Skip to main content

Historical Perspectives and Current Trends in Cancer Immunotherapy

  • Chapter
  • First Online:
Cancer Immunotherapy

Abstract

The immune system is exquisitely able to identify trace antigens and eliminate cells expressing them. Tumors are quintessentially antigenic tissues as a result of their many genetic mutations. This antigenicity, however, does not generally translate into useful immunogenicity as spontaneous rejection of clinically apparent tumors is rare. Early work in tumor immunology identified tumor-specific and tumor-associated antigens and formulated strategies to bolster antitumor immunity using paradigms arising from prior successes in understanding anti-pathogen immunity. It is now clear that the inability of endogenous immune mechanisms to eradicate clinically evident cancers owes in part to tumor-driven immune dysfunction, in part to the coevolution of antitumor immunity with the ever-changing antigens of the ever-mutating tumors (immunoediting) and to the fact that antitumor immunity is a form of autoimmunity. These newer understandings caused thinking to evolve and advance. Our rapidly increasing understanding of antitumor immunity and how it can be thwarted has led to new approaches to tumor immunotherapy with great promise to be much more successful than prior generations of approaches. This chapter discusses the evolution in thinking about tumor immunity, why endogenous antitumor immunity often fails after tumors become clinically apparent and why prior tumor immunotherapy approaches have generally had only modest success at best. New paradigms leading the field and the novel therapeutic approaches based on recent insights will be introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Silverstein, AM (1989) A history of immunology. Academic Press, Inc. Harcourt Brace Jovanovich, Publishers, 3

    Google Scholar 

  2. Coley WB (1893) The treatment of malignant tumors by repeated inoculums of erysipelas. Am J Med Sci 105:487–511

    Article  Google Scholar 

  3. McMichael AJ, Gotch FM, Noble GR, Beare PA (1983) Cytotoxic T-cell immunity to influenza. N Eng J Med 309:13–17

    Article  CAS  Google Scholar 

  4. Nonacs R, Humborg C, Tam JP, Steinman RM (1992) Mechanisms of mouse spleen dendritic cell function in the generation of influenza-specific, cytolytic T lymphocytes. J Exp Med 176:519–529

    Article  PubMed  CAS  Google Scholar 

  5. Prehn R (1957) Immunity to methylcholanthrene-induced sarcomas. J Natl Cancer Inst 18:769

    PubMed  CAS  Google Scholar 

  6. Schreiber H, Ward PL, Rowley DA, Stauss HJ (1988) Unique tumor-specific antigens. Annu Rev Immunol 6:465–483

    Article  PubMed  CAS  Google Scholar 

  7. Stauss HJ, Van Waes C, Fink MA, Starr B, Schreiber H (1986) Identification of a unique tumor antigen as rejection antigen by molecular cloning and gene transfer. J Exp Med 164:1516–1530

    Article  PubMed  CAS  Google Scholar 

  8. Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392:245–252

    Article  PubMed  CAS  Google Scholar 

  9. Crosnier J et al (1981) Randomised placebo-controlled trial of hepatitis B surface antigen vaccine in French haemodialysis units: II, Haemodialysis patients. Lancet 1:797–800

    Article  PubMed  CAS  Google Scholar 

  10. Hsu FJ et al (1996) Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nat Med 2:52–58

    Article  PubMed  CAS  Google Scholar 

  11. Nestle FO et al (1998) Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat Med 4:328–332

    Article  PubMed  CAS  Google Scholar 

  12. Nestle FO, Banchereau J, Hart D (2001) Dendritic cells: on the move from bench to bedside. Nat Med 7:761–765

    Article  PubMed  CAS  Google Scholar 

  13. Steinman RM, Banchereau J (2007) Taking dendritic cells into medicine. Nature 449:419–426

    Article  PubMed  CAS  Google Scholar 

  14. Apetoh L, Locher C, Ghiringhelli F, Kroemer G, Zitvogel L (2011) Harnessing dendritic cells in cancer. Semin Immunol 23:42–49

    Article  PubMed  CAS  Google Scholar 

  15. Rosenberg SA, Spiess P, Lafreniere R (1986) A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science 233:1318–1321

    Article  PubMed  CAS  Google Scholar 

  16. Rosenberg SA et al (1988) Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N Engl J Med 319:1676–1680

    Article  PubMed  CAS  Google Scholar 

  17. Rosenberg SA et al (1987) A progress report on the treatment of 157 patients with advanced cancer using lymphokine-activated killer cells and interleukin-2 or high-dose interleukin-2 alone. N Eng J Med 316:889–897

    Article  CAS  Google Scholar 

  18. Morgan RA et al (2006) Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314:126–129

    Article  PubMed  CAS  Google Scholar 

  19. Pardoll DM (1998) Cancer vaccines. Nat Med 4:525–531

    Article  PubMed  CAS  Google Scholar 

  20. Gajewski TF, Meng Y, Harlin H (2006) Immune suppression in the tumor microenvironment. J Immunother 29:233–240

    Article  PubMed  CAS  Google Scholar 

  21. Zitvogel L, Tesniere A, Kroemer G (2006) Cancer despite immunosurveillance: immunoselection and immunosubversion. Nat Rev Immunol 6:715–727

    Article  PubMed  CAS  Google Scholar 

  22. Kalos M et al (2011) T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med 3:95ra73

    Article  PubMed  CAS  Google Scholar 

  23. Curiel TJ, Curiel DT (2002) Tumor immunotherapy: inching toward the finish line. J Clin Invest 109:311–312

    PubMed  CAS  Google Scholar 

  24. Bluestone JA (2011) Mechanisms of tolerance. Immunol Rev 241:5–19

    Article  PubMed  CAS  Google Scholar 

  25. Spiotto MT, Fu YX, Schreiber H (2003) Tumor immunity meets autoimmunity: antigen levels and dendritic cell maturation. Curr Opin Immunol 15:725–730

    Article  PubMed  CAS  Google Scholar 

  26. Smyth MJ, Dunn GP, Schreiber RD (2006) Cancer immunosurveillance and immunoediting: the roles of immunity in suppressing tumor development and shaping tumor immunogenicity. Adv Immunol 90:1–50

    Article  PubMed  CAS  Google Scholar 

  27. Pardoll D (2001) T cells and tumours. Nature 411:1010–1012

    Article  PubMed  CAS  Google Scholar 

  28. Pardoll D (2003) Does the immune system see tumors as foreign or self? Annu Rev Immunol 21:807–839

    Article  PubMed  CAS  Google Scholar 

  29. Wick M et al (1997) Antigenic cancer cells grow progressively in immune hosts without evidence for T cell exhaustion or systemic anergy. J Exp Med 186:229–238

    Article  PubMed  CAS  Google Scholar 

  30. Elgert KD, Alleva DG, Mullins DW (1998) Tumor-induced immune dysfunction: the macrophage connection. J Leukoc Biol 64:275–290

    PubMed  CAS  Google Scholar 

  31. Salazar-Onfray F (1999) Interleukin-10: a cytokine used by tumors to escape immunosurveillance. Med Oncol 16:86–94

    Article  PubMed  CAS  Google Scholar 

  32. Moore KW, de Waal Malefyt R, Coffman RL, O'Garra A (2001) Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 19:683–765

    Article  PubMed  CAS  Google Scholar 

  33. Li MO, Wan YY, Sanjabi S, Robertson AK, Flavell RA (2006) Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol 24:99–146

    Article  PubMed  CAS  Google Scholar 

  34. Saunier EF, Akhurst RJ (2006) TGF beta inhibition for cancer therapy. Curr Cancer Drug Targets 6:565–578

    Article  PubMed  CAS  Google Scholar 

  35. Liu VC et al (2007) Tumor evasion of the immune system by converting CD4+CD25- T cells into CD4+CD25+ T regulatory cells: role of tumor-derived TGF-beta. J Immunol 178:2883–2892

    PubMed  CAS  Google Scholar 

  36. Gabrilovich DI et al (1996) Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells [published erratum appears in Nat Med 1996 Nov;2(11):1267]. Nat Med 2:1096–1103

    Article  PubMed  CAS  Google Scholar 

  37. Knutson K, Curiel T, Salazar L, Disis M (2003) Immunologic principles and immunotherapeutic approaches in ovarian cancer. Hematol Oncol Clin North Am 17:1051–1073

    Article  PubMed  Google Scholar 

  38. Curiel TJ et al (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10:942–949

    Article  PubMed  CAS  Google Scholar 

  39. Thibodeaux SR, Curiel TJ (2011) Immune therapy for ovarian cancer: promise and pitfalls. Int Rev Immunol 30:102–119

    Article  PubMed  CAS  Google Scholar 

  40. Curiel TJ et al (2003) Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity. Nat Med 9:562–567

    Article  PubMed  CAS  Google Scholar 

  41. Zou W et al (2001) Stromal-derived factor-1 in human tumors recruits and alters the function of plasmacytoid precursor dendritic cells. Nat Med 7:1339–1346

    Article  PubMed  CAS  Google Scholar 

  42. Shankaran V et al (2001) IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410:1107–1111

    Article  PubMed  CAS  Google Scholar 

  43. Koebel CM et al (2007) Adaptive immunity maintains occult cancer in an equilibrium state. Nature 450:903–907

    Article  PubMed  CAS  Google Scholar 

  44. Schreiber RD, Old LJ, Smyth MJ (2011) Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science 331:1565–1570

    Article  PubMed  CAS  Google Scholar 

  45. Dunn GP, Old LJ, Schreiber RD (2004) The three Es of cancer immunoediting. Annu Rev Immunol 22:329–360

    Article  PubMed  CAS  Google Scholar 

  46. Strauss DC, Thomas JM (2010) Transmission of donor melanoma by organ transplantation. Lancet Oncol 11:790–796

    Article  PubMed  Google Scholar 

  47. Stephens JK et al (2000) Fatal transfer of malignant melanoma from multiorgan donor to four allograft recipients. Transplantation 70:232–236

    PubMed  CAS  Google Scholar 

  48. Matsushita H et al (2012) Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature 482:400–404

    Article  PubMed  CAS  Google Scholar 

  49. DuPage M, Mazumdar C, Schmidt LM, Cheung AF, Jacks T (2012) Expression of tumour-specific antigens underlies cancer immunoediting. Nature 482:405–409

    Article  PubMed  CAS  Google Scholar 

  50. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  PubMed  CAS  Google Scholar 

  51. Curiel TJ (2007) Tregs and rethinking cancer immunotherapy. J Clin Invest 117:1167–1174

    Article  PubMed  CAS  Google Scholar 

  52. Ward PS, Thompson CB (2012) Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell 21:297–308

    Article  PubMed  CAS  Google Scholar 

  53. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  PubMed  CAS  Google Scholar 

  54. Demaria S et al (2010) Cancer and inflammation: promise for biologic therapy. J Immunother 33:335–351

    Article  PubMed  Google Scholar 

  55. Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140:883–899

    Article  PubMed  CAS  Google Scholar 

  56. Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A (2009) Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis 30:1073–1081

    Article  PubMed  CAS  Google Scholar 

  57. Negrini S, Gorgoulis VG, Halazonetis TD (2010) Genomic instability—an evolving hallmark of cancer. Nat Rev Mol Cell Biol 11:220–228

    Article  PubMed  CAS  Google Scholar 

  58. De Bock K, Cauwenberghs S, Carmeliet P (2010) Vessel abnormalization: another hallmark of cancer? Molecular mechanisms and therapeutic implications. Curr Opin Genet Dev 21:73–79

    Article  PubMed  Google Scholar 

  59. Teschendorff AE et al (2010) Age-dependent DNA methylation of genes that are suppressed in stem cells is a hallmark of cancer. Genome Res 20:440–446

    Article  PubMed  CAS  Google Scholar 

  60. Barnett B, Kryczek I, Cheng P, Zou W, Curiel TJ (2005) Regulatory T cells in ovarian cancer: biology and therapeutic potential. Am J Reprod Immunol 54:369–377

    Article  PubMed  CAS  Google Scholar 

  61. Dannull J et al (2005) Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J Clin Invest 115:3623–3633

    Article  PubMed  CAS  Google Scholar 

  62. Chesney J, Rasku M, Clem A, Miller D (2006) Denileukin diftitox depletes T regulatory cells and causes regression of melanoma metastases in humans. Eur J Cancer Suppl 4:84

    Article  Google Scholar 

  63. Mahnke K et al (2007) Depletion of CD4(+)CD25(+) human regulatory T cells in vivo: Kinetics of Treg depletion and alterations in immune functions in vivo and in vitro. Int J Cancer 120:2723–2733

    Article  PubMed  CAS  Google Scholar 

  64. Wei S et al (2005) Plasmacytoid dendritic cells induce CD8+ regulatory T cells in human ovarian carcinoma. Cancer Res 65:5020–5026

    Article  PubMed  CAS  Google Scholar 

  65. Jarnicki AG, Lysaght J, Todryk S, Mills KH (2006) Suppression of antitumor immunity by IL-10 and TGF-beta-producing T cells infiltrating the growing tumor: influence of tumor environment on the induction of CD4+ and CD8+ regulatory T cells. J Immunol 177:896–904

    PubMed  CAS  Google Scholar 

  66. Taniguchi M, Harada M, Kojo S, Nakayama T, Wakao H (2003) The regulatory role of Valpha14 NKT cells in innate and acquired immune response. Annu Rev Immunol 21:483–513

    Article  PubMed  CAS  Google Scholar 

  67. Almand B et al (2001) Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J Immunol 166:678–689

    PubMed  CAS  Google Scholar 

  68. Kusmartsev S, Gabrilovich DI (2006) Role of immature myeloid cells in mechanisms of immune evasion in cancer. Cancer Immunol Immunother 55:237–245

    Article  PubMed  Google Scholar 

  69. Kryczek I et al (2006) B7-H4 expression identifies a novel suppressive macrophage population in human ovarian carcinoma. J Exp Med 203:871–881

    Article  PubMed  CAS  Google Scholar 

  70. Montero AJ et al (2012) Phase 2 study of neoadjuvant treatment with NOV-002 in combination with doxorubicin and cyclophosphamide followed by docetaxel in patients with HER-2 negative clinical stage II-IIIc breast cancer. Breast Cancer Res Treat 132:215–223

    Article  PubMed  CAS  Google Scholar 

  71. Zitvogel L et al (2010) Immunogenic tumor cell death for optimal anticancer therapy: the calreticulin exposure pathway. Clin Cancer Res 16:3100–3104

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Thanks to Vincent Hurez, Lishi Sun, Mark Kious, Suzanne Thibodeaux, Kruthi Murthy, Srilakshmi Pandaswara, and AiJie Liu for expert technical assistance and to my colleagues for many informative discussions. This work was supported by CA105207, CA054174, FD003118, the Fanny Rippel Foundation, the Voelcker Trust, the Hayes Endowment, the Holly Beach Public Library Association, the Owens Foundation, The Hogg Foundation and UTHSCSA endowments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tyler J. Curiel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Curiel, T.J. (2013). Historical Perspectives and Current Trends in Cancer Immunotherapy. In: Curiel, T. (eds) Cancer Immunotherapy. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4732-0_1

Download citation

Publish with us

Policies and ethics