Skip to main content

NCX as a Key Player in the Neuroprotection Exerted by Ischemic Preconditioning and Postconditioning

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 961))

Abstract

Ischemic preconditioning is a neuroprotective mechanism in which a brief non-injurious episode of ischemia protects the brain from a subsequent lethal insult. Recently, it has been reported that modified reperfusion subsequent to a prolonged ischemic episode may also confer neuroprotection, a phenomenon termed postconditioning. Mitogen-activated protein kinases (MAPK) play a key role in these two neuroprotective mechanisms. The aim of this study was to evaluate whether Na+/Ca2+ exchangers (NCXs), a family of ionic transporters that contribute to the maintenance of intracellular ionic homeostasis, contribute to the neuroprotection elicited by ischemic preconditioning and postconditioning.

Results of this study indicated that (1) NCX1 and NCX3 are upregulated in those brain regions protected by preconditioning, while (2) postconditioning treatment induces an upregulation only in NCX3 expression. (3) NCX1 upregulation and NCX3 upregulation are mediated by p-AKT since its inhibition reverted the neuroprotective effect of preconditioning and postconditioning and prevented NCXs overexpression. (4) The involvement of NCX in preconditioning and postconditioning neuroprotection is further supported by the results of experiments showing that a partial reversion of the protective effect induced by preconditioning was obtained by silencing NCX1 or NCX3, while the silencing of NCX3 was able to mitigate the protection induced by ischemic postconditioning.

Altogether, the data presented here suggest that NCX1 and NCX3 ­represent two promising druggable targets for setting on new strategies in stroke therapy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • B.S. Allen, A.O. Halldorsson, M.J. Barth, M.N. Ilbawi, Modification of the subclavian patch aortoplasty for repair of aortic coarctation in neonates and infants. Ann. Thorac. Surg. 69, 877–880 (2000). discussion 881

    Article  PubMed  CAS  Google Scholar 

  • L. Annunziato, G. Pignataro, G.F. Di Renzo, Pharmacology of brain Na+/Ca2+ exchanger: from molecular biology to therapeutic perspectives. Pharmacol. Rev. 56, 633–654 (2004)

    Article  PubMed  CAS  Google Scholar 

  • J.W. Arthur, M.R. Wilkins, Using proteomics to mine genome sequences. J. Proteome Res. 3, 393–402 (2004)

    Article  PubMed  CAS  Google Scholar 

  • D. Bano, K.W. Young, C.J. Guerin, R. Lefeuvre, N.J. Rothwell, L. Naldini, R. Rizzuto, E. Carafoli, P. Nicotera, Cleavage of the plasma membrane Na+/Ca2+ exchanger in excitotoxicity. Cell 120, 275–285 (2005)

    Article  PubMed  CAS  Google Scholar 

  • F.C. Barone, R.F. White, P.A. Spera, J. Ellison, R.W. Currie, X. Wang, G.Z. Feuerstein, Ischemic preconditioning and brain tolerance: temporal histological and functional outcomes, protein synthesis requirement, and interleukin-1 receptor antagonist and early gene expression. Stroke 29, 1937–1950 (1998). discussion 1950–1931

    Article  PubMed  CAS  Google Scholar 

  • F. Boscia, R. Gala, G. Pignataro, A. de Bartolomeis, M. Cicale, A. Ambesi-Impiombato, G. Di Renzo, L. Annunziato, Permanent focal brain ischemia induces isoform-dependent changes in the pattern of Na+/Ca2+ exchanger gene expression in the ischemic core, periinfarct area, and intact brain regions. J. Cereb. Blood Flow Metab. 26, 502–517 (2006)

    Article  PubMed  CAS  Google Scholar 

  • A.M. Brambrink, A. Schneider, H. Noga, A. Astheimer, B. Gotz, I. Korner, A. Heimann, M. Welschof, O. Kempski, Tolerance-Inducing dose of 3-nitropropionic acid modulates bcl-2 and bax balance in the rat brain: a potential mechanism of chemical preconditioning. J. Cereb. Blood Flow Metab. 20, 1425–1436 (2000)

    Article  PubMed  CAS  Google Scholar 

  • G. Brooks, D.J. Hearse, Role of protein kinase C in ischemic preconditioning: player or spectator? Circ. Res. 79, 627–630 (1996)

    Article  PubMed  CAS  Google Scholar 

  • J. Burda, M. Marsala, J. Radonak, J. Marsala, Graded postischemic reoxygenation ameliorates inhibition of cerebral cortical protein synthesis in dogs. J. Cereb. Blood Flow Metab. 11, 1001–1005 (1991)

    Article  PubMed  CAS  Google Scholar 

  • J. Burda, M. Gottlieb, I. Vanicky, M. Chavko, J. Marsala, Short-term postischemic hypoperfusion improves recovery of protein synthesis in the rat brain cortex. Mol. Chem. Neuropathol. 25, 189–198 (1995)

    Article  PubMed  CAS  Google Scholar 

  • J. Burda, V. Danielisova, M. Nemethova, M. Gottlieb, M. Matiasova, I. Domorakova, E. Mechirova, M. Ferikova, M. Salinas, R. Burda, Delayed postconditionig initiates additive mechanism necessary for survival of selectively vulnerable neurons after transient ischemia in rat brain. Cell. Mol. Neurobiol. 26, 1141–1151 (2006)

    Article  PubMed  Google Scholar 

  • P.H. Chan, Future targets and cascades for neuroprotective strategies. Stroke 35, 2748–2750 (2004a)

    Article  PubMed  CAS  Google Scholar 

  • P.H. Chan, Mitochondria and neuronal death/survival signaling pathways in cerebral ischemia. Neurochem. Res. 29, 1943–1949 (2004b)

    Article  PubMed  CAS  Google Scholar 

  • Y.Y. Chen, Q. Xia, Evaluation of G(i/o) protein signal transduction pathway in cardioprotection of hypoxic preconditioning. Sheng Li Xue Bao 52, 93–97 (2000)

    PubMed  CAS  Google Scholar 

  • V. Danielisova, M. Nemethova, M. Gottlieb, J. Burda, The changes in endogenous antioxidant enzyme activity after postconditioning. Cell. Mol. Neurobiol. 26, 1181–1191 (2006)

    Article  PubMed  CAS  Google Scholar 

  • V.L. Dawson, T.M. Dawson, Neuronal ischaemic preconditioning. Trends Pharmacol. Sci. 21, 423–424 (2000)

    Article  PubMed  CAS  Google Scholar 

  • A.T. de Souza Wyse, E.L. Streck, P. Worm, A. Wajner, F. Ritter, C.A. Netto, Preconditioning prevents the inhibition of Na+, K+-ATPase activity after brain ischemia. Neurochem. Res. 25, 971–975 (2000)

    Article  PubMed  Google Scholar 

  • M. Digicaylioglu, S.A. Lipton, Erythropoietin-mediated neuroprotection involves cross-talk between Jak2 and NF-kappaB signalling cascades. Nature 412, 641–647 (2001)

    Article  PubMed  CAS  Google Scholar 

  • U. Dirnagl, R.P. Simon, J.M. Hallenbeck, Ischemic tolerance and endogenous neuroprotection. Trends Neurosci. 26, 248–254 (2003)

    Article  PubMed  CAS  Google Scholar 

  • H. Endo, C. Nito, H. Kamada, T. Nishi, P.H. Chan, Activation of the Akt/GSK3beta signaling pathway mediates survival of vulnerable hippocampal neurons after transient global cerebral ischemia in rats. J. Cereb. Blood Flow Metab. 26, 1479–1489 (2006)

    Article  PubMed  CAS  Google Scholar 

  • L. Formisano, M. Saggese, A. Secondo, R. Sirabella, P. Vito, V. Valsecchi, P. Molinaro, G. Di Renzo, L. Annunziato, The two isoforms of the Na+/Ca2+ exchanger, NCX1 and NCX3, constitute novel additional targets for the prosurvival action of Akt/protein kinase B pathway. Mol. Pharmacol. 73, 727–737 (2008)

    Article  PubMed  CAS  Google Scholar 

  • N. Gabellini, S. Bortoluzzi, G.A. Danieli, E. Carafoli, Control of the Na+/Ca2+ exchanger 3 promoter by cyclic adenosine monophosphate and Ca2+ in differentiating neurons. J. Neurochem. 84, 282–293 (2003)

    Article  PubMed  CAS  Google Scholar 

  • X. Gao, H. Zhang, T. Takahashi, J. Hsieh, J. Liao, G.K. Steinberg, H. Zhao, The Akt signaling pathway contributes to postconditioning’s protection against stroke; the protection is associated with the MAPK and PKC pathways. J. Neurochem. 105, 943–955 (2008)

    Article  PubMed  CAS  Google Scholar 

  • J.M. Gidday, Cerebral preconditioning and ischaemic tolerance. Nat. Rev. Neurosci. 7, 437–448 (2006)

    Article  PubMed  CAS  Google Scholar 

  • J.M. Gidday, J.C. Fitzgibbons, A.R. Shah, T.S. Park, Neuroprotection from ischemic brain injury by hypoxic preconditioning in the neonatal rat. Neurosci. Lett. 168, 221–224 (1994)

    Article  PubMed  CAS  Google Scholar 

  • I. Ginis, R. Jaiswal, D. Klimanis, J. Liu, J. Greenspon, J.M. Hallenbeck, TNF-alpha-induced tolerance to ischemic injury involves differential control of NF-kappaB transactivation: the role of NF-kappaB association with p300 adaptor. J. Cereb. Blood Flow Metab. 22, 142–152 (2002)

    Article  PubMed  CAS  Google Scholar 

  • D.J. Gladstone, S.E. Black, A.M. Hakim, Toward wisdom from failure: lessons from neuroprotective stroke trials and new therapeutic directions. Stroke 33, 2123–2136 (2002)

    Article  PubMed  Google Scholar 

  • S.S. Glazier, D.M. O’Rourke, D.I. Graham, F.A. Welsh, Induction of ischemic tolerance following brief focal ischemia in rat brain. J. Cereb. Blood Flow Metab. 14, 545–553 (1994)

    Article  PubMed  CAS  Google Scholar 

  • M. Gonzalez-Zulueta, A.B. Feldman, L.J. Klesse, R.G. Kalb, J.F. Dillman, L.F. Parada, T.M. Dawson, V.L. Dawson, Requirement for nitric oxide activation of p21(ras)/extracellular regulated kinase in neuronal ischemic preconditioning. Proc. Natl. Acad. Sci. U. S. A. 97, 436–441 (2000)

    Article  PubMed  CAS  Google Scholar 

  • D.J. Hausenloy, A. Tsang, M.M. Mocanu, D.M. Yellon, Ischemic preconditioning protects by activating prosurvival kinases at reperfusion. Am. J. Physiol. Heart Circ. Physiol. 288, H971–H976 (2005a)

    Article  PubMed  CAS  Google Scholar 

  • D.J. Hausenloy, A. Tsang, D.M. Yellon, The reperfusion injury salvage kinase pathway: a common target for both ischemic preconditioning and postconditioning. Trends Cardiovasc. Med. 15, 69–75 (2005b)

    Article  PubMed  CAS  Google Scholar 

  • P.L. Huang, Nitric oxide and cerebral ischemic preconditioning. Cell Calcium 36, 323–329 (2004)

    Article  PubMed  CAS  Google Scholar 

  • X. Jiang, E. Shi, Y. Nakajima, S. Sato, Postconditioning, a series of brief interruptions of early reperfusion, prevents neurologic injury after spinal cord ischemia. Ann. Surg. 244, 148–153 (2006)

    Article  PubMed  Google Scholar 

  • N.M. Jones, M. Bergeron, Hypoxic preconditioning induces changes in HIF-1 target genes in neonatal rat brain. J. Cereb. Blood Flow Metab. 21, 1105–1114 (2001)

    Article  PubMed  CAS  Google Scholar 

  • K. Kato, K. Shimazaki, T. Kamiya, S. Amemiya, T. Inaba, K. Oguro, Y. Katayama, Differential effects of sublethal ischemia and chemical preconditioning with 3-nitropropionic acid on protein expression in gerbil hippocampus. Life Sci. 77, 2867–2878 (2005)

    Article  PubMed  CAS  Google Scholar 

  • H. Kin, A.J. Zatta, M.T. Lofye, B.S. Amerson, M.E. Halkos, F. Kerendi, Z.Q. Zhao, R.A. Guyton, J.P. Headrick, J. Vinten-Johansen, Postconditioning reduces infarct size via adenosine receptor activation by endogenous adenosine. Cardiovasc. Res. 67, ­124–133 (2005)

    Article  PubMed  CAS  Google Scholar 

  • S.N. Kip, E.E. Strehler, Rapid downregulation of NCX and PMCA in hippocampal neurons following H2O2 oxidative stress. Ann. N. Y. Acad. Sci. 1099, 436–439 (2007)

    Article  PubMed  CAS  Google Scholar 

  • T. Kirino, Ischemic tolerance. J. Cereb. Blood Flow Metab. 22, 1283–1296 (2002)

    Article  PubMed  Google Scholar 

  • T. Kirino, Y. Tsujita, A. Tamura, Induced tolerance to ischemia in gerbil hippocampal neurons. J. Cereb. Blood Flow Metab. 11, 299–307 (1991)

    Article  PubMed  CAS  Google Scholar 

  • K. Kitagawa, M. Matsumoto, M. Tagaya, R. Hata, H. Ueda, M. Niinobe, N. Handa, R. Fukunaga, K. Kimura, K. Mikoshiba et al., ‘Ischemic tolerance’ phenomenon found in the brain. Brain Res. 528, 21–24 (1990)

    Article  PubMed  CAS  Google Scholar 

  • K. Kitagawa, M. Matsumoto, K. Kuwabara, M. Tagaya, T. Ohtsuki, R. Hata, H. Ueda, N. Handa, K. Kimura, T. Kamada, ‘Ischemic tolerance’ phenomenon detected in various brain regions. Brain Res. 561, 203–211 (1991)

    Article  PubMed  CAS  Google Scholar 

  • S. Kobayashi, V.A. Harris, F.A. Welsh, Spreading depression induces tolerance of cortical neurons to ischemia in rat brain. J. Cereb. Blood Flow Metab. 15, 721–727 (1995)

    Article  PubMed  CAS  Google Scholar 

  • S. Kuroda, B.K. Siesjo, Reperfusion damage following focal ischemia: pathophysiology and therapeutic windows. Clin. Neurosci. 4, 199–212 (1997)

    PubMed  CAS  Google Scholar 

  • C. Lange-Asschenfeldt, A.P. Raval, K.R. Dave, D. Mochly-Rosen, T.J. Sick, M.A. Perez-Pinzon, Epsilon protein kinase C mediated ischemic tolerance requires activation of the extracellular regulated kinase pathway in the organotypic hippocampal slice. J. Cereb. Blood Flow Metab. 24, 636–645 (2004)

    Article  PubMed  CAS  Google Scholar 

  • B. Linck, Z. Qiu, Z. He, Q. Tong, D.W. Hilgemann, K.D. Philipson, Functional comparison of the three isoforms of the Na+/Ca2+ exchanger (NCX1, NCX2, NCX3). Am. J. Physiol. 274, C415–C423 (1998)

    PubMed  CAS  Google Scholar 

  • S.M. Massa, R.A. Swanson, F.R. Sharp, The stress gene response in brain. Cerebrovasc. Brain Metab. Rev. 8, 95–158 (1996)

    PubMed  CAS  Google Scholar 

  • N. Maulik, M. Watanabe, Y.L. Zu, C.K. Huang, G.A. Cordis, J.A. Schley, D.K. Das, Ischemic preconditioning triggers the activation of MAP kinases and MAPKAP kinase 2 in rat hearts. FEBS Lett. 396, 233–237 (1996)

    Article  PubMed  CAS  Google Scholar 

  • D.R. Meldrum, J.C. Cleveland Jr., R.T. Rowland, A. Banerjee, A.H. Harken, X. Meng, Early and delayed preconditioning: differential mechanisms and additive protection. Am. J. Physiol. 273, H725–H733 (1997)

    PubMed  CAS  Google Scholar 

  • R. Meller, M. Minami, J.A. Cameron, S. Impey, D. Chen, J.Q. Lan, D.C. Henshall, R.P. Simon, CREB-mediated Bcl-2 protein expression after ischemic preconditioning. J. Cereb. Blood Flow Metab. 25, 234–246 (2005)

    Article  PubMed  CAS  Google Scholar 

  • K. Miyashita, H. Abe, T. Nakajima, A. Ishikawa, M. Nishiura, T. Sawada, H. Naritomi, Induction of ischaemic tolerance in gerbil hippocampus by pretreatment with focal ischaemia. Neuroreport 6, 46–48 (1994)

    Article  PubMed  CAS  Google Scholar 

  • P. Molinaro, O. Cuomo, G. Pignataro, F. Boscia, R. Sirabella, A. Pannaccione, A. Secondo, A. Scorziello, A. Adornetto, R. Gala, D. Viggiano, S. Sokolow, A. Herchuelz, S. Schurmans, G. Di Renzo, L. Annunziato, Targeted disruption of Na+/Ca2+ exchanger 3 (NCX3) gene leads to a worsening of ischemic brain damage. J. Neurosci. 28, 1179–1184 (2008)

    Article  PubMed  CAS  Google Scholar 

  • C.E. Murry, R.B. Jennings, K.A. Reimer, Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74, 1124–1136 (1986)

    Article  PubMed  CAS  Google Scholar 

  • M. Nemethova, V. Danielisova, M. Gottlieb, J. Burda, Post-conditioning exacerbates the MnSOD immune-reactivity after experimental cerebral global ischemia and reperfusion in the rat brain hippocampus. Cell Biol. Int. 32, 128–135 (2008)

    Article  PubMed  CAS  Google Scholar 

  • N. Noshita, T. Sugawara, M. Fujimura, Y. Morita-Fujimura, P.H. Chan, Manganese superoxide dismutase affects cytochrome c release and caspase-9 activation after transient focal cerebral ischemia in mice. J. Cereb. Blood Flow Metab. 21, 557–567 (2001)

    Article  PubMed  CAS  Google Scholar 

  • S. Ohta, S. Furuta, I. Matsubara, K. Kohno, Y. Kumon, S. Sakaki, Calcium movement in ischemia-tolerant hippocampal CA1 neurons after transient forebrain ischemia in gerbils. J. Cereb. Blood Flow Metab. 16, 915–922 (1996)

    Article  PubMed  CAS  Google Scholar 

  • A. Patel, M.C. van de Poll, J.W. Greve, W.A. Buurman, K.C. Fearon, S.J. McNally, E.M. Harrison, J.A. Ross, O.J. Garden, C.H. Dejong, S.J. Wigmore, Early stress protein gene expression in a human model of ischemic preconditioning. Transplantation 78, 1479–1487 (2004)

    Article  PubMed  CAS  Google Scholar 

  • M.A. Perez-Pinzon, K.R. Dave, A.P. Raval, Role of reactive oxygen species and protein kinase C in ischemic tolerance in the brain. Antioxid. Redox Signal. 7, 1150–1157 (2005)

    Article  PubMed  CAS  Google Scholar 

  • G. Pignataro, R. Gala, O. Cuomo, A. Tortiglione, L. Giaccio, P. Castaldo, R. Sirabella, C. Matrone, A. Canitano, S. Amoroso, G. Di Renzo, L. Annunziato, Two sodium/calcium exchanger gene products, NCX1 and NCX3, play a major role in the development of permanent focal cerebral ischemia. Stroke 35, ­2566–2570 (2004)

    Article  PubMed  CAS  Google Scholar 

  • G. Pignataro, Z. Xiong, R.P. Simon, Ischemic post-conditioning: a new neuroprotective strategy (Society for Neuroscience, Atlanta, 2006)

    Google Scholar 

  • G. Pignataro, R. Meller, K. Inoue, A.N. Ordonez, M.D. Ashley, Z. Xiong, R. Gala, R.P. Simon, In vivo and in vitro characterization of a novel neuroprotective strategy for stroke: ischemic postconditioning. J. Cereb. Blood Flow Metab. 28, 232–241 (2008)

    Article  PubMed  CAS  Google Scholar 

  • G. Pignataro, A. Scorziello, G. Di Renzo, L. Annunziato, Post-ischemic brain damage: effect of ischemic preconditioning and postconditioning and identification of potential candidates for stroke therapy. FEBS J. 276, 46–57 (2009)

    Article  PubMed  CAS  Google Scholar 

  • G. Pignataro, E. Esposito, O. Cuomo, R. Sirabella, F. Boscia, N. Guida, G. Di Renzo, L. Annunziato, The NCX3 isoform of the Na+/Ca2+ exchanger contributes to neuroprotection elicited by ischemic postconditioning. J. Cereb. Blood Flow Metab. 31, 362–370 (2011)

    Article  PubMed  CAS  Google Scholar 

  • G. Pignataro, F. Boscia, E. Esposito, R. Sirabella, O. Cuomo, A. Vinciguerra, G. Di Renzo, L. Annunziato, NCX1 and NCX3: Two new effectors of delayed preconditioning in brain ischemia. Neurobiol. Dis. 45, 616–623 (2012)

    Article  PubMed  CAS  Google Scholar 

  • H. Plamondon, N. Blondeau, C. Heurteaux, M. Lazdunski, Mutually protective actions of kainic acid epileptic preconditioning and sublethal global ischemia on hippocampal neuronal death: involvement of adenosine A1 receptors and K(ATP) channels. J. Cereb. Blood Flow Metab. 19, 1296–1308 (1999)

    Article  PubMed  CAS  Google Scholar 

  • A. Ravati, B. Ahlemeyer, A. Becker, J. Krieglstein, Preconditioning-induced neuroprotection is mediated by reactive oxygen species. Brain Res. 866, 23–32 (2000)

    Article  PubMed  CAS  Google Scholar 

  • A.K. Rehni, N. Singh, Role of phosphoinositide 3-kinase in ischemic postconditioning-induced attenuation of cerebral ischemia-evoked behavioral deficits in mice. Pharmacol. Rep. 59, 192–198 (2007)

    PubMed  CAS  Google Scholar 

  • R. Rejdak, K. Rejdak, M. Sieklucka-Dziuba, Z. Stelmasiak, P. Grieb, Brain tolerance and preconditioning. Pol. J. Pharmacol. 53, 73–79 (2001)

    Article  PubMed  CAS  Google Scholar 

  • E. Rybnikova, L. Vataeva, E. Tyulkova, T. Gluschenko, V. Otellin, M. Pelto-Huikko, M.O. Samoilov, Mild hypoxia preconditioning prevents impairment of passive avoidance learning and suppression of brain NGFI-A expression induced by severe hypoxia. Behav. Brain Res. 160, 107–114 (2005)

    Article  PubMed  CAS  Google Scholar 

  • T. Scartabelli, E. Gerace, E. Landucci, F. Moroni, D.E. Pellegrini-Giampietro, Neuroprotection by group I mGlu receptors in a rat hippocampal slice model of cerebral ischemia is associated with the PI3K-Akt signaling pathway: a novel postconditioning strategy? Neuropharmacology 55, 509–516 (2008)

    Article  PubMed  CAS  Google Scholar 

  • B. Schaller, R. Graf, Cerebral ischemic preconditioning. An experimental phenomenon or a clinical important entity of stroke prevention? J. Neurol. 249, 1503–1511 (2002)

    Article  PubMed  CAS  Google Scholar 

  • A. Scorziello, M. Santillo, A. Adornetto, C. Dell’Aversano, R. Sirabella, S. Damiano, L.M. Canzoniero, G.F. Renzo, L. Annunziato, NO-induced neuroprotection in ischemic preconditioning stimulates mitochondrial Mn-SOD activity and expression via Ras/ERK1/2 pathway. J. Neurochem. 103, 1472–80 (2007)

    Article  PubMed  CAS  Google Scholar 

  • A. Secondo, R.I. Staiano, A. Scorziello, R. Sirabella, F. Boscia, A. Adornetto, V. Valsecchi, P. Molinaro, L.M. Canzoniero, G. Di Renzo, L. Annunziato, BHK cells transfected with NCX3 are more resistant to hypoxia followed by reoxygenation than those transfected with NCX1 and NCX2: Possible relationship with mitochondrial membrane potential. Cell Calcium 42, 521–535 (2007)

    Article  PubMed  CAS  Google Scholar 

  • M. Shamloo, T. Wieloch, Changes in protein tyrosine phosphorylation in the rat brain after cerebral ischemia in a model of ischemic tolerance. J. Cereb. Blood Flow Metab. 19, 173–183 (1999)

    Article  PubMed  CAS  Google Scholar 

  • K. Shimazaki, T. Nakamura, K. Nakamura, K. Oguro, T. Masuzawa, Y. Kudo, N. Kawai, Reduced calcium elevation in hippocampal CA1 neurons of ischemia-tolerant gerbils. Neuroreport 9, 1875–1878 (1998)

    Article  PubMed  CAS  Google Scholar 

  • R.P. Simon, M. Niiro, R. Gwinn, Prior ischemic stress protects against experimental stroke. Neurosci. Lett. 163, 135–137 (1993)

    Article  PubMed  CAS  Google Scholar 

  • M.E. Speechly-Dick, M.M. Mocanu, D.M. Yellon, Protein kinase C. Its role in ischemic preconditioning in the rat. Circ. Res. 75, 586–590 (1994)

    Article  PubMed  CAS  Google Scholar 

  • P. Staat, G. Rioufol, C. Piot, Y. Cottin, T.T. Cung, I. L’Huillier, J.F. Aupetit, E. Bonnefoy, G. Finet, X. Andre-Fouet, M. Ovize, Postconditioning the human heart. Circulation 112, 2143–2148 (2005)

    Article  PubMed  Google Scholar 

  • M.P. Stenzel-Poore, S.L. Stevens, Z. Xiong, N.S. Lessov, C.A. Harrington, M. Mori, R. Meller, H.L. Rosenzweig, E. Tobar, T.E. Shaw, X. Chu, R.P. Simon, Effect of ischaemic preconditioning on genomic response to cerebral ischaemia: similarity to neuroprotective strategies in hibernation and hypoxia-tolerant states. Lancet 362, 1028–1037 (2003)

    Article  PubMed  CAS  Google Scholar 

  • T. Toyoda, N.F. Kassell, K.S. Lee, Induction of ischemic tolerance and antioxidant activity by brief focal ischemia. Neuroreport 8, 847–851 (1997)

    Article  PubMed  CAS  Google Scholar 

  • V. Valsecchi, G. Pignataro, A. Del Prete, R. Sirabella, C. Matrone, F. Boscia, A. Scorziello, M.J. Sisalli, E. Esposito, N. Zambrano, G. Di Renzo, L. Annunziato, NCX1 is a novel target gene for hypoxia-inducible factor-1 in ischemic brain preconditioning. Stroke 42, 754–763 (2011)

    Article  PubMed  CAS  Google Scholar 

  • J.Y. Wang, J. Shen, Q. Gao, Z.G. Ye, S.Y. Yang, H.W. Liang, I.C. Bruce, B.Y. Luo, Q. Xia, Ischemic postconditioning protects against global cerebral ischemia/reperfusion-induced injury in rats. Stroke 39, 983–990 (2008)

    Article  PubMed  Google Scholar 

  • S. Willaime-Morawek, N. Arbez, J. Mariani, B. Brugg, IGF-I protects cortical neurons against ceramide-induced apoptosis via activation of the PI-3K/Akt and ERK pathways; is this protection independent of CREB and Bcl-2? Brain Res. Mol. Brain Res. 142, 97–106 (2005)

    Article  PubMed  CAS  Google Scholar 

  • S. Yano, M. Morioka, K. Fukunaga, T. Kawano, T. Hara, Y. Kai, J. Hamada, E. Miyamoto, Y. Ushio, Activation of Akt/protein kinase B contributes to induction of ischemic tolerance in the CA1 subfield of gerbil hippocampus. J. Cereb. Blood Flow Metab. 21, 351–360 (2001)

    Article  PubMed  CAS  Google Scholar 

  • D.M. Yellon, D.J. Hausenloy, Realizing the clinical potential of ischemic preconditioning and postconditioning. Nat. Clin. Pract. Cardiovasc. Med. 2, ­568–575 (2005)

    Article  PubMed  Google Scholar 

  • H. Zhao, The protective effect of ischemic postconditioning against ischemic injury: from the heart to the brain. J. Neuroimmune Pharmacol. 2, 313–318 (2007)

    Article  PubMed  Google Scholar 

  • H. Zhao, Ischemic postconditioning as a novel avenue to protect against brain injury after stroke. J. Cereb. Blood Flow Metab. 29, 873–885 (2009)

    Article  PubMed  CAS  Google Scholar 

  • Z.Q. Zhao, J.S. Corvera, M.E. Halkos, F. Kerendi, N.P. Wang, R.A. Guyton, J. Vinten-Johansen, Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am. J. Physiol. Heart Circ. Physiol. 285, H579–H588 (2003)

    PubMed  CAS  Google Scholar 

  • H. Zhao, R.M. Sapolsky, G.K. Steinberg, Interrupting reperfusion as a stroke therapy: ischemic postconditioning reduces infarct size after focal ischemia in rats. J. Cereb. Blood Flow Metab. 26, 1114–1121 (2006a)

    Article  PubMed  CAS  Google Scholar 

  • H. Zhao, R.M. Sapolsky, G.K. Steinberg, Phospho­inositide-3-kinase/akt survival signal pathways are implicated in neuronal survival after stroke. Mol. Neurobiol. 34, 249–270 (2006b)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by COFIN 2008; Ricerca-Sanitaria RF-FSL352059 Ricerca finalizzata 2006; Ricerca-Oncologica 2006; Progetto-Strategico 2007; Progetto Ordinario 2007; Ricerca finalizzata 2009; Ricerca-Sanitaria Progetto Ordinario by Ministero della Salute 2008 all to LA.

The authors thank:

1.Elsevier for permission of using Figs. 19.1 and 19.2, license number 2821360173915, and three excerpts, license number 2821360363363, from the article that appeared in Neurobiology of Disease, 2012, by Pignataro G. et al.

2.John Wiley and Sons for permission of using text extracts from the article that appeared in FEBS Journal, 2009, by Pignataro G. et al.

3.Nature Publishing Group for permission of using text extracts and Figs. 19.3 and 19.4 from the article that appeared in Journal of Cerebral Blood Flow and Metabolism, 2011, by Pignataro G. et al.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucio Annunziato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pignataro, G. et al. (2013). NCX as a Key Player in the Neuroprotection Exerted by Ischemic Preconditioning and Postconditioning. In: Annunziato, L. (eds) Sodium Calcium Exchange: A Growing Spectrum of Pathophysiological Implications. Advances in Experimental Medicine and Biology, vol 961. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-4756-6_19

Download citation

Publish with us

Policies and ethics