Skip to main content

Nitrogen and Phosphorus Nutrition Under Salinity Stress

  • Chapter
  • First Online:
Ecophysiology and Responses of Plants under Salt Stress

Abstract

Salinity is the major environmental stresses in the world. Approximately, 30 % of cultivated soils are suffered from salinity stresses. Salinity stresses affect plant growth, development, and crop productivity, particularly in arid and semi-arid areas. Several articles report that relationship between salinity and nutrition, i.e. nutrient imbalances, nutrient deficiencies, nutrient metabolism are influenced by accumulation of salt. Salinity stresses causes extreme accumulation of Na+ and Cl ions in plant cells. Among mineral nutrients, nitrogen and phosphorus are most important nutrients for plants in both vegetative and reproductive stages. In this chapter, the effect of salinity stress on N and P uptake, utilization, metabolism, and homeostasis in plants is focused.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-El Baki GK, Siefritz F, Man HM, Welner H, Kaldenhoff R, Kaiser WM (2000) Nitrate reductase in Zea mays L. under salinity. Plant Cell Environ 23:515–521

    Article  CAS  Google Scholar 

  • Abdelgadir EM, Oka M, Fujiyama H (2005) Nitrogen nutrition of rice plants under salinity. Biol Plant 49:99–104

    Article  CAS  Google Scholar 

  • Albassam BA (2001) Effect of nitrate nutrition on growth and nitrogen assimilation of pearl millet exposed to sodium chloride stress. J Plant Nutr 24:1325–1335

    Article  CAS  Google Scholar 

  • Ali G, Srivastava PS, Iqbal M (1999) Proline accumulation protein pattern and photosynthesis in regenerants grown under NaCl stress. Biol Plant 42:89–95

    Article  CAS  Google Scholar 

  • Al-Karaki GN (1997) Barley response to salt stress at varied levels of phosphorus. J Plant Nutr 20:1635–1643

    Article  CAS  Google Scholar 

  • Alscher RG, Donahue JL, Cramer CL (1997) Reactive oxygen species and antioxidants: relationship in green cells. Physiol Plant 100:224–233

    Article  CAS  Google Scholar 

  • Anjana SU, Muhammad I (2007) Nitrate accumulation in plants, factors affecting the process, and human health implications. A Review Agron Sustain Dev 27:45–57

    Article  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress and signal transduction. Annu Rev Plant Biol 55:1331–1341

    Article  CAS  Google Scholar 

  • Athwal GS, Huber SC (2002) Divalent cations and polyamines bind to loop8 of 14-3-3 proteins, modulating their interaction with phosphorylated nitrate reductase. Plant J 29:119–129

    Article  PubMed  CAS  Google Scholar 

  • Aung K, Lin SI, Wu CC, Huang YT, Su CL, Chiou TJ (2006) pho2, a phosphate overaccumulator, is caused by nonsense mutation in a microRNA399 target gene. Plant Physiol 141:1000–1011

    Article  PubMed  CAS  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58

    Article  CAS  Google Scholar 

  • Bernstein L, Francois LE, Clark RA (1974) Interactive effects of salinity and fertility on yields of grains and vegetables. Agron J 66:412–421

    Article  CAS  Google Scholar 

  • Bohnert H, Nelson D, Jensone R (1995) Adaptations to environmental stresses. Plant Cell 7:1099–1111

    PubMed  CAS  Google Scholar 

  • Botella MA, Martinez V, Pardines J, Cerda A (1997) Salinity induced potassium deficiency in maize plants. J Plant Physiol 150:200–205

    Article  CAS  Google Scholar 

  • Bourgeais-Chaillou P, Perez-Alfocea F, Guerrier G (1992) Comparative effect on N-sources on growth and physiological responses of soybean exposed to NaCl-stress. J Exp Bot 254:1225–1233

    Article  Google Scholar 

  • Campbell WH (1999) Nitrate reducatase structure, function and regulation: binding the gap between biochemistry and physiology. Annu Rev Plant Physiol Plant Mol Biol 50:277–303

    Article  PubMed  CAS  Google Scholar 

  • Cantrell IC, Linderman RG (2001) Preinoculation of lettuce and onion with VA mycorrhizal fungi reduces deleterious effects of soil salinity. Plant Soil 233:269–281

    Article  CAS  Google Scholar 

  • Chapagain BP, Wiesman Z, Zaccai M, Imas P, Magen H (2003) Potassium chloride enhances fruit appearance and improves quality of fertigated greenhouse tomato as compared to potassium nitrate. J Plant Nutr 26:643–658

    Article  CAS  Google Scholar 

  • Chinnusamy V, Jagendorf A, Zhu JK (2005) Understanding and improving salt tolerance in plants. Crop Sci 45:437–448

    Article  CAS  Google Scholar 

  • Cubero B, Nakagawa Y, Jiang XY, Miura KJ, Li F, Raghothama KG, Bressan RA, Hasegawa PM, Pardo JM (2009) The phosphate transporter PHT4;6 is a determinant of salt tolerance that is localized to Golgi apparatus of Arabidopsis. Mol Plant 2:535–552

    Article  PubMed  CAS  Google Scholar 

  • Cuin TA, Shabala S (2007) Amino acids regulate salinity-induced potassium efflux in barley root epidermis. Planta 225:753–761

    Article  PubMed  CAS  Google Scholar 

  • De Michele R, Formentin E, Schiavo FL (2009) Legume leaf senescence. A transcriptional analysis. Plant Signal Behav 4:319–320

    Article  PubMed  Google Scholar 

  • Deane-Drummond CE (1986) A comparison of regulatory effects of chloride on nitrate uptake, and of nitrate on chloride uptake into Pisum sativum seedlings. Physiol Plant 66:115–121

    Article  CAS  Google Scholar 

  • Debouba M, Gouia H, Suzuki A, Ghorbel MH (2006) NaCl stress effects on enzymes involved in nitrogen assimilation pathway in tomato “Lycopersicon esculentum” seedlings. J Plant Physiol 163:1247–1258

    Article  PubMed  CAS  Google Scholar 

  • Dluzniewska P, Gessler A, Dietrich H, Schnitzler JP, Teuber M, Rennenberg H (2006) Nitrogen uptake and metabolism in Populus x canescens as affected by salinity. New Phytol 173:279–293

    Article  CAS  Google Scholar 

  • Dubey RS (1997) Nitrogen metabolism in plants under salt stress. In: Jaiwal PK, Singh RP, Gulati A (eds) Strategies for improving salt tolerance in higher plants. Oxford and IBH Publ. Co, New Delhi, pp 129–158

    Google Scholar 

  • Ehlting B, Dluzniewska P, Dietrich H, Selle A, Teuber M, Haensch R, Nehls U, Polle A, Schnitzler JP, Rennenberg H, Gessler A (2007) Interaction of nitrogen nutrition and salinity in Grey poplar (Populus tremula x alba). Plant Cell Environ 30:796–811

    Article  PubMed  CAS  Google Scholar 

  • Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress. Ann Bot 104:1263–1281

    Article  PubMed  CAS  Google Scholar 

  • Evellin H, Giri B, Kapoor R (2012) Contribution of Glomus intraradices inoculation to nutrient acquisition and mitigation of ionic imbalance in NaCl-stressed Trigonella foenum-graecum. Mycorrhiza 22:203–217

    Article  CAS  Google Scholar 

  • Fahmi AI, Nagaty HH, Eissa RA, Hassan MM (2011) Effects of salt stress on some nitrogen fixation parameters in faba bean. Pak J Biol Sci 14:385–391

    Article  PubMed  CAS  Google Scholar 

  • Feng G, Zhang FS, Li XL, Tian CY, Tang C, Rengel Z (2002) Improved tolerance of maize plants to slat stress by arbuscular mycorrhizal is related to higher accumulation of soluble sugars in roots. Mycorrhiza 12:185–190

    Article  PubMed  CAS  Google Scholar 

  • Flores P, Botella MA, Martínez V, Cerdá A (2002) Response to salinity of tomato seedlings with a split-root system: nitrate uptake and reduction. J Plant Nutr 25:177–187

    Article  CAS  Google Scholar 

  • Frechilla S, Lasa B, Ibarretre L, Lamfus C, Aparico-Tejo P (2001) Pea responses to saline stress is affected by the source of nitrogen nutrition (ammonium or nitrate). Plant Growth Regul 35:171–179

    Article  CAS  Google Scholar 

  • Garg N, Manchanda G (2008) Effect of arbuscular mycorrhizal inoculation on salt-induced nodule senescence in Cajanus cajan (pigeonpea). J Plant Growth Regul 27:115–124

    Article  CAS  Google Scholar 

  • Garg N, Manchanda G (2009) Role of arbuscular mycorrhizae in the alleviation of ionic, osmotic and oxidative stresses induced by salinity in Cajanus cajan (L.) Millsp. (pigeonpea). J Agron Crop Sci 195:110–123

    Article  CAS  Google Scholar 

  • Gibson TS (1988) Carbohydrate metabolism and phosphorus/salinity interactions in wheat (Triticum aestivum L.). Plant Soil 111:25–35

    Article  CAS  Google Scholar 

  • Gouia H, Ghorbal MH, Touraine B (1994) Effects of NaCl on flows of N and mineral ions and NO 3 reductase rate within whole plants of salt-sensitive bean and salt-tolerant cotton. Plant Physiol 105:1407–1418

    Google Scholar 

  • Grattan SR, Grieve CM (1992) Mineral element acquisition and growth response of plants grown in saline environments. Agric Ecosys Environ 38:275–300

    Article  CAS  Google Scholar 

  • Grattan SR, Grieve CM (1999) Salinity, mineral nutrient relations in horticultural crops. Sci Hort 78:127–157

    Article  CAS  Google Scholar 

  • Harinasut P, Tsutsui K, Takabe T, Nomura M, Kishitani S (1996) Exogenous glycine betaine accumulation and increased salt tolerance in rice seedlings. Biosci Biotechnol Biochem 60:366–368

    Article  CAS  Google Scholar 

  • Hawkins HK, Lewis OAM (1993) Effect of NaCl salinity, nitrogen form, calcium and potassium concentration on nitrogen uptake and kinetics in Triticum aestivum L cv Gamtoos. New Phytol 124:171–177

    Article  CAS  Google Scholar 

  • Hayashi F, Ichino T, Osanai M, Wada K (2000) Oscillation and regulation of proline content by P5Cs and ProDH gene expressions in the light/dark cycles in Arabidopsis thaliana L. Plant Cell Physiol 41:1096–1101

    Article  PubMed  CAS  Google Scholar 

  • Holford ICR (1997) Soil phosphorus: its measurement, and its uptake by plants. Aust J Soil Res 35:227–239

    Article  CAS  Google Scholar 

  • Hu Y, Schmidhalter U (1997) Interactive effects of salinity and macronutrient level on wheat. 2. Composition. J Plant Nutr 20:1169–1182

    Article  CAS  Google Scholar 

  • Jha P, Ali A, Raghuram N (2007) Nitrate-induction of nitrate reductase and its inhibition by nitrite and ammonium ions in Spirulina platensis. Physiol Mol Biol Plant 13:163–167

    CAS  Google Scholar 

  • Kaiser WM, Huber SC (2001) Post-translational regulation of nitrate reductase: mechanism, physiological relevance and environmental triggers. J Exp Bot 52:1981–1989

    Article  PubMed  CAS  Google Scholar 

  • Kaiser WM, Weiner H, Kandlbinder A, Tsai CB, Rockel P, Sonoda M, Planchet E (2002) Modulation of nitrate reductase: some new insights, an unusual case and a potentially important side reaction. J Exp Bot 53:875–882

    Article  PubMed  CAS  Google Scholar 

  • Kavi Kishor PB, Sangam S, Amrutha RN, Sri Laxmi P, Naidu KR, Rao KRSS, Rao S, Reddy KJ, Theriappan P, Sreenivasulu N (2005) Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Curr Sci 88:424–438

    Google Scholar 

  • Kaya C, Kirnak H, Higgs D (2001) Enhancement of growth and normal growth parameters by foliar application of potassium and phosphorus in tomato cultivars grown at high (NaCl) salinity. J Plant Nutr 24:357–367

    Article  CAS  Google Scholar 

  • Khan MG, Srivastava HS (1998) Changes in growth and nitrogen assimilation in maize plant induced by NaCl and growth regulators. Biol Plant 41:93–99

    Article  CAS  Google Scholar 

  • Kishor PBR, Hong Z, Miao GH, Hu CA, Verma DPB (1995) Overexpression of pyrroline-5-carboxylase synthetase increase proline production and confers osmotolerance in transgenic plants. Plant Physiol 108:1387–1394

    PubMed  CAS  Google Scholar 

  • Kriedemann PE, Downton WJS (1981) Photosynthesis. In: Paleg LG, Aspinall D (eds) The physiology and biochemistry of drought resistance in plants. Academic, London, pp 283–313

    Google Scholar 

  • Kronzucker HJ, Britto DT, Davenport RJ, Tester M (2001) Ammonium toxicity and the real cost of transport. Trends Plant Sci 6:335–337

    Article  PubMed  CAS  Google Scholar 

  • Kwinta J, Cal K (2005) Effects of salinity stress on the activity of glutamine synthetase and glutamate dehydrogenase in triticale seedlings. Polish J Environ Stud 14:125–130

    CAS  Google Scholar 

  • Lee TM, Tsai CC, Shih MC (1999) Induction of phosphorus deficiency and phosphatase activity by salinity (NaCl) stress in Gracilaria tenuistipitata (Gigartinales, Rhodophyta). Phycologia 38:428–433

    Article  Google Scholar 

  • Leidi EO, Silberbush M, Lips SH (1991) Wheat growth as affected by nitrogen typ, pH and salinity. 1. Biomass production and mineral-composition. J Plant Nutr 14:235–246

    Article  CAS  Google Scholar 

  • Li SH, Xia BB, Zhang C, Cao J, Bai LH (2011) Cloning and characterization of a phosphate transporter gene in Dunaliella salina. J Basic Microbiol 51:1–8

    Article  CAS  Google Scholar 

  • López-Berenguer C, Martínez-Ballesta MC, Moreno DA, Carvajal M, García-Viguera C (2009) Growing hardier crops for better health: salinity tolerance and the nutritional value of broccoli. J Agric Food Chem 57:572–578

    Article  PubMed  CAS  Google Scholar 

  • Loqué D, von Wirén N (2004) Regulatory levels for the transport of ammonium in plant roots. J Exp Bot 55:1293–1305

    Article  PubMed  CAS  Google Scholar 

  • Lutts S, Majerus V, Kinet JM (1999) NaCl effects on proline metabolism in rice (Oryza sativa L.) seedlings. Physiol Plant 105:450–458

    Article  CAS  Google Scholar 

  • Maas EV, Ogata G, Finkel MH (1979) Salt-induced inhibition of phosphate transport and release of membrane protein from barley roots. Plant Physiol 64:139–143

    Article  PubMed  CAS  Google Scholar 

  • Maighany F, Ebrahimzadeh H (2004) Intervarietal differences in nitrogen content and nitrate assimilation in wheat (Triticum aestivum L.) under salt stress. Pak J Bot 36:31–39

    Google Scholar 

  • Mansour MMF (2000) Nitrogen containing compounds and adaptation of plants to salinity stress. Biol Plant 43:491–500

    Article  CAS  Google Scholar 

  • Marschner H (1995) Adaptation of plants to adverse chemical soil conditions. In: Marschner H (ed) Mineral nutrition of higher plants. Academic, London, pp 596–681

    Chapter  Google Scholar 

  • Marschner H (2002) Mineral nutrition of higher plants, 2nd edn. Academic, London

    Google Scholar 

  • Martinez V, Cerda A (1989) Influence of N-source on rate of Cl, N, Na and K uptake by cucumber seedlings grown in saline condition. J Plant Nutr 12:971–983

    Article  CAS  Google Scholar 

  • Martinez B, Lauchli A (1994) Salt-induced inhibition of phosphate uptake in plants of cotton (Gossypium hirsutum L.). New Phytol 125:609–614

    Article  Google Scholar 

  • Martinez V, Bernstein N, Läuchli A (1996) Salt-induced inhibition of phosphorus transport in lettuce plants. Physiol Plant 97:118–122

    Article  CAS  Google Scholar 

  • Masclaux-Daubresse C, Daniel-Vedele F, Dechorgnat J, Chardon F, Gauflichon L, Suzuki A (2010) Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Ann Bot 105:1141–1157

    Article  PubMed  Google Scholar 

  • Maurino VG, Peterhansel C (2010) Photorespiration: current status and approaches for metabolic engineering. Curr Opin Plant Biol 13:249–256

    Article  PubMed  Google Scholar 

  • Meloni DA, Gulotta MR, Martínez CA, Oliva MA (2004) The effects of salt stress on growth, nitrate reduction and proline and glycinebetaine accumulation in Prosopis alba. Braz J Plant Physiol 16:39–46

    Article  PubMed  CAS  Google Scholar 

  • Mimura T, Reid RJ, Ohsumi Y, Smith FA (2002) Induction of the Na+/Pi cotransport system in the plasma membrane of Chara corallina requires external Na+ and low levels of Pi. Plant Cell Environ 25:1475–1481

    Article  PubMed  CAS  Google Scholar 

  • Miura K, Hasegawa PM (2010) Sumoylation and other ubiquitin-like post-translational modifications in plants. Trends Cell Biol 20:223–232

    Article  PubMed  CAS  Google Scholar 

  • Miura K, Rus A, Sharkhuu A, Yokoi S, Karthikeyan AS, Raghothama KG, Baek D, Koo YD, Jin JB, Bressan RA, Yun DJ, Hasegawa PM (2005) The Arabidopsis SUMO E3 ligase SIZ1 controls phosphate deficiency responses. Proc Natl Acad Sci USA 102:7760–7765

    Article  PubMed  CAS  Google Scholar 

  • Miura K, Lee J, Miura T, Hasegawa PM (2010) SIZ1 controls cell growth and plant development in Arabidopsis through salicylic acid. Plant Cell Physiol 51:103–113

    Article  PubMed  CAS  Google Scholar 

  • Miura K, Sato A, Ohta M, Furukawa J (2011) Increased tolerance to salt stress in the phosphate-accumulating Arabidopsis mutants siz1 and pho2. Planta 234:1191–1199

    Article  PubMed  CAS  Google Scholar 

  • Monneuse JM, Sugano M, Becue T, Santoni V, Hem S, Rossignol M (2011) Towards the profiling of the Arabidopsis thaliana plasma membrane transportome by targeted proteomics. Proteomics 11:1789–1797

    Article  PubMed  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Anuu Rev Plant Biol 59:651–681

    Article  CAS  Google Scholar 

  • Naheed G, Shahbaz M, Akram NA (2008) Interactive effects of rooting medium application of phosphorus and NaCl on plant biomass and mineral nutrients of rice (Oryza sativa L.). Pak J Bot 40:1601–1608

    CAS  Google Scholar 

  • Navarro JM, Botella MA, Cerda A, Martinez V (2001) Phosphorus uptake and translocation in salt-stressed melon plants. J Plant Physiol 158:375–381

    Article  CAS  Google Scholar 

  • Nenova V (2008) Growth and mineral concentrations of pea plants under different salinity levels and iron supply. General Applied Plant Physiol 34:189–202

    CAS  Google Scholar 

  • Nieman RH, Clark RA (1976) Interactive effects of salinity and phosphorus nutrition on the concentrations of phosphate and phosphate esters in mature photosynthesizing corn leaves. Plant Physiol 57:157–161

    Article  PubMed  CAS  Google Scholar 

  • Nieves M, Nieves-Cordones M, Poorter H, Simón MD (2011) Leaf nitrogen productivity is the major factor behind the growth reduction in induced by long-term salt stress. Tree Physiol 31:92–101

    Article  PubMed  CAS  Google Scholar 

  • Okusanya OT, Fawole T (1985) The possible role of phosphate in the salinity tolerance of Lavatera arborea. J Ecol 73:317–322

    Article  CAS  Google Scholar 

  • Ouyang B, Yang T, Li H, Zhang L, Zhang Y, Zhang J, Fei Z, Ye Z (2007) Identification of early salt stress response genes in tomato root by suppression subtractive hybridization and microarray analysis. J Exp Bot 58:507–520

    Article  PubMed  CAS  Google Scholar 

  • Pan SM (1987) Characterization of multiple acid phosphatases in salt-stressed spinach leaves. Aust J Plant Physiol 14:117–124

    Article  CAS  Google Scholar 

  • Parida AK, Das AB (2004) Effects of NaCl stress on nitrogen and phosphorus metabolism in a true mangrove Bruguiera parviflora grown under hydroponic culture. J Plant Physiol 161:921–928

    Article  PubMed  CAS  Google Scholar 

  • Pavón LR, Lundh F, Lundin B, Mishra A, Persson BL, Spetea C (2008) Arabidopsis ANTR1 is a thylakoid Na+-dependent phosphate transporter: functional characterization in Escherichia coli. J Biol Chem 283:13520–13527

    Article  CAS  Google Scholar 

  • Peuke AD, Jeschke WD (1999) The characterization of inhibition of net nitrate uptake by salt in salt-tolerant barley (Hordeum vulgare L. cv. California Mariout). J Exp Bot 50:1365–1372

    Article  CAS  Google Scholar 

  • Phang TH, Shao G, Liao H, Yan X, Lam HM (2009) High external phosphate (Pi) increases sodium ion uptake and reduces salt tolerance of ‘Pi-tolerant’ soybean. Physiol Plant 135:412–425

    Article  PubMed  CAS  Google Scholar 

  • Pitman MG, Läuchli A (2002) Global impact of salinity and agricultural ecosystems. In: Läuchli A, Lüttge U (eds) Salinity: environment – plants – molecules. Kluwer, Dordrecht, pp 3–20

    Google Scholar 

  • Popova OV, Ismailov SF, Popova TN, Dietz KJ, Golldack D (2002) Salt-induced expression of NADP-dependent isocitrate dehydrogenase and ferredoxin-dependent glutamate synthase in Mesembryanthemum crystallinum. Planta 215:906–913

    Article  PubMed  CAS  Google Scholar 

  • Qadar A (1998) Alleviation of sodicity stressed rice genotypes by phosphorus fertilization. Plant Soil 203:269–277

    Article  CAS  Google Scholar 

  • Rabe B (1990) Stress physiology: the functional significance of the accumulation of nitrogen containing compounds. J Hort Sci 65:231–243

    CAS  Google Scholar 

  • Rai AK, Sharma NK (2006) Phosphate metabolism in the cyanobacterium Anabaena doliolum under salt stress. Curr Microbiol 52:6–12

    Article  PubMed  CAS  Google Scholar 

  • Rao KR, Gnaham A (1990) Inhibition of nitrate and nitrate reductase activity by salinity stress in Sorghum vulgare. Phytochemistry 29:1047–1049

    Article  CAS  Google Scholar 

  • Rao DLN, Giller KE, Yeo AR, Flowers TJ (2002) The effects of salinity and sodicity upon nodulation and nitrogen fixation in chickpea (Cicer arietinum). Ann Bot 89:563–570

    Article  PubMed  CAS  Google Scholar 

  • Rausch C, Bucher M (2002) Molecular mechanisms of phosphate transport in plants. Planta 216:23–37

    Article  PubMed  CAS  Google Scholar 

  • Reda M, Migocka M, Klobus G (2011) Effect of short-term salinity on the nitrate reductase activity in cucumber roots. Plant Sci 180:783–788

    Article  PubMed  CAS  Google Scholar 

  • Rhodes D, Hanson AD (1993) Quaternary ammonium and tertiary sulfonium compounds in higher-plants. Annu Rev Plant Physiol Plant Mol Biol 44:357–384

    Article  CAS  Google Scholar 

  • Roberts JKM, Linker CS, Benoit AG, Jardetzky O, Nieman RH (1984) Salt stimulation of phosphate uptake in maize root tips studied by 31P nuclear magnetic resonance. Plant Physiol 75:947–950

    Article  PubMed  CAS  Google Scholar 

  • Rogers ME, Grieve CM, Shannon MC (2003) Plant growth and ion relations in lucerne (Medicago sativa L.) in response to the combined effects of NaCl and P. Plant Soil 253:187–194

    Article  CAS  Google Scholar 

  • Rubio L, Linares-Rueda A, García-Sánchez MJ, Fernández JA (2005) Physiological evidence for a sodium-dependent high-affinity phosphate and nitrate transport at the plasma membrane of leaf and root cells of Zostera marina L. J Exp Bot 56:613–622

    Article  PubMed  CAS  Google Scholar 

  • Sawahel WA, Hassan AH (2002) Generation of transgenic wheat plants producing high levels of the osmoprotectant proline. Biotech Lett 24:721–725

    Article  CAS  Google Scholar 

  • Saxena AK, Rewari RB (1991) Influence of phosphate and zinc on growth, nodulation and mineral composition of chickpea (Cicer arietinum L.) under salt stress. World J Microbiol Biotechnol 7:202–205

    Article  CAS  Google Scholar 

  • Segawa H, Onitsuka A, Kuwahata M, Hanabusa E, Furutani J, Kaneko I, Tomoe Y, Aranami F, Matsumoto N, Ito M, Matsumoto M, Li M, Amizuka N, Miyamoto K (2009) Type IIc sodium-dependent phosphate transporter regulates calcium metabolism. J Am Soc Nephrol 20:104–113

    Article  CAS  Google Scholar 

  • Shaddad MM (1990) The effect of proline application on the physiology of Raphanus sativus plants grown under stress. Biol Plant 32:104–112

    Article  CAS  Google Scholar 

  • Shannon MC (1997) Adaptation of plants to salinity. Adv Agron 60:75–119

    Article  Google Scholar 

  • Shen W, Huber SC (2006) Polycations globally enhance binding of 14-3-3ω to target proteins in spinach leaves. Plant Cell Physiol 47:764–771

    Article  PubMed  CAS  Google Scholar 

  • Shenker M, Ben-Gal A, Shani U (2003) Corn growth and uptake under combined nitrogen and salinity environmental stresses. Plant Soil 256:139–147

    Article  CAS  Google Scholar 

  • Shi H, Quintero FJ, Pardo JM, Zhu JK (2002) The putative plasma membrane Na+/H+ antiporters SOS1 controls long-distance Na+ transport in plants. Plant Cell 14:465–477

    Article  PubMed  CAS  Google Scholar 

  • Shibli RA, Sawwan J, Swaidat I, Takat M (2001) Increased phosphorus mitigates the adverse effects of salinity in tissue culture. Common Soil Sci Plant Anal 32:429–440

    Article  CAS  Google Scholar 

  • Shokri S, Maadi B (2009) Effect of arbuscular mycorrhizal fungus on the mineral nutrition and yield of Trifolium alexandrinum plants under salinity stress. J Agron 8:79–83

    Article  CAS  Google Scholar 

  • Siddiqui MH, Mohammad F, Khan MMA, Al-Whaibi MH (2012) Cumulative effect of nitrogen and sulphur on Brassica juncea L. genotypes under NaCl stress. Protoplasma 249:139–153

    Article  PubMed  CAS  Google Scholar 

  • Silva-Ortega CO, Ochoa-Alfaro AE, Reyes-Agüero JA, Aguado-Santacruz GA, Jiménez-Bremont JF (2008) Salt stress increases the expression of p5cs gene and induces proline accumulation in cactus pear. Plant Physiol Biochem 46:82–92

    Article  PubMed  CAS  Google Scholar 

  • Silveira JAG, Melo ARB, Viegas RA, Oliveira JTA (2001) Salinity-induced effects on nitrogen assimilation related to growth in cowpea plants. Environ Exp Bot 46:171–179

    Article  CAS  Google Scholar 

  • Skriver K, Mundy J (1990) Gene expression in response to abscisic acid and osmotic stress. Plant Cell 2:503–512

    PubMed  CAS  Google Scholar 

  • Solomonson LP, Barber MJ (1990) Assimilatory nitrate reductase: functional properties and regulation. Annu Rev Plant Physiol Plant Mol Biol 41:225–253

    Article  CAS  Google Scholar 

  • Speer M, Kaiser WM (1994) Replacement of nitrate by ammonium as the nitrogen-source increases the salt sensitivity of pea plants. 2. Intercellular and intracellular solute compartmentation in leaflets. Plant Cell Environ 17:1223–1231

    Article  Google Scholar 

  • Szabo-Nagy A, Galiba G, Erdei L (1992) Induction of soluble phosphatases under ionic and nonionic osmotic stresses in wheat. J Plant Physiol 140:629–633

    Article  CAS  Google Scholar 

  • Taiz L, Zeiger E (2006) Plant physiology, 4th edn. Sinauer Associates, Inc., Sunderland

    Google Scholar 

  • Talke IN, Blaudez D, Maathuis FJM, Sanders D (2003) CNGCs: prime targets of plant cyclic nucleotide signaling? Trends Plant Sci 8:286–293

    Article  PubMed  CAS  Google Scholar 

  • Tcherkez G (2011) Natural 15N/14N isotope composition in C3 leaves: are enzymatic isotope effects informative for predicting the 15N-abundance in key metabolites? Funct Plant Biol 38:1–12

    Article  CAS  Google Scholar 

  • Teixeira J, Fidalgo F (2009) Salt stress affects glutamine synthetase activity and mRNA accumulation on potato plants in an organ-dependent manner. Plant Physiol Biochem 47:807–813

    Article  PubMed  CAS  Google Scholar 

  • Treeby MT, van Steveninck RFM (1988) Effects of salinity and phosphate on ion distribution in lupin leaflets. Physiol Plant 73:317–322

    Article  CAS  Google Scholar 

  • Tsay YF, Chiu CC, Tsai CB, Ho CH, Hsu PK (2007) Nitrate transporters and peptide transporters. FEBS Lett 581:2290–2300

    Article  PubMed  CAS  Google Scholar 

  • van Hoorn JW, Katerji N, Hamdy A, Mastrorilli M (2001) Effect of salinity on yield and nitrogen uptake of four grain legumes and on biological nitrogen contribution from the soil. Agr Water Manag 51:87–98

    Article  Google Scholar 

  • Vance CP, Uhde-Stone C, Allan DL (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a non-renewable resource. New Phytol 157:423–447

    Article  CAS  Google Scholar 

  • Viégas RA, Silveira JAG (1999) Ammonia assimilation and proline accumulation in young cashew plants during long term exposure to NaCl-salinity. Revista Brasileira de Fisiologia Vegetal 11:153–159

    Google Scholar 

  • Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotech 16:123–132

    Article  PubMed  CAS  Google Scholar 

  • Wahid A, Hameed M, Rasul E (2004) Salt-induced injury symptom, changes in nutrient and pigment composition and yield characteristics of mungbean. Int J Agric Biol 6:1143–1152

    CAS  Google Scholar 

  • Wang ZQ, Yuan YZ, Ou JQ, Lin QH, Zhang CF (2007) Glutamine synthetase and glutamate dehydrogenase contribute differentially to proline accumulation in leaves of wheat (Triticum aestivum) seedlings exposed to different salinity. J Plant Physiol 164:695–701

    Article  CAS  Google Scholar 

  • Wingler A, Lea PJ, Quick WP, Leegood RC (2000) Photorespiration: metabolic pathways and their role in stress protection. Philos Trans R Soc Lond B 355:1517–1529

    Article  CAS  Google Scholar 

  • Yan SP, Zhang QY, Tang ZC, Su WA, Sun WN (2006) Comparative proteomic analysis provides new insights into chilling stress responses in rice. Mol Cell Proteomics 5:484–496

    PubMed  CAS  Google Scholar 

  • Yang X, Lu C (2005) Photosynthesis is improved by exogenous glycine-betaine in salt-stressed maize plants. Physiol Plant 124:343–352

    Article  CAS  Google Scholar 

  • Yao J, Shi WM, Xu WF (2008) Effects of salt stress on expression of nitrate transporter and assimilation-related genes in tomato roots. Russ J Plant Physiol 55:232–240

    Article  CAS  Google Scholar 

  • Yousfi S, M’sehli W, Mahmoudi H, Abdelly C, Gharsalli M (2007) Effect of salt on physiological responses of barley to iron deficiency. Plant Physiol Biochem 45:309–314

    Article  PubMed  CAS  Google Scholar 

  • Yousfi S, Serret MD, Márquez AJ, Voltas J, Araus JL (2012) Combined use of δ13C, δ18O and δ15N tracks nitrogen metabolism and genotypic adaptation of durum wheat to salinity and water deficit. New Phytol 194:230–244

    Article  PubMed  CAS  Google Scholar 

  • Zaiter HZ, Saade M (1993) Interactive effects of salinity and phosphorus-nutrition on tepary and common bean cultivars. Commun Soil Sci Plant Anal 24:109–123

    Article  Google Scholar 

  • Zhonghua T, Yanju L, Xiaorui G, Yuangang Z (2011) The combined effects of salinity and nitrogen forms on Catharanthus roseus: the role of internal ammonium and free amino acids during salt stress. J Plant Nutr Soil Sci 174:135–144

    Article  CAS  Google Scholar 

  • Zribi OT, Abdelly C, Debez A (2011) Interactive effects of salinity and phosphorus availability on growth, water relations, nutritional status and photosynthetic activity of barley (Hordeum vulgare L.). Plant Biol 13:872–880

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported, in part, by Special Coordination Funds for Promoting Science and Technology, and by a Grant-in-Aid for Scientific Research on Innovative Areas on ‘Environmental Sensing of Plants: Signal Perception, Processing Cellular Responses’ from the Ministry of Education, Culture, Sports, Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Miura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Miura, K. (2013). Nitrogen and Phosphorus Nutrition Under Salinity Stress. In: Ahmad, P., Azooz, M., Prasad, M. (eds) Ecophysiology and Responses of Plants under Salt Stress. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4747-4_16

Download citation

Publish with us

Policies and ethics