801–808 (2003)

    Article  PubMed  CAS  Google Scholar 

  • W.J. Lederer, E. Niggli, R.W. Hadley, Sodium-calcium exchange in excitable cells: fuzzy space. Science 248, 283 (1991)

    Article  Google Scholar 

  • S.L. Lee, A.S. Yu, J. Lytton, Tissue-specific expression of Na+-Ca2+ exchanger isoforms. J. Biol. Chem. 269, 14849–14852 (1994)

    PubMed  CAS  Google Scholar 

  • C.H. Lee, D. Poburko, P. Sahota, J. Sandhu, D.O. Ruehlmann, C. van Breemen, The mechanism of phenylephrine-mediated [Ca2+]i oscillations underlying tonic contraction in the rabbit inferior vena cava. J. Physiol. 534, 641–650 (2001)

    Article  PubMed  CAS  Google Scholar 

  • M.Y. Lee, H. Song, J. Nakai, M. Ohkura, M.I. Kotlikoff, S.P. Kinsey, V.A. Golovina, M.P. Blaustein, Local subplasma membrane Ca2+ signals detected by a tethered Ca2+ sensor. Proc. Natl. Acad. Sci. U. S. A. 103, 13232–13237 (2006)

    Article  PubMed  CAS  Google Scholar 

  • Z. Li, S. Matsuoka, L.V. Hryshko, D.A. Nicoll, M.M. Bersohn, E.P. Burke, R.P. Lifton, K.D. Philipson, Cloning of the NCX2 isoform of the plasma membrane Na+-Ca2+ exchanger. J. Biol. Chem. 269, 17434–17439 (1994)

    PubMed  CAS  Google Scholar 

  • D. Liu, D. Yang, H. He, X. Chen, T. Cao, X. Feng, L. Ma, Z. Luo, L. Wang, Z. Yan, Z. Zhu, M. Tepel, Increased transient receptor potential canonical type 3 channels in vasculature from hypertensive rats. Hypertension 53, 70–76 (2009)

    Article  PubMed  CAS  Google Scholar 

  • M. Luo, M.C. Hess, G.D. Fink, L.K. Olson, J. Rogers, D.L. Kreulen, X. Dai, J.J. Galligan, Differential alterations in sympathetic neurotransmission in mesenteric arteries and veins in DOCA-salt hypertensive rats. Auton. Neurosci. 104, 47–57 (2003)

    Article  PubMed  CAS  Google Scholar 

  • R.M. Lynch, C.S. Weber, K.D. Nullmeyer, E.D. Moore, R.J. Paul, Clearance of store-released Ca2+ by the Na+-Ca2+ exchanger is diminished in aortic smooth muscle from Na+-K+-ATPase alpha 2-isoform gene-ablated mice. Am. J. Physiol. Heart Circ. Physiol. 294, H1407–H1416 (2008)

    Article  PubMed  CAS  Google Scholar 

  • J.J. Maguire, A.P. Davenport, Regulation of vascular reactivity by established and emerging GPCRs. Trends Pharmacol. Sci. 26, 448–454 (2005)

    PubMed  CAS  Google Scholar 

  • L. Martinez-Lemus, M. Hill, G. Meininger, The plastic nature of the vascular wall: a continuum of remodeling events contributing to control of arteriolar diameter and structure. Physiology (Bethesda) 24, 45–57 (2009)

    Article  Google Scholar 

  • Y. Maruyama, Y. Nakanishi, E.J. Walsh, D.P. Wilson, D.G. Welsh, W.C. Cole, Heteromultimeric TRPC6-TRPC7 channels contribute to arginine vasopressin-induced cation current of A7r5 vascular smooth muscle cells. Circ. Res. 98, 1520–1527 (2006)

    Article  PubMed  CAS  Google Scholar 

  • V.V. Matchkov, O.S. Tarasova, M.J. Mulvany, H. Nilsson, Myogenic response of rat femoral small arteries in relation to wall structure and [Ca2+]i. Am. J. Physiol. Heart Circ. Physiol. 283, H118–H125 (2002)

    PubMed  CAS  Google Scholar 

  • T. Matsuda, N. Arakawa, K. Takuma, Y. Kishida, Y. Kawasaki, M. Sakaue, K. Takahashi, T. Takahashi, T. Suzuki, T. Ota, A. Hamano-Takahashi, M. Onishi, Y. Tanaka, K. Kameo, A. Baba, SEA0400, a novel and selective inhibitor of the Na+-Ca2+ exchanger, attenuates reperfusion injury in the in vitro and in vivo cerebral ischemic models. J. Pharmacol. Exp. Ther. 298, 249–256 (2001)

    PubMed  CAS  Google Scholar 

  • E.D. Moore, E.F. Etter, K.D. Philipson, W.A. Carrington, K.E. Fogarty, L.M. Lifshitz, F.S. Fay, Coupling of the Na+/Ca2+ exchanger, Na+/K+ pump and sarcoplasmic reticulum in smooth muscle. Nature 365, 657–660 (1993)

    Article  PubMed  CAS  Google Scholar 

  • M. Morad, L. Cleemann, D.R. Menick, NCX1 phosphorylation dilemma: a little closer to resolution. Focus on “Full-length cardiac Na+/Ca2+ exchanger 1 protein is not phosphorylated by protein kinase A”. Am. J. Physiol. Cell Physiol. 300, C970–C973 (2011)

    Article  PubMed  CAS  Google Scholar 

  • R.E. Mufti, S.E. Brett, C.H. Tran, R. Abd El-Rahman, Y. Anfinogenova, A. El-Yazbi, W.C. Cole, P.P. Jones, S.R. Chen, D.G. Welsh, Intravascular pressure augments cerebral arterial constriction by inducing voltage-insensitive Ca2+ waves. J. Physiol. 588, 3983–4005 (2010)

    Article  PubMed  CAS  Google Scholar 

  • M.J. Mulvany, H. Nilsson, J.A. Flatman, Role of membrane potential in the response of rat small mesenteric arteries to exogenous noradrenaline stimulation. J. Physiol. 332, 363–373 (1982)

    PubMed  CAS  Google Scholar 

  • Y. Nakasaki, T. Iwamoto, H. Hanada, T. Imagawa, M. Shigekawa, Cloning of the rat aortic smooth muscle Na+/Ca2+ exchanger and tissue-specific expression of isoforms. J. Biochem. (Tokyo) 114, 528–534 (1993)

    CAS  Google Scholar 

  • M.T. Nelson, H. Cheng, M. Rubart, L.F. Santana, A.D. Bonev, H.J. Knot, W.J. Lederer, Relaxation of arterial smooth muscle by calcium sparks. Science 270, 633–637 (1995)

    Article  PubMed  CAS  Google Scholar 

  • L.D. Nelson, M.T. Unlap, J.L. Lewis, P.D. Bell, Renal arteriolar Na+/Ca2+ exchange in salt-sensitive hypertension. Am. J. Physiol. Renal Physiol. 276, F567–F573 (1999)

    CAS  Google Scholar 

  • D.A. Nicoll, S. Longoni, K.D. Philipson, Molecular cloning and functional expression of the cardiac sarcolemmal Na+-Ca2+ exchanger. Science 250, 562–565 (1990)

    Article  PubMed  CAS  Google Scholar 

  • D.A. Nicoll, B.D. Quednau, Z. Qui, Y.R. Xia, A.J. Lusis, K.D. Philipson, Cloning of a third mammalian Na+-Ca2+ exchanger, NCX3. J. Biol. Chem. 271, 24914–24921 (1996)

    Article  PubMed  CAS  Google Scholar 

  • D. Poburko, C.H. Liao, V.S. Lemos, E. Lin, Y. Maruyama, W.C. Cole, C. van Breemen, Transient receptor potential channel 6-mediated, localized cytosolic [Na+] transients drive Na+/Ca2+ exchanger-mediated Ca2+ entry in purinergically stimulated aorta smooth muscle cells. Circ. Res. 101, 1030–1038 (2007)

    Article  PubMed  CAS  Google Scholar 

  • C. Pott, X. Ren, D.X. Tran, M.J. Yang, S. Henderson, M.C. Jordan, K.P. Roos, A. Garfinkel, K.D. Philipson, J.I. Goldhaber, Mechanism of shortened action potential duration in Na+-Ca2+ exchanger knockout mice. Am. J. Physiol. Cell Physiol. 292, C968–C973 (2007a)

    Article  PubMed  CAS  Google Scholar 

  • C. Pott, M. Yip, J.I. Goldhaber, K.D. Philipson, Regulation of cardiac L-type Ca2+ current in Na+-Ca2+ exchanger knockout mice: functional coupling of the Ca2+ channel and the Na+-Ca2+ exchanger. Biophys. J. 92, 1431–1437 (2007b)

    Article  PubMed  CAS  Google Scholar 

  • T.J. Pritchard, P.S. Bowman, A. Jefferson, M. Tosun, R.M. Lynch, R.J. Paul, Na+-K+-ATPase and Ca2+ clearance proteins in smooth muscle: a functional unit. Am. J. Physiol. Heart Circ. Physiol. 299, H548–H556 (2010)

    Article  PubMed  CAS  Google Scholar 

  • M.V. Pulina, A. Zulian, R. Berra-Romani, O. Beskina, A. Mazzocco-Spezzia, S.G. Baryshnikov, I. Papparella, J.M. Hamlyn, M.P. Blaustein, V.A. Golovina, Upregulation of Na+ and Ca2+ transporters in arterial smooth muscle from ouabain-induced hypertensive rats. Am. J. Physiol. Heart Circ. Physiol. 298, H263–H274 (2010)

    Article  PubMed  CAS  Google Scholar 

  • B.D. Quednau, D.A. Nicoll, K.D. Philipson, Tissue specificity and alternative splicing of the Na+/Ca2+ exchanger isoforms NCX1, NCX2, and NCX3 in rat. Am. J. Physiol. Cell Physiol. 272, C1250–C1261 (1997)

    CAS  Google Scholar 

  • H. Raina, S.R. Ella, M.A. Hill, Decreased activity of the smooth muscle Na+/Ca2+ exchanger impairs arteriolar myogenic reactivity. J. Physiol. 586, 1669–1681 (2008)

    Article  PubMed  CAS  Google Scholar 

  • A. Rebolledo, F. Speroni, J. Raingo, S.V. Salemme, F. Tanzi, V. Munin, M.C. Añón, V. Milesi, The Na+/Ca2+ exchanger is active and working in the reverse mode in human umbilical artery smooth muscle cells. Biochem. Biophys. Res. Commun. 339, 840–845 (2006)

    Article  PubMed  CAS  Google Scholar 

  • J.P. Reeves, M. Condrescu, J. Urbanczyk, O. Chernysh, New modes of exchanger regulation: physiological implications. Ann. N. Y. Acad. Sci. 1099, 64–77 (2007)

    Article  PubMed  CAS  Google Scholar 

  • C. Ren, J. Zhang, K.D. Philipson, M.I. Kotlikoff, M.P. Blaustein, D.R. Matteson, Activation of L-type Ca2+ channels by protein kinase C is reduced in smooth muscle-specific Na+/Ca2+ exchanger knockout mice. Am. J. Physiol. Heart Circ. Physiol. 298, H1484–H1491 (2010)

    Article  PubMed  CAS  Google Scholar 

  • M.K. Slodzinski, M.P. Blaustein, Physiological effects of Na+/Ca2+ exchanger knockdown by antisense oligodeoxynucleotides in arterial myocytes. Am. J. Physiol. Cell Physiol. 275, C251–C259 (1998)

    CAS  Google Scholar 

  • M.K. Slodzinski, M. Juhaszova, M.P. Blaustein, Antisense inhibition of Na+/Ca2+ exchange in primary cultured arterial myocytes. Am. J. Physiol. 269, C1340–C1345 (1995)

    PubMed  CAS  Google Scholar 

  • A.P. Somlyo, A.V. Somlyo, Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol. Rev. 83, 1325–1358 (2003)

    PubMed  CAS  Google Scholar 

  • H.T. Syyong, D. Poburko, N. Fameli, C. van Breemen, ATP promotes NCX-reversal in aortic smooth muscle cells by DAG-activated Na+ entry. Biochem. Biophys. Res. Commun. 357, 1177–1182 (2007)

    Article  PubMed  CAS  Google Scholar 

  • S. Taniguchi, K. Furukawa, S. Sasamura, Y. Ohizumi, K. Seya, S. Motomura, Gene expression and functional activity of sodium/calcium exchanger enhanced in vascular smooth muscle cells of spontaneously hypertensive rats. J. Cardiovasc. Pharmacol. 43, 629–637 (2004)

    Article  PubMed  CAS  Google Scholar 

  • T.L. Török, Electrogenic Na+/Ca2+-exchange of nerve and muscle cells. Prog. Neurobiol. 82, 287–347 (2007)

    Article  PubMed  CAS  Google Scholar 

  • S.Y. Tsang, X. Yao, C.M. Wong, C.L. Au, Z.Y. Chen, Y. Huang, Contribution of Na+-Ca2+ exchanger to pinacidil-induced relaxation in the rat mesenteric artery. Br. J. Pharmacol. 138, 453–460 (2003)

    Article  PubMed  CAS  Google Scholar 

  • K. Tsuda, S. Tsuda, I. Nishio, Y. Masuyama, Inhibition of norepinephrine release by presynaptic alpha 2-adrenoceptors in mesenteric vasculature preparations from chronic DOCA-salt hypertensive rats. Jpn. Heart J. 30, 231–239 (1989)

    Article  PubMed  CAS  Google Scholar 

  • C. van Breemen, Q. Chen, I. Laher, Superficial buffer barrier function of smooth muscle sarcoplasmic reticulum. Trends Pharmacol. Sci. 16, 98–105 (1995)

    Article  PubMed  Google Scholar 

  • D.G. Welsh, A.D. Morielli, M.T. Nelson, J.E. Brayden, Transient receptor potential channels regulate myogenic tone of resistance arteries. Circ. Res. 90, 248–250 (2002)

    Article  PubMed  CAS  Google Scholar 

  • E.B. Westcott, W.F. Jackson, Heterogeneous function of ryanodine receptors, but not IP3 receptors, in hamster cremaster muscle feed arteries and arterioles. Am. J. Physiol. Heart Circ. Physiol. 300, H1616–H1630 (2011)

    Article  PubMed  CAS  Google Scholar 

  • A. Wirth, Z. Benyó, M. Lukasova, B. Leutgeb, N. Wettschureck, S. Gorbey, P. Orsy, B. Horváth, C. Maser-Gluth, E. Greiner, B. Lemmer, G. Schütz, J.S. Gutkind, S. Offermanns, G12-G13-LARG-mediated signaling in vascular smooth muscle is required for salt-induced hypertension. Nat. Med. 14, 64–68 (2008)

    Article  PubMed  CAS  Google Scholar 

  • J. Yamanaka, J. Nishimura, K. Hirano, H. Kanaide, An important role for the Na+-Ca2+ exchanger in the decrease in cytosolic Ca2+ concentration induced by isoprenaline in the porcine coronary artery. J. Physiol. 549, 553–562 (2003)

    Article  PubMed  CAS  Google Scholar 

  • Y. Yu, I. Fantozzi, C.V. Remillard, J.W. Landsberg, N. Kunichika, O. Platoshyn, D.D. Tigno, P.A. Thistlethwaite, L.J. Rubin, J.X. Yuan, Enhanced expression of transient receptor potential channels in idiopathic pulmonary arterial hypertension. Proc. Natl. Acad. Sci. U. S. A. 101, 13861–13866 (2004)

    Article  PubMed  CAS  Google Scholar 

  • J. Zacharia, J. Zhang, W.G. Wier, Ca2+ signaling in mouse mesenteric small arteries: myogenic tone and adrenergic vasoconstriction. Am. J. Physiol. Heart Circ. Physiol. 292, H1523–H1532 (2007)

    Article  PubMed  CAS  Google Scholar 

  • W.J. Zang, C.W. Balke, W.G. Wier, Graded alpha1-adrenoceptor activation of arteries involves recruitment of smooth muscle cells to produce ‘all or none’ Ca2+ signals. Cell Calcium 29, 327–334 (2001)

    Article  PubMed  CAS  Google Scholar 

  • S. Zhang, J.X. Yuan, K.E. Barrett, H. Dong, Role of Na+/Ca2+ exchange in regulating cytosolic Ca2+ in cultured human pulmonary artery smooth muscle cells. Am. J. Physiol. Cell Physiol. 288, C245–C252 (2005a)

    Article  PubMed  CAS  Google Scholar 

  • J. Zhang, M.Y. Lee, M. Cavalli, L. Chen, R. Berra-Romani, C.W. Balke, G. Bianchi, P. Ferrari, J.M. Hamlyn, T. Iwamoto, J.B. Lingrel, D.R. Matteson, W.G. Wier, M.P. Blaustein, Sodium pump alpha2 subunits control myogenic tone and blood pressure in mice. J. Physiol. 569, 243–256 (2005b)

    Article  PubMed  CAS  Google Scholar 

  • S. Zhang, H. Dong, L.J. Rubin, J.X. Yuan, Upregulation of Na+/Ca2+ exchanger contributes to the enhanced Ca2+ entry in pulmonary artery smooth muscle cells from patients with idiopathic pulmonary arterial hypertension. Am. J. Physiol. Cell Physiol. 292, C2297–C2305 (2007)

    Article  PubMed  CAS  Google Scholar 

  • J. Zhang, L. Chen, H. Raina, M.P. Blaustein, W.G. Wier, In vivo assessment of artery smooth muscle [Ca2+]i and MLCK activation in FRET-based biosensor mice. Am. J. Physiol. Heart Circ. Physiol. 299, H946–H956 (2010a)

    Article  PubMed  CAS  Google Scholar 

  • J. Zhang, C. Ren, L. Chen, M.F. Navedo, L.K. Antos, S.P. Kinsey, T. Iwamoto, K.D. Philipson, M.I. Kotlikoff, L.F. Santana, W.G. Wier, D.R. Matteson, M.P. Blaustein, Knockout of Na+/Ca2+ exchanger in smooth muscle attenuates vasoconstriction and L-type Ca2+ channel current and lowers blood pressure. Am. J. Physiol. Heart Circ. Physiol. 298, H1472–H1483 (2010b)

    Article  PubMed  CAS  Google Scholar 

  • D. Zhao, J. Zhang, M.P. Blaustein, L.G. Navar, Attenuated renal vascular responses to acute angiotensin II infusion in smooth muscle-specific Na+/Ca2+ exchanger knockout mice. Am. J. Physiol. Renal Physiol. 301, F574–F579 (2011)

    Article  PubMed  CAS  Google Scholar 

  • Y.M. Zheng, Y.X. Wang, Sodium-calcium exchanger in pulmonary artery smooth muscle cells. Ann. N. Y. Acad. Sci. 1099, 427–435 (2007)

    Article  PubMed  CAS  Google Scholar 

  • A. Zulian, S.G. Baryshnikov, C.I. Linde, J.M. Hamlyn, P. Ferrari, V.A. Golovina, Upregulation of Na+/Ca2+ exchanger and TRPC6 contributes to abnormal Ca2+ homeostasis in arterial smooth muscle cells from Milan hypertensive rats. Am. J. Physiol. Heart Circ. Physiol. 299, H624–H633 (2010)

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zhang, J. (2013). New Insights into the Contribution of Arterial NCX to the Regulation of Myogenic Tone and Blood Pressure. In: Annunziato, L. (eds) Sodium Calcium Exchange: A Growing Spectrum of Pathophysiological Implications. Advances in Experimental Medicine and Biology, vol 961. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-4756-6_28

Download citation

Publish with us

Policies and ethics